ON THE DISTRIBUTION OF WALD’S CLASSIFICATION
STATISTIC
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Summary. In this paper we shall consider the exact distribution of Wald’s
classification statistic V in the univariate case, some theoretical approximations
in various multivariate cases, and an empirical distribution in a particular
multivariate case. We shall also draw some conclusions as to the potential use-
fulness of the statistic ¥ and the work which remains to be done.

1. Introduction. In many educational and industrial problems it is necessary
to classify persons or objects into one of two categories—those fit and those unfit
for a particular purpose. In formulating this problem of classification, Wald [1]
assumed that for p tests we know the scores of N; individuals known to belong
to population II, and of N, individuals known to belong to population II, ,
along with those of the individual under consideration, a member of the popu-
lation II, where it is known a priori that II is identical with either II; or I, .
He assumed moreover that the distribution of the test scores of the individuals
making up II; and II, are two p-variate normal distributions which have the
same covariance matrix, but are independent of each other. In order to classify
the individual in question into either II; or II,, Wald introduced the statistic
17 defined by the relation
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and where the variates ;s i = 1,---,p;8 =1, .-+, n 4+ 2) are normally and
independently distributed with unit variance and with expected values
B) E(i) =0(@=1--,n), Elti) =pi, Eltinta) = &,

where p; and {; are constants.
2. The exact distribution of ¥V when p = 1. In the univariate case, the de-
finition (1) reduces to

) V = sntl.n+ltl,n+2;
where
1 1
s“=s—=7—, n =N+ N, —2.
3 fa/n
a=1
58

S
ol
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )2

The Annals of Mathematical Statistics. MIKORY
WWWw.jstor.org




CLASSIFICATION STATISTIC 59

Thus, in the case p = 1,

U, nt1tin,42 xy

®) v = hpithes 2
2 Ba/n
a=]
where
T = b4, Y = l,nt2, z = Z tf,/n.

a=1

In the degenerate case (o1 = {1 = 0),  and y are normally distributed with
zero means, so that their probability laws are

(6) Px) = \/ ¥, P@y) = \/— _ i
Because of symmetry we have then
@) Pz = \/2 e, Py = \/2 e

It is well known that z = D _a_, t1./n is distributed as x*/n with n degrees of
freedom, that is, the probability law for z is

in in—1 —inz
n 2 e
®) P& =t~

in a manner

Now we proceed to find the probability law of V = __._l 2| zl Y|

similar to that used by Shrivastava [2] in investigating a different statistic.
Letw =In|V|=In|z|+ In|y| — In z. Then the characteristic function

of w is given by

® o0 = [T Pz Py DPE de dy a

Substituting the values of P(|z|), P(|y|) and P(2) from (7) and (8), and
making use of the independence of z, ¥y and 2z, we have

in @ 0 @
S (N it —ia? f it —hy? / tn—i—it _—inz
(10) () 25"‘11‘(%n)1r£ z'e ™ de | ve dy | 2 e g

Expressing the integrals in (10) in terms of Gamma functions and simplifying,
we find

(11) 8(t) = I.’zi‘ )r(zn—zt)[ (“ t 1)]2.

Upon inserting this result in the Levy inversion formula

(12) P(w) = zlw [ (1) dt
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and making the substitution v = 4, we obtain

it +ie0 2
_ n “YWP(ly v+ 1
(13) P(w) = e ) e e *T(3n — v) I:I‘( 2 >] dv.

Using a property of the Gamma function given by Whittaker and Watson [3]

™
sin wz

(14) TET(1 —2) =

and letting z = in — v, we obtain

™

(15) F(%n - 1)) = P(l) _ %n + 1) sin ,".(%n - U).

Substituting this value of T'(3n — ») in (13), and simplifying, we find

» v+ 1 2
R U s "[P( D >]
R e dv.

I'Gn) 27 Lo sinw(3n — )Ll — in + 1)

(16)  P(w) =

We shall now perform a contour integration, using as the contour the imagi-
nary axis plus the semicircle in the right half-plane with center at the origin
and infinite radius. It can be shown that for | n/2¢” | < 1, and hence for | V' | >
n/2, the integral around the semicircular portion of the contour is zero. Hence,
under these conditions, the integral on the right side of (16) is equal to (—2%)
times the sum of the residues at all the singular points in the right half-plane.
The integrand has simple poles at v = in,3in + 1,4n 4+ 2, ---, and no other
singularities in the right half-plane. Inserting the actual values of the residues,
using the fact that cos kr = (—1)*, for k an integer, and lettingv = j + in,

we find
[(%+n+3T
© 'if ———
1 S gty i q)i 4 )

7T (3n) iz rG+1)

(17) P(w) =

oj=

Replacing ¢” by | V | and multiplying by (ﬁl—?’—l = l—l——l , we obtain the prob-

ability law for | V|
2 +n + 2\ T
1 i =iy r 4
(18) P(IV‘)—mjaon | V] TG+ 1)

The infinite series on the right side of (18) converges for precisely those values
of | V' | for which the integral along the semicircular portion of the path is zero,
that is for | V' | > %n . Since the values of z and y are symmetric about zero and
uncorrelated, the values of V are also symmetric about zero, and hence P(V) =

PV,
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To obtain a series for P(| V' | ) which converges when | V | < in, it would be

necessary to perform a contour integration around the left half-plane, which is
2

Y _;_ 1>] in the integrand

of (16) introduces double poles at v = —1, —3, —5, - - -

If we drop the restriction {; = 0, but keep py = 0, V will still be distributed
symmetrically about zero, since z is distributed symmetrically about zero and is
independent of y. The probability laws for z and 2z will be the same as in the
degenerate case, but P(| V |) will be different, due to a change in P(|y|).
Since the mean of the distribution of y’s is now {; # 0, we have

considerably more difficult, since the pfesence of [I‘ (

1
(19) P(y) vz © )
which yields
o v 2 a2 00 ( )2r
= — [Hu—tp? S D I L) y$
N Te 1=z &enr

Proceeding in the same manner as for the degenerate case, we find as the char-
acteristic function of w = In | V|

_ ¥ i+ 1 B @) it + 1
o0 o0 =Ty () 1 -0 E G e (- + )

Again using the Levy inversion formula (12), and letting v = ¢, we have

—3r? +io0
Pw) = — n'e T (v ; 1)

274T (3n) i
21 v+1
-0 S B (0t e

This integral may be evaluated by integrating around the same contour as in
the degenerate case. Performing the contour integration and simplifying, we
obtain

(22)

2 n’e” " (U + 1)
- Y o—in = (267) ( v+ 1)
@) PO) = & Ta— It D D o et T\"t 2 )
Replacing ¢” by | V | and multiplying by Y g | V 7] l——Ilf—I , we find
v v+ 1 v—in
o ”F< 2 )0 = ey v+ 1
@) PIV] = xT'(in) 'Z;:,. | VI|™HTI'(w — n + 1) E, 2r)! r (r + 2 )
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Letting v = j + in, this may be written in the form

it (—l)jnjH"F (2'7-|__.__n_-i_2>
o PUVD = : —
5) aTGn) =5~ [V A DG+ 1)
3 @) ( 2j+n+2)
; @1 rir+=—7—)

This expression is valid (since the integral vanishes along the semicircular por-
tion of the contour) and converges for precisely the same values of ¥ as in the
degenerate case, that is for | V | > n/2.

3. Approximate distributions of V in various multivariate cases. Wald [1]
has shown that the distribution of the statistic V is the same as that of the
statistic

ms
ms — (1 — m)(1 — my)’

(26) V=—-—n

where the joint distribution of m; , m; and m; is known. Since m; , m, and m;
are of the order 1/n in the probability sense, the denominator of (26) is near
—1 nearly always for sufficiently large n. Accordingly, Wald has suggested that
even for moderately large n, V is distributed approximately as nm;. By in-
tegrating out m, and m. over the domain for which the joint distribution is real
and = 0, it is possible to find the distribution of ms;, and from it the distribution
of nms, which is approximately the distribution of V, for sufficiently large n.
We restrict ourselves to values of n and p satisfying the relation 1 < p = n.
Four cases have to be considered: (1a) n even, p odd; (1b) n even, p even; (2a) n
odd, p even; and (2b) n odd, p odd.

For the degenerate case p; = {; = 0, it can be shown that the joint distribu-
tion of m; , m, and m; given by Wald [1] reduces to

@7 Cld — m)(A — my) — mi " mgm, — ma) T *dmudm, dms

where C is a constant. In integrating out m; and m,, we must be careful to
integrate over only the domain for which the joint distribution (27) is real
and =0. This requires that the following inequalities hold:

(28) mms — my = 0, 1 —m)(Q — mg) — ms = 0.
From these it follows that the limits for m; and m, are

ms 1—\/1-—4m§<m2

m;z;
— < < —_
(29) , =m = 1 1— . ’ 2

<1+ VI—dm}
- 2 .

For Case la (n even, p odd), let p = 3 + 2¢, where ¢ = an integer = 0. The
distribution function G, ,(m;) can then be expressed as a double integral, as
follows:
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/1=dm? 1-m2/(1
(1+v1 4"‘3)/2[ Tmy/mma) 2](n—4)/2-c
3.

Gn 3+2c(m3) =C [(Q—m)Q—my) —m

(30) ! a—v/i=amp) /2

m2/m
2/me

. [mymy — m3)° dmydm,.

Expanding repeatedly by the binomial theorem and integrating out m; , then
expanding again and integrating out m, , we find

(npfe—e 0 — 4
Gnzrac(mz) = C Z 27

J=0 ‘7

31 g( )g( 1>’+"() =5

[Ajk.o(ms) + Bjr,q(ms) — Cir(ms) — Djx(ms)],

where

Agaalms) = >

minl (n—2)/2~j=g,(n—4) [2—c—k] [N — 2 i—=q\ swrer
Z D) ma( q+r)

r

= 14

) [<1 + vmg)(n—ﬂﬂ—-k—q—r—t B (1 _ _\/i_—47;g)(n—2)/2-k—q—r~t:|
2 2 ’

(rlrmi=e (M — 2 J— q\  otetatr
Bj.o(ms) = > 2 mz T

(n—4)/2—c—k—r n—4
. —c—k—r . 2
(32) - g (1)<2 )n—2—%—2m—%—%

ta(n=2) |2—c—k
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. c—qn_g Inﬂl___fl_m_j
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c—q
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=
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—~k+1 n—4 - Cc — k n—2+2k—2j5
(85) Dju(mg) = (—1) 2 m; In
j—k

1 —+/1— 4m}
1 4++1— 4m?’

the terms involving natural logarithms having the value zero when m; = 0.
As a numerical example we have, after normalization,

18 -
Gho,s(ms) = 180 [(Tl'g + $9mi + Jemi + ImN/1 — dml

(36) "

— (m§ + $mi — imi) In

1+‘\/1—'4ﬁ_§‘|
1—v1—4am |

For Case 1b (n even, p even), let p = 2 + 2¢, where ¢ = an integer = 0. The

distribution function G, ,(ms) can then be expressed as a double integral, as
follows:

(144/T=dmz) /2 pl—m3/ (1—m3) o
G 2420(mg) = C~/;1 _ 2:/2 fz/ [(1 = m) (1 — my) — m2| ™D/
@37 —ViZimp/2 Imim

. [myme — m2F dmidms,.

This double integration can be performed by the use of certain formulas given
by Peirce [4], and after evaluation we have

Groyoo(ms) = C-2r(—1)"20

L (2c - 1D@2c—3) - 1n—2—3)(n—2c—35) ---1
m—-2)n —4) -2

(n—=2)/2 (n—2)/2—j N n—2\[n—2 _ j )
(38) X X (=pemeeeil Ty 2 Al (mg)
=0 k=0 K
(i—k) e J k

(n=2)/2 (n—2)/2—j - [n = 2\ /n — 2 —i\ .
+ 2 2 (— 1) otkmems 2 2 Bj i(m3) |,
« jm=0 k=0 .
(j=k)>c J k

where
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A;‘.k(ms) = mg,‘ ms Z (-1

g=0

.(2m—2c+3)(2m—2c+1) cer (2m — 2¢ — 2q + 5)
2c—1)(2c—3) - (2c —2¢— 1)

(it \/1—_’4"73>mﬂ (1 - \/1_—4"73)'"“

2 _ 2
<1 —V1- 4m§>°‘“ (1 +V1- 4m§)““
2 2

(39) .
c(@m —2c+3)2m — 2+ 1) --- (2m + 3)

@ — D@ —3) - 1
mty  2m@m — 2) -+ 1 T
.((—1)+(2m+1)(2m—1)“’2( sin™t /1 — 4m?)

nt om@m —2) --- @m — 2r + 2)
- 1;4)(2171/4- D@m — 1) -~ @m — 2r + 1)

O |

c
Bji(mg) = mi’| my Zo
q ==

+ (=1

. ©@m' + 2 — 3)2m' +2¢c —5) --- 2m' +2¢c —2¢ — 1)
2c — 1)(2c — 3) --- (2¢c — 2¢' — 1)

2 m’'—} 2 m'—}
(1+\/T_—_4—_m§> _ (1—\/1—'——M'>
(1 -1 - 4m§>°‘“' (1 +1 = 4m3')°“"

2 2

+ @em' 4+ 2¢ — 3)@m’ +2¢c — 5) --- @m' — 3)
(2 — D@2 —3) --- 1

mt v 2m —3)@2m' —5) .- 2m' — 2r — 1)
1\ +1
m Y (=) e — ) e =27 = 9)

2 m/—r'—} 2 m/—r!—§
.{(1+\/1—4m§> —<1—\/1—4m§> }’

(41) m=k+c—j—%, m=j—k—c+3.

(40)
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As a numerical illustration we have, after normalization,

551 2 2 R ——
Gro2(mg) = (—2—5 + %gijmﬁ + 4725 ‘> sin”' /1 — 4m?

16384 B ™
“ 13515 | 99825
_ (313 99 : 465 4 45 4
(8192 tTioed ™ T 6™ 8m3)|m3|\/1—4m.

In Cases 2a and 2b, infinite series of elliptic integrals occur, and it appears that
approximate integration is the best than can be done.

The author plans a later paper on the distribution for the nondegenerate
case p; = 0, §; # 0.

For small values of n, Wald’s approximation nm; is not applicable. One can
obtain a fair approximation by replacing 1/[m; — (1 — mi)(1 — ms)] in (26)
by its average with respect to m; and m, over the domain, taking account of
the joint distribution function (27). This yields

Cn P Gn—2 D (m3)

43 V = )
( ) C»—z.p s Gn.p(mz)

where C,_s,, and C,, are the constants in the joint distribution of m; , ms and
mg for the values of n and p involved. The approximation (43), while rather
crude, is better than Wald’s nm; for small values of n, and asymptotically
equivalent to it as n — .

4. An empirical distribution of V. A sampling experiment was performed
in order to obtain an empirical distribution of 1000 values of V for n = 10,
p = 3,p: = ¢i = 0. Ten thousand wooden beads were stamped with two digit
numbers whose distribution approximates as nearly as possible that of a normal
population with mean 50 and standard deviation 10. One thousand sets of
values zia(i = 1,2,3; « = 1,2, --+, 12) were obtained by sampling with re-
placement from this population. The values z;, Were expressed in standard
units ¢;, , using

Tia — 50
(44) tw - —"—1‘6"“' .

From the standard variables t., , one thousand values of V were calculated by
means of (1) and (2), using IBM equipment. The resulting empirical distribu-
tion is given in Table 1. This distribution was compared with the theoretical
approximation (43), which is, forn = 10,p = 3,p: = {i = 0

150  Gs;3(ms)
5 o 190, Gealma)
45) v 7 ma Gho,3(ms)

The approximation fits the observed distribution fairly well for the central
classes, but underestimates the frequencies of large values of | V' | quite badly.

b. Conclusions. The statistic V is potentially very useful, but much work
remains to be done in obtaining the necessary information about its distribution,
especially in the small sampling case, and tabulating the associated probabilities.
Even in the univariate case, where the exact distribution is known, the amount
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of labor involved in determining probabilities is very great and a simple,ap-
proximation is needed, unless a high speed computing device is available. For
the multivariate small sampling case, only a crude approximation to the dis-
tribution of V is available, and the exact distribution or a better approximation
is needed.

TABLE 1

Frequency distribution of 1000 empirical values of V for n = 10,
p = 8, pi = i = 0 (Class marks integers)

Class mark Frequency Class mark Freq}lency Class mark Frequency
76 1 12 3 —8 15
e 11 3 -9 12
44 1 10 3 —10 6
39 1 8 10 —12 2
e 7 16 —13 2
30 1 6 11 —14 3
29 1 5 15 —15 4
e 4 33 .

24 1 3 54 —18 2
23 1 2 85 o

e 1 140 —-23 1
20 1 0 181 —24 2
19 2 -1 134 e

18 1 -2 101 —28 1
. -3 52 —29 1
16 1 —4 26 e

15 2 -5 17 —36 1
14 1 —6 23 —37 1
13 4 -7 12

V = —.0700, oy = 5938
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