ON MINIMUM VARIANCE IN NONREGULAR ESTIMATION

By R. C. Davis
U. S. Naval Ordnance Test Station, China Lake, California

1. Summary. A case of nonregular estimation arises in attempting to estimate
a single unknown parameter, 6, in the probability distribution of a single chance
variable in which one or both of the extremities of the range of the distribution
are functions of the unknown parameter. The case treated in this paper is the
one in which a probability density of exponential type exists. When one ex-
tremity alone of the range depends non-trivially upon 6, a necessary and suf-
ficient condition is given in order that a single order statistic be a sufficient
statistic for 6. In this case conditions are given for the existence of a unique
unbiased estimate of 0 possessing minimum variance uniformly in 6. In the case
in which both extremities of the range depend upon 6, a necessary and suffi-
cient condition is given that the smallest and largest order statistics constitute
a set of sufficient statistics for . In this case Pitman [1] has shown that a single
sufficient statistic exists if one extremity of the range is a monotone decreasing
function of the other extremity.' It is shown that under the above condition a
unique unbiased estimate exists possessing minimum variance. Moreover a
surmise of Pitman is proved that only under this condition does a single sufficient
statistic exist. When a single sufficient statistic does not exist, an unbiased esti-
mate of a known function of 6 is obtained which has less variance than any
analytic function of the set of sufficient statistics for 4.

2. Introduction. Let X be a chance variable assuming values z in a one-
dimensional Euclidean space, R;, and let X possess a probability density func-
tion f(x, 8) depending on a single unknown parameter 6 which lies in Q, a sub-
set of R; . Denote by a(6) and b(6) the lower and upper extremities of the range
of f(x, §). We treat the cases in which either one or both the extremities of the
range depend nontrivially upon 6. For each 6 € @ denote by R*(6) the subset of
R, satisfying a(8) = z =< b(9), and by R**(9) the complement of R*(8) in R, .
We make the following assumptions:

ASsUMPTION A.

f(x, 0) =0 forall (x,0) on R**(0) X Q;

f(x, 0) — eaK(z)+S(z)+T(0) f07' all (IL', 0) on R*(0) X Q,
where T(0) is a real single-valued continuous function of 8 at all points of Q, and
S(x), K(x) are real single-valued continuous functions of = defined almost every-
where on Ry .

AssumpTiON B. a(8) and b(8) are conlinuous functions of 6 satisfying for all
0 € Q the inequality a(6) =< b(6).

1 The author is deeply indebted to the referee for bringing to his attention the paper by
Pitman and for many other helpful suggestions.
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44 R. C. DAVIS

The exponential type of frequency function assumed above is the type which
Koopman [2] has shown to hold whenever a sufficient statistic for 0 exists. We
do not require any of his results, howeyer, in this paper.

For convenience in notation we write P(z) = ¢*® and Q(8) = ¢”®, so that
obviously we have the relation

b(8)
@ = [ P dn

Furthermore if an estimate of 6 is a continuous function of n independent
sample values, is unbiased, and possesses minimum variance uniformly in
0 € 2, we term this a best estimate of 6.

3. One extremity of the range depending upon 6. First we treat the case in
which only one extremity of the range depends upon the unknown parameter 6.
To fix the argument we assume that the upper extremity b(6) depends upon 6,
and the lower extremity is independent of 6. The results of this section are ex-
tended in an obvious manner to the case in which the lower extremity alone

depends upon 6.

THEOREM 1. Let 21, 22, + -, Z, be the values of n independent drawings from
a population having the probability density function f(z, 6) satisfying Assumptions
A and B, and in which the upper extremity only of the range depends upon 0. The
necessary and sufficient condition that the nth order statistic, denoted by ) , be a
sufficient statistic for 6 s that

flz, ) = P(z) Q(6) forall (x, 6) in R*(6) X Q.
PRoOF oF NECESSITY. Suppose that in a sample of n independent observations

that the nth order statistic, ) , is a sufficient statistic for 9. It follows from
the definition of sufficiency that

f@,0) - f(@a, 0) = g@m ; 0) h(zay, ** , Taamp) | Tewy ; 6),

where g(2(n) , 0) is the frequency function of 2w, and h(zqy, -+ - , Zeaeyy | Twy ; 6)
denotes the conditional frequency function of the order statistics zqy , * - , Ty ,
given a fixed value of z(, , and is independent of 6. It is well known from the
theory of order statistics that g(zwy ; ) has the form

9@ 30) = nF@w)]" ™ f@m) = nP(@w)[Q(8)]" <=’ l:/:(")P(ﬂ)eM(") d’l}n— )

Z(n)
where Fz) = [ f(n, 0) dn.
It follows from the above that
n—1 n—1
|:exp [0 Z K(Z(,’))]] III P(.’l?;)
j=

(1) h(x(l) y *y T(n-1) | Tn, 0) = - ;:t =1 )
n ,: P(p)e’*™ dn:l
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where h(za), ***, (1) | Ty ; 0) is independent of 6. Differentiating equation
(1) partially with respect to 6, substituting the value of h(zay , ** , T(ay | T ;

6) from (1) and placing oh _ 0, we obtain after some simple algebra

a0
n—1
% (n) [Z K(x«')):l % (n)
@) fa K()Pw)e'™ ™ dn = s P(n)e™™ dy.

Since f(z, 6) = 0 for all z in Ry, it follows that P(n)e’*™ = 0, for
a £ n £ Zm . Moreover we obtain from the first mean value theorem for
integrals that

Z (n)

Z (n) N
K@P@E @ dn = K@ [ P’ d,

a

where ¢ £ ¢ £ z(» . Equation (2) reduces then to the form

n—1
) K@ = —— % K@o).

It is noted that the only sample value on which £ is dependent is the z(, .
Equation (3) is valid for every zay, -, T(n1 , satisfying the inequalities
Ty STy = 0 £ Taey S Ty With the z(;) assuming values in R*(6). Let
Z(n take some fixed value arbitrarily close to b(6). (If f(b(8), 6) # 0, we can of
course let xm = b(6).) Also let £ be any number satisfying the inequality
a =2 =2,. Nowlet 2q) = 2 = -+ = Z(n_1y = 2, and we obtain from (3)
the relation (4) K(z) = K(¢).

Since this relation is true for every z in the interval @ £ x < z(n) , it follows
that K(2) is a constant in the interval a < z < z(, . (Again if we assume
f(6(6), 8) # 0, we can let z,y = b(8), and it follows that K(x) would be a constant
in the closed interval a < « < b(8).) Therefore, necessity is proved.

Proor or surFiciENCY. This proof is extremely simple. If f(z, 8) = P(x) Q(6),
we have .

QO Pl - Plew) _
RQO)"P(s,) [ [P dn]

and is independent of 6. Hence z(, is a sufficient statistic for 6. This completes
the proof of Theorem 1.

Before proceeding to the problem of constructing a best estimate for 8, we
will use a theorem due to Blackwell [3] which will enable us to restrict ourselves
to the class of unbiased estimates of 6§ which are functions of the sufficient
statistic for 6. Blackwell’s results are applicable to a much more general situa-
tion than we are considering here, and the results needed can be obtained in a
different manner. Nevertheless we will summarize briefly the result which we
need. He has proved that if # is any chance variable and y is any numerical

hxay, « ) Ty | T 5 0) =
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chance variable for which E(y) and Ely — E(y)]® are finite, and f(x) is any real
valued function for which E[f(z)y] is finite, then ¢’E(y | x) is finite, where E(y | z)
denotes the conditional expected value of y given z. Moreover he proves that
Elf(z) E(y | 2)] = Elf(x)y] and ¢’E(y |'z) < ¢’y with equality holding only if
y = E(y | z) with probability one.

As a particular application of Blackwell’s result it follows that if a sufficient
statistic S exists, and if ¢ is any unbiased estimate of 6, then «(S) = E[t| S] is
an unbiased estimate of § with ¢”[(S)] < ¢’t. It follows that we can restrict
ourselves (in the case in which only the upper extremity of the range depends
on 6) to the class of functions of the sufficient statistic z, which yield suffi-
cient statistics. If we can obtain out of this class a unique function of z(, which
is unbiased and possesses minimum variance in this class, we will obtain an un-
biased estimate of 8 possessing minimum variance.

4. Derivation of the best estimate for § when the range varies from a to b(6).
If we make the transformation of parameters ¢ = [Q(8)] ™", matters are simplified
considerably. If we assume that the function ¢(6) possesses a unique inverse
0(p) and let c(p) = b[8(¢)], we have the condition that a(z(,) is an unbiased

estimate of ¢ in the form
c(e)
(5) f a@w)g@m, ¢) dxwm = o
a
This reduces to the condition
n+1

c(e) Z(n) n—1 @
fa (2 ) P (& () [/; P(n) dﬂ] dre = ol

Z(n)
If we use a new variable of integration u, where u = f P(n) dn, and let
a

a(zm) = ¥(u), the condition of unbiasedness becomes
n+1

‘[ yu"du = %;—

Clearly the only solution of this integral equation which is an analytic function
of u is given by

Yw) = <1 + %) "

Since this is the unique solution for all finite ¢, it follows that

(+ D[ 2oy an

is the only unbiased estimate of . Its variance can be obtained by a simple

integration, and we obtain
! 2

ol = 2
YO
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If we wish to obtain an estimate for 6 directly, the analysis is somewhat more
complicated. Moreover it is necessary to make a further assumption to insure
that the unique unbiased estimate of 8 among the class of functions of z(, is
also a sufficient statistic. We may state this assumption as follows:

AssumptioN C. b(0) is a strictly monotone function of 8. If we define the follow-
ing well defined functions

Z(n)
u(x(n)) = f P(ﬂ) dﬂ, B(x(n)) = b-l(x(n)))
the functions u(zwy) and B(x(y) satisfy the following condition:

d ds B o —
v [ln (@)] > -2 (2f b(8) s strictly monotone increasing),

u 4 [ln (g-g)] < =2 (if b(8) 4s strictly monotone decreasing).

Moreover, the parameter set Q is the interval defined by 0 = 6, when b(6) s strictly
monotone increasing and the interval 8 < 6, when b(0) is strictly monotone decreas-
ing. 0y satisfies the equation b(8) = 6, so that b(6,) = a.

Let a(zwm)) represent now a function of the sufficient statistic z(, . The con-
dition that « be an unbiased estimate is expressed in the form

b(8)
(6) f a(Tw)g (@, 0) dvy = 6

for every 6 ¢ Q. This reduces to the condition

/;w) (@) Ple) I;/;z(") P(n) dn:ln—l AT = 7_7,[QeT(?)]"

Z(n)

If we make the same substitution used before; namely, u = f P(») dy,

and let a(zuy) = ¥(u), the condition of unbiasedness becomes

1/Q(6)
) fo Ywu" du = 7—2—@%‘ .
dQ

It follows from Assumptions B and C that%g and hence ¥ exist almost every-

where in Q. Hence differentiating (7), we obtain after simple algebra,

1 1
R
2o 2 41 o

for 6 ¢ Q. Since @ is an interval having 6, as one end point, we obtain after
some manipulation the expression

u dB (&)
n du@m)’

(8) a(x(ﬂ)) = 6(x(n)) +
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where B(zm)) is the function inverse to b(z(,), denoted in Assumption C as
b (). a(rw) is the only continuous function of z(, which is an unbiased
estimate of 6. In order to insure that a(x(,,)) is also a sufficient statistic we must
be certain that a(z(,) has a unique inverse o' (z(,). If we take the case in which
b(0) is strictly monotone increasing, this condition becomes

da dﬁ + du dB

(9) T - Fu > 0.

If Assumption C holds, a(z) is a sufficient statistic for n = 1. Finally apply-
ing Blackwell’s theorem we conclude that a(z)) given by (8) is the best esti-

mate of 6. From (9) it is obvious that if the function u d% I:‘In <g-§):| is a bounded

function of z¢) for a £ zw = b(0), 0 € Q, then for n sufficiently large a(z(,)
is a sufficient statistic and hence is the best estimate of § assuming only the strict
monotonicity of the function b(6).

4a. Examples.

Rectangular Distribution. Let

@0 =1, 0szs6
= 0, otherwise.
Since P(x) = 1, and b(f) = 6, we obtain 4 = x,) and 8 = 2 . Hence

a(x(n)) = B(x(n)) + - "_@ = (1 + "lb) Z(n)

02
Its variance is given by the expression % = m .
Ezxponential Distribution. Let
f@, ) = & -0 =2 =0,
= 0, x> 6.

Since P(z) = ¢, and b(f) = 6, we obtain u = ™, § = z(,) . Hence

a(ze) = B@Ew) + - £ T + ;1

5. Both extremities of the range depending upon 6.

THEOREM 2. Let 2, , 22, * * - , T De the values of n independent drawings from a
population having the probability density function f(z, 0) satisfying Assumptions
A and B, and in which both extremities of the range depend upon 6. The necessary
and sufficient condition that the first and nth order statistics, xqy and ) , be jointly

sufficient statistics for 6 is that
flx, 6) = P(x) Q0) forall (x,8) in R*(6) X Q.
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Proor oF NECEssITY. Suppose that in a sample of n independent observations
that the first and nth order statistics, gy and z(, , are jointly sufficient for 6.
It follows from the definition of joint sufficiency that

f@,0) - f@a, 0) = 9w , Tw ; Oh(T) 5+, Teavy | Ty 5 T(my 5 0),
where g(xq) , e ; 0) is the joint frequency function of 24y and z(, , and
h(@ay s+ 5 Tty [Ty , Ty 5 6)

denotes the conditional frequency function of the order statistics Ze) , *** , Z(ny »
given fixed values of ¢y and z, , and is independent of 6. It is well known from
the theory of order statistics that g(zq) , Ze) ; 6) has the form

9@ , T 3 0) = 1 — DIF@w) — Flaa)) f(@w) f@m),

T(n)
where F(zm) — F(xa) = f f(n, 6) dn. It follows from the above that
(1)
n—1 n—1
[exp [0 z; K(x(i)):l] I12 P(z;))
1= =
Z(n) n—2.
nn — 1) [f P(pe™™ dﬂ]
¢

z(1))

Rae, ) Tan, | 2a), Tm;0) =

The proof proceeds similarly to the one in Theorem 1, and we end up with

a similar equation
1 n—1

(10 K@ = fea— ; K(x(,-)),

where xq) < £ < z(m . Hence by a similar argument K(x) is a constant in the
open interval a(f) < z < b(9). If f(a(6), 8) and f(b(6), 8) are unequal to zero,
we can make the stronger statement that K (z) is a constant in the closed interval
a(0) = = = b(6).

PROOF OF SUFFICIENCY. Suppose that f(z, ) = P(z) Q(8). Then

n—1
QeI I_]z: P(zw)
Z(n 1n—2
ntn — QO [ P in

(1)

h@a, +*) Ta-n, | Tay, Tm;0) =

and is independent of 6. Hence zq) and z() are jointly sufficient statistics for 4.
This completes the proof of Theorem 2.

Blackwell’s theorem is applicable again to this case and enables us to restrict
ourselves to the class of unbiased estimates which are sufficient statistics for 6.
Any unbiased sufficient statistic is a solution of the integral equation

Y0 2t
(11) f Az (n) f a(ay , Tm) 9T , Tw) dTq) dTm = 6
a(b) a(d)

for 0 ¢ Q.
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Pitman has shown [1] that in the particular case a(8) = 6, b(8) a strictly
monotone decreasing function of 6, a sufficient statistic for 6 exists. An inde-
pendent proof is given of this statement. Moreover, the distribution of this
sufficient statistic is derived, and it is shown that there exists a unique unbiased
estimate of 6 in the class of all functions of the sufficient statistic.

Following Pitman we simplify the discussion considerably by assuming
a(8) = 6. On the basis of Theorem 2 and Blackwell’s result we need only con-
sider functions of the smallest and largest order statistics in our search for a
best estimate. First we derive Pitman’s result independently. Let us consider
the sample statistic

T = min. {za, b~ (@w)}.

We proceed first to find its probability distribution and then show that it is a
sufficient statistic for 6. Figure 1 shows a typical contour of constant 7 in the
Zqa) , T(n) pla,ne.

Xon

8400 5(8),6(6)

/

Xoo)=b (Xw))

c,C

Xaw

66

FiGgURrE 1

First it is clear from Assumption A that we may confine ourselves to the
interior of the triangle shown in Fig. 1. Moreover, it is clear from the continu-
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ity and monotony of the function b(8) that there exists a point with coordinates
¢, ¢ (where b(c) = ¢) which is independent of 6 and is such that

60 < c = b6 forall 9¢Q.

From Assumption B, @ & I, where I is the interval in R; given by 6 =< c. It
it clear from the definition of T that

T =b " (xw) for all points above the curve ¢,y = b(zq)),
T = zq for all points below the curve z(,y = b(zq)),
T = zg = b '(xw) for all points on the curve x¢,y = b(z)).

A typical contour of constant T is shown in the figure. If we denote as before
by g(zay , T(y) the joint frequency function of the order statistics zq) and
Z(ny , 1t follows that

b(t)
(12) Prit<T <t+dt] = I:f‘ 9(xay, Tm) dx(n)] dt

[z(1)=t]

b(t) ,
+ [ f‘ 9T, Tm) dxm] @ — b@ + db)l,

[2(n)=b(8)]

where the first integral is evaluated holding zqy = ¢ and the second integral
holding z(;y = b(t). It follows from the continuity and monotony of b(8) that

if we restrict the parameter set @ to be a bounded interval in R;, Z—S will exist

everywhere except on a set of points having probability measure zero. In this
case T possesses a frequency function w(f) almost everywhere. After perform-
ing the elementary integrations in (12) by noting that the integrands can be
expressed as perfect differentials, we obtain

P an|” | PO - 3 Poo) |

b(t)

(13) v =nleO)] [

To prove that T is a sufficient statistic for 6, we must prove that the con-
ditional frequency function of zay , @) , - ** , ) , given T, is independent of 6.
To do this we show that this property holds in each of the two regions indicated
in Figure 1; namely in the regions below and above the curve zu = b(zq).
In the region below the curve, we have

h@e, Ty vy 8w | T) = Pew)Plzw) w(t) Pla)QO)

Obviously this conditional frequency function is independent of 6. In the region
above the curve, z(, = b(zy), we make the following transformation in the

sample space: Let p1 = Za@), p2 = T@, *** , Pt = T(n—ny , pn = T. Since

a(Pl, P2y °°°y pn) — db_l(x(n))
(T, T@, ** 5 Tm) dz(a)
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the transformed likelihood function becomes

f(x(l)’ o)f(x(z)’ 0) o f (x(n)y 0) .(db—' >- .

dx (n)

If we now assume that b™'(2(,) is a strictly monotone decreasing function

is unequal to zero except

of z¢, , the transformation is one-to-one and i
(n)

possibly at a set of points in the zqy, ) plane of probability measure zero.
We may state then that

Ply)PEe) - P(x(,,))‘[Q(o)]”(dbn )—

dx (s
hxa, e, - 2w | T) = o) )

Again this conditional frequency function is independent of 8, so that this prop-
erty holds throughout the triangle in Figure 1. Hence T is a sufficient statistic
for 6.

We proceed to prove that there exists a unique continuous function of T
which is an unbiased estimate of 6. This will involve no additional assumptions
not made already. If ¢(f) is an unbiased estimate of 8, we have from (13)

a9 myol = meor [ vo| [ “ P | [P0 - L Pow @m0

for 6 € Q. Differentiating (14) with respect to 8, we obtain

1
¥(6) =0 — BN
n 2 lin Q@)
Since Q is the interval § =< ¢, we obtain
1
y(T) =T —

(15) d :
n 5 [In Q(7)]
Hence (15) with T = min. {zqy, b (@)} is the unique continuous function
of T which is an unbiased estimate of 6.
We now require an additional assumption to insure that ¥(7) given by (15)

is a sufficient statistic for 4.
AssuMpTION D. For almost all T satisfying 6 £ T = ¢, and for all 0 € Q, the
()

b
function In Q(T), where [Q(T)] " = f P(n) dn, satisfies the inequality
T

d2
— [In Q(T7)]
- 1< ar < M,

[% In Q(T):r

where M is some fixed constant.
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The following theorem can be established:

TureoreM 3. If a probability distribution with range from 6 to b(0) salisfies
Assumptions A, B, and D, with K(z).= 0, and if the functions b(6) and b~'(6)
are strictly monotone decreasing for all 0 € Q, then the function Y(T) given by (15),
where T = min. {xqy, b (Tw)], is the unique best estimate for the unknown
parameter 6.

Proor. Under the above assumptions (minus Assumption D) we have proved
that ¢(T) given by (15) is (among all continuous functions of the sufficient
statistic 7) the unique unbiased estimate of 8. However, in order to apply
Blackwell’s theorem, we must show that ¢(T) is also a sufficient statistic. From
(15) we obtain

d2
w_,, @0
a7 n[d% (In Qm)]

From Assumption D it follows that for all sample sizes n = 1 we have

1+ %[ > g—'g, > 0. Hence the function y(7T) establishes a one-to-one cor-

respondence between T and ¢(T) except possibly at a set of points of probabil-
ity measure zero. Therefore y(T) as defined in (15) is a sufficient statistic. It
follows immediately from Blackwell’s theorem and the existence of a unique
unbiased estimate among all functions of 7T that ¢(T) is the best estimate of
the unknown parameter 6.

TrEOREM 4. If a probability distribution with range from 6 to b(6) satisfies
Assumptions A and B with K(x) = 0, and if the upper extremity of the range,
b(8), s not a strictly monotone decreasing function of 0, there exists no single suffi-
cient statistic for 8, which is a single valued function of the values of n independent
drawings from the population.

Proor. Under the assumptions of the Theorem to be established we have
proved in Theorem 2 that zu) and z are a sufficient set of statistics for 6.
We may therefore confine our attention to a search for a single valued function
T(xa , Twmy). It is clear that

Prit< T <t+ dt} = nln — 1)[Q(0)]”f P(za)P(zm)

(16) t<T<t+dt

Z(n) n—2
[ P(n) dﬂ] dzq) e -

z(1

Since the likelihood function of the ensemble of #» independent observations
taken from the distribution has (under our assumptions as to its form) the
factor [Q(8)]" as the sole term involving 6, it is evident from the definition of
sufficiency that the integral

Z(n) n—2
@7 f P(zay) P(x () [f ) P(n) dﬂ] drqy dz,
zZ@1

t<T<t+d¢
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when evaluated over the region common to the strip t < T < ¢ + d¢ and the
triangle § < 2q) £ Ty, 0 < Ty < b(0) in the xq), T plane must be inde-
pendent of 6 except in the case in which the strip includes a finite length of
either the line gy = 6 or the line z(,y = b(f). Moreover this restriction must
be satisfied uniformly in 6 for 8 e ©. The situation is clarified by looking at
Figure 2.

Xon

8 6) > 60),46)

l<7<lrdt

6,6

F1GURE 2

It is clear from Figure 2 that if the strip ¢ < T < ¢t + dt does not enter and
leave the triangle along the line x4y = 2y without crossing either of the other
two sides for every 6 in Q, the integral in (17) will be a function of 6. Suppose
that the statistic 7' is of such a form that one of its strips ¢ < T < t + df does
not consist of the portions of two straight lines as was the case in Figure 1.
Then for some 6; € @ this strip £ < T < t + d¢ will intersect the triangle cor-
responding to the value 6; somewhere along at least one of the lines xqy = 6;
or I = b(6;). It follows that the contours T' = constant must be of the same
type as shown in Figure 1 regardless of the nature of the function b(6).

Next we proceed to show that if b(6) is not strictly monotone decreasing, the
assumption that 7T is a single valued function of z¢) and z(, is violated. The
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argument proceeds as follows: under the assumptions of the theorem b(8) is a
continuous function of # which is not strictly monotone decreasing. Hence there
exist at least two values of 6 ¢ Q, say 6, and 6,, such that the corresponding
contours of fixed T, say T; and T, intersect at least in one point P. The situation
is shown in Figure 3. Now obviously T, = T,, since otherwise T'(zq), )
would not be a single valued function of zqy and z(, . From the properties of

Xo») \&
\Y b\‘}'

.JPU‘

/7
Xy

FI1GURE 3

the function b(f) there exists a 6, e 2 such that the triangle defined by
O Sz S Tmy, O S Ty = b(6) includes a finite length of the contour
Ty = T, = constant. Moreover since this contour cuts the above triangle at
one or more points whose coordinates depend upon the value of 6, , it follows
that if the true value of 6 is 6,, the integral defined in (17) will be a function
of 6, . Hence T is not a sufficient statistic for 6 for the true value lying in the
parameter set .

6. An alternative approach when a single sufficient statistic does not exist.
It follows from Theorem 4 that if b(f) is not a strictly decreasing monotone
function of @ that no single sufficient statistic exists. The question remains as
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to what to do to obtain an estimate for 6. The following procedure yields an
unbiased estimate for a certain function of 8 which is “best” only in the sense
that it has minimum variance among-the class of all analytic functions of two
prescribed functions of ru) and z, . The fact that the sufficient statistic first
derived by Pitman; ie., T = min. {zq), b '(zw)} is not an analytic function
of rq) and 2, throughout the triangle 6 < zq) £ Zmy, 0 £ Ty < b(0) sug-
gests that perhaps the best estimate may always be a non-analytic function.
In any case the following procedure is suggested for lack of a better one.

Make the transformation of parameter ¢ = [Q(6)]™" and the coordinate trans-

formation
2 (n) (1) .
u = f ) P(n) dn, v = f P(n) dn,
z(1 c
where ¢ is any fixed point whatsoever in R; ; i.e., ¢ is independent of the value
of 6 for any 0 € Q. First we will prove a lemma concerning fixed points of the
nature of c.

LemMA 1. For a distribution satisfying Assumptions A and B with K(x) = 0
and with the additional restriction that the functions a(8) and b(6) possess first
derivatives (a(0) and b(0) depending non-trivially upon 0), there exists a point c
satisfying for all 6 € Q the conditions

1.) a(6) = ¢ = b(0),

2.) ¢ is a fivred p-quantile (0 < p < 1) of the distribution, if and only +f

P[b(6)] db(6) _
Pla(9)] = 0, P[b(®6)] = 0, Pe®)] 0@ " <0

for all 6 € Q.
Proor. If there exists a fixed point ¢ which is a p-quantile, the
as) oo [ Po =
1 b(9)

Writing ¢(6) = ) P(n) dy,

Q®
and differentiating (18) with respect to 6,
_da _ . dg _ [db _da }
% pla@] = p 2 = p{® PO - 57 Plao].
Solving for p, we obtain
1
= _PhOI
Pla(9)] da
Since there is at most one value of p obtained from (19), and since P(z) > 0,

it follows from (18) that c is a single valued function of p. This completes the
proof of the lemma.
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It is clear from Lemma 1 that in the case we are now considering there exists
no fixed point ¢ which is a p-quantile of the distribution, since g-z is not negative
for all 6 € Q. We are now ready to prove the following theorem:

TaEOREM 5. For a distribution satisfying Assumptions A and B with K(z) = 0
and with the additional restriction that b(6) is not a strictly monotone decreasing
Sfunction of 6 for all 6 € Q, there exists among the class of all analytic functions of

Z(n) Z(1)
U = P(n) dnpandv = P(n) dn a unique function of w and v; namely
(1) c

(Z i_ i u, which is an unbiased estimate for o.
Proor. Under our coordinate transformation to u and v as new variables
of integration, g(zq) , Twm) ; @) dra dx(,.) = n(n — 1)¢ "u"* du dv. Introducing

a new function of 6; namely,3 = f P(n) dy the condition (11) for unbiased-

ness in 6 becomes for the new parameter and in terms of the new variables
u and v,

3 o—utf
(20) fo du fﬁ nn — Do w" yu,0) do = o

for all ¢ for which 6 lies in @, where ¥ (u, v) is an estimate of ¢. If we expand
¥(u, v) in a double Taylor series about the point u = 0, v = 0, it is clear that
the only terms which satisfy (20) identically in ¢ are

Y(u, v) = au + bo,

where a and b are constants. We will now derive a relationship between a and
b by integrating (20). After some easy algebra we obtain the relationship

B
(21) a+b[;("+l)+l] n+1

n—1 n—1
Under the conditions of the Theorem it is clear from Lemma 1 that the point
¢ is not a p-quantile uniformly in ¢ and hence B is not a constant independent of

@
n+1
n

, b = 0; and the only

o. Hence the only solution of (21) is given by a =

unbiased estimate of ¢ is

(22) ‘p _ n + 1 Z(n)

n—1 z(1)
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