ON MINIMAX STATISTICAL DECISION PROCEDURES
AND THEIR ADMISSIBILITY!

By CouiN R. BryTH
University of California, Berkeley

Summary. This paper is concerned with the problem of making a decision on
the basis of a sequence of observations on a random variable. T'wo loss functions,
each depending on the distribution of the random variable, the number of ob-
servations taken, and the decision made, are assumed given. Minimax problems
can be stated for weighted sums of the two loss functions, or for either one sub-
ject to an upper bound on the expectation of the other. Under suitable conditions
it is shown that solutions of the first type of problem provide solutions for all
problems of the latter types, and that admissibility for a problem of the first
type implies admissibility for problems of the latter types. Two examples are
given: Estimation of the mean of a random variable which is (1) normal with
known variance, (2) rectangular with known range. The resulting minimax
estimates are, with a small class of exceptions, proved admissible among the
class of all procedures with continuous risk functions. The two loss functions
are in each case the number of observations, and an arbitrary nondecreasing func-
tion of the absolute error of estimate. Extensions to a function of the number
of observations for the first loss function are indicated, and two examples are
given for the normal case where the sample size can or must be randomised
among more than a consecutive pair of integers.

1. Introduction. We will consider a sequence X;, X;, X3, - -- of independent
random variables, each having the same distribution F, which belongs to a class
Q of possible distributions. A sequential decision procedure § is a rule by which,
having observed x;, - -+, Tu(m = 0, 1, 2, --+) we make one of the following
decisions:

(a) Take an observation on Xm41 «

(b) Stop experimentation and make a terminal decision d = d(z1, - , Zm).
We will consider two non-negative loss functions Wi(n, d, F) and W(n, d, F).
Each can be thought of as an economic loss incurred when the X’s have dis-
tribution F and the terminal decision d is made after n observations have been
taken. In the simplest applications one W will be a function of n only (cost of
experimentation) and the other W will be a function of d and F only (loss in-
curred by making the decision d when the X’s have distribution F). We will
denote by E(W;| F, S) the expected value of W; when the X’s have distribution
F and the decision procedure S is used. Let £ be any probability measure defined
on some class of subsets of 2. We will denote by E(W; | £, S) the expected value
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MINIMAX PROCEDURES 23

of W;, given the (a prior:) distribution £ over @, when the decision procedure
S is used.

Minimax problems, first considered by Wald, have been formulated in three
ways for the situation just described. We may seek a decision procedure S which
will (i) subject to an upper bound on E(W, | F, S), minimise s%p EW,|F, 8);

or (ii) subject to an upper bound on E(W, | F, S), minimise sup E(W, | F, S);
Q
or (iii) minimise sup {¢c E(W,|F, 8) + E(W,|F, S)}, where 0 < ¢ < =, ¢
Q

constant. We will show that in certain cases it suffices to find solutions for all
problems (iii) since these solutions provide solutions for all problems (i) and (ii).

We will first discuss the corresponding Bayes problems, not for their own
interest, but because they can often be used to find solutions for the minimax
problems in which we are really interested.

2. Bayes problems. The following three classes of Bayes problems have been
considered: Given a prior: the distribution £ over 2, we want to find a (Bayes)
procedure which will

@)’ subject to E(W, | ¢ 8) < L, minimise E(W, | £, S),
G1)’ subject to E(W, | £ S) < L, minimise E(W, | & S),
(iii)’ minimise 7.(¢, 8) = cE(W, | £ S) + E(W: | & S).

Let 8. be the class of all solutions of problem (iii)’ for a given ¢, 0 < ¢ < .

Let $ = U 8. be the class of all solutions of problems (iii)’, 0 < ¢ < .
0<ec <0

Lemma 1. If 8" ¢ Shas E(W, | &, 8') = Ly, then S’ is a solution of the problem
(1)’ for this Ly . If 8" is any other solution of this problem (i)', then E(W, | £, 8") =
L, and 8" ¢ 8. Similarly for problems (ii)’.

Proor. Let S’ ¢ S.. Suppose there exists a procedure S* having

EW,| £ 8% < EW,|£8) = L,
EW:|§ 8% < E(W:| & 8.
Then
CE(W, | §8%) + EW:| 8% <cEW,|§8) + EW,| & 8.

This implies S’ ¢ 8., which is false. This contradiction shows that no such S*
can exist. Hence S’ is a solution of this problem (i)’.

If S8 is any other solution of this problem (i)’ we must have E(W, | £, S”) =
E(W,| ¢ 8S'). Suppose that E(W, | ¢, S8”) < E(W1|§ S') = L;. Then

cEW, | £8") + EW, | £,8") < cEW, | £ 8) + EW: | £ 8),

implying the contradiction S’ ¢ S.. Hence E(W, | %, 8”) = E(W1 &, 8) = Ly .
We therefore have r.(¢, S”) = r.(¢, S’), and so §” ¢ S, .
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Lemma 2. If S'¢ 8, S” € 8, then
EW,[§8) <EW,|§8") «—>EW:|§S8) > EW:|§8),
EW,|§8) =EW,|£ 8" «=> EW,|§8) = E(GW,y| & 8").
Lemma 3. If S’ € S.r, and S” € Scov where ¢’ < ¢”, then
EW,|§8) z EW,|§8"),
EW,|§8) = EWW:|§ 8.
Proor. Assume one of the following:
Ly =EW,|£8) < EW,|§8") =L+,
L, =EW;|§8) > EW,|§8") =Ly —s.

The other then follows from Lemma 2. Write ¢” = ¢’ + a. Here r > 0, s > 0,
a > 0. Then

1 (¢, 8) = ¢/Ly + Ly,

re(§,8”) = 'Ly + Ly + (¢'r — ),

rei(§ 8) = 'Ly 4+ Ly + aLy,

rer((,8") = ¢'Ly + Ly + aLy + (c'r — s + ar).
Now S eS8 =>cr—s =0,
and S” € 8+ —=>c'r —s+ar £0.

Since ar > 0 these last two results cannot both be true. This contradiction shows
that neither of the assumed inequalities can be true, and proves the lemma.
Let us write

L, = inf EW, | £ 8), L, = sup E(W, | £ 8),
Se§ Se§
L, = inf L, =sup EW, | ¢ S),
2 8¢ E’(Wz|£, S)y ? &g 2| E

where the improper value « is admitted for the upper bounds.
LEMMA 4.
E(Wl | E;S) < .I_/l—)E(W2|£7‘S) = «,

E(WzlE, S) < L2_)E(W1I£7 S) = o,

Proor. Suppose that S is a procedure for which E(W, | ¢, 8) = Ly < L and
E(Wz_]f, S) =L, < o,
If L, = o, there exists some S, ¢ 8 having E(W.|¢ S.) = L and

EWy| & S;) > L. ; but we would then have r.(¢, S.) > r.(¢, S), contradict-
ing the fact that S. e S..
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If L, < o, then for S; ¢ 8. we have
cEW, | & 8.) + E(W, | §, Se) 2 ¢Ly + L2 > cLy + Ly

for ¢ sufficiently large, again contradicting the fact that S. ¢ S.. This completes
proof of the first part of the lemma; the second part is proved in the same way.

Lemma 4 shows that no problem (i)’ with L; < L; has a solution. Lemmas 2
and 4 show that if Se 8 has E(W,|¢ S) = Li, then EW, | ¢, S) = L, and S
is a solution of all problems (i)’ with L; = L, . Similar remarks hold for problems
(ii)".

TaeoreMm. If for every L, satisfying Iy £ Ly = L., there exists S e S having
E'(Wl | £ S) = Li, then the class of all solutions of problems (1)’ with Ly < In
< L coincideswith 8. Stmilarly for problems (ii)’. If Ly = = or L, = « the appro-
priate equality signs must be omilted.

This theorem is an immediate consequence of Lemma 1.

Note. From monotonicity (Lemma 3) we know that as ¢ — ¢® from one side
and S. ¢ 8., E(W,| & S.) — some limit L, from one side and E(W, | £, S.) —
some limit L, from one side. If this implies the existence of a procedure S having
EW, ¢ 8) = Liand E(W, | £, 8) = L, whenever L, and L, are finite, it is easy
to show that S e 8. , and that the conditions for the theorem are satisfied. How-
ever, the conditions themselves are usually easy to check once we have found 8.

Suppose that for a given Q, £, W, , W, we have found the class § of all solu-
tions of problems (iii)’, 0 < ¢ < =, and find the conditions for the above theorem
satisfied. Solving any problem (i)’ or (ii)’ is now reduced to choosing the appro-
priate member of 8.

3. Minimax problems. The following three classes of minimax problems have
been considered: We want to find a (minimax) procedure which will

() subject to SLp EW,|F,S) £ L,, minimise sup E(W. | F, S),
Q
(ii)  subject to sup EW,|F,S) < L,, minimisesup E(W,|F,JS),
Q
(iii) minimise sup {cE(W, | F, S) + E(W:| F, S)}.
Q

If there is an a prior: distribution ¢ which is least favorable in problem (iii)’
for all ¢, 0 < ¢ < o, this distribution is also least favorable for all problems
(i)’ and (ii)’. The Bayes solutions with respect to this distribution are minimax
solutions of the corresponding problems stated in this section. In many problems,
however, this easy approach is not available.

LemMa 5. Suppose some problem (iii) has a solution S’ with

sup E(W, | F,S) = Ly, sup E(W,|F,S) = L,
Q

sup {cE(W,|F,8) + EW,|F,8)} =cL, + L.
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(These conditions will in particular hold if either sup E(W,|F, 8') = L, and
0
EW,|F, S ? L., or sz:p EW,|F,8) =Lyand E(W,|F, 8') = L,.) Then
. a
S’ is a solution of the problem (i) with this L, , and a soluiion of the problem (ii)

with this Ly .
Proor. Suppose there is a procedure S having

SlépE(WllF, S) §L1, S%pE(Wle, S) < Ls.

Then we would have
sup {cE(W,|F,S) + E(W,|F, S} = ¢ sup E(W,|F,S)

+ sup EW:|F,8) <cLi+ Ly = sup {cE(W\|F,S) +EW,|F, 8},

contradicting the fact that S’ is a solution of some problem (iii). Hence no such
S can exist, and S’ is a solution of the problem (i) with this L, . Similarly §' is
a solution of the problem (ii) with this L, .

Let € be any class of soiutions of problems (iii), each member S of which
satisfies the condition

sup {(E(W,|F,S) + E(W.|F,S)} = sup E(W,.|F,S) + sup E(W,|F,S).
Let ©. denote those members of @ which are solutions of the problem (iii) for
this particular ¢. Then the following two lemmas can be proved in exactly the

same way as the corresponding lemmas of Section 2.
Levmme 2a. If S’ e @, 8" € @, then

sup E(W,|F,8") <sup E(W,|F,8") «— sup E(W,|F,8) > sup E(W,|F,S"),
o 2

and
sup EW,| F,S") = sup E(W,|F, 8") «— sup E(W,|F,8) = sng(Wle, S”).
Q Q .

Lemma 3a. If S’ € @, and S" € @,.», where ¢’ < ¢, then
sup E(W,|F,S) = sup E(W,|F, S")
Q

and
sup E(OW,|F, 8") < sup E(W,|F,S8").
Q

Suppose that we have found such a class @ of solutions of problems (iii)
and that there exists S e @ having sup E(W,|F, 8) = L; whenever inf
)

n,d, F

Win,d, F) £ L;*< sup Win, d, F), ¢« = 1, 2. (Omit appropriate equality
n,d,F

signs if either upper bound is « ). Then solving any problem (i) or (ii) is reduced
to choosing the appropriate member of €.
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In order to find solutions of problems (iii) in the examples we consider, the
following lemma, which is due to E. Lehmann, will be needed.

LeMMA 6. Consider the minimax problem of finding a procedure which minimises
szép r(F, S). (This may be subject to conditions as in (i) and (ii), or not as in (iii).)

Let Si be a Bayes procedure with respect to the a priori distribution & over Q,
k=1,2,---. Then for any procedure S,

st;p r(F, 8) = r(&, S) = r(t, Si)

for all k. Therefore

sup r(F, Sy Z lim sup (&, Sy):
k—»o0

A sufficient condition for the procedure So to be minimazx s therefore

r(F, S) < ]il’:l sup (&, Si)

for all F € Q.

4. Admissibility. Admissible procedures (not necessarily solutions) for the
problems stated in Section 3 are defined as follows:

A procedure S is admissible for a particular problem (iii) if there is no pro-

cedure S* having
re(F, S¥) < r.(F,S) forall FeQ,

with strict inequality for at least one F € 2, where r.(F, S) = cE(W.|F, S) +
EW,|F,S).

A procedure S is admissible for a particular problem (i) if there is no pro-
cedure S* having

sup E(W,|F, 8% £ L,
Q

and
E(W.|F,8% £ E(W.|F,S) foral FeQ,

with strict inequality for at least one F e Q. Admissibility is defined in a similar
way for problem (ii).

LemMA 7. Suppose S is an admissible procedure for some problem (iii). Then
if ECWL|F, 8) = Ly, S is admissible for the problem (i) with this L, . And if

2
E(W,|F, S) = L,, S is admissible for the problem (ii) with this L, .
n
Proor. Suppose that E(W,| F, S) —n=_= L, and that S is not admissible

for the problem (i) with this L, . Then there is a procedure S* having sup
Q
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E(W,|F,S*) £ L, ;and E(W, | F, 8*) < E(W, | F, S) for all F ¢, with strict
inequality for at least one F e Q. We therefore have

ro(F, 8* = cE(W,|F, S*) + E(W.[F, 8%
< cL + E(W,|F,S) = cE(W\|F,8) + E(W,|F,8) = r.F, S)

for all F €Q, with strict inequality for at least one F e 2. That is, S cannot be
admissible for any problem (iii), a contradiction which proves the first part of
the lemma. The second part is proved in the same way.

If for a problem there is a least favorable distribution for which the Bayes
solution is unique, this is the unique minimax solution and is therefore admissible.
If Q is a parametric family and all possible procedures have risks continuous in
the parameter 8, and \ is a least favorable distribution which assigns positive
probability to every interval of values of 6, then any Bayes solution for this A
is minimax and admissible. When can we conclude that minimax solutions ob-
tained by the method of Lemma 6 are admissible? In Sections 5 and 7 we will
show for particular examples that the solutions so obtained, except for trivial
exceptions, are all admissible among the class of procedures with continuous
risk functions. We might hope that all constant risk minimax solutions so ob-
tained are admissible, but will see that this is not so.

The method used here for proving admissibility of minimax solutions involves
examination of the Bayes solutions used to obtain them. In the examples con-
sidered, if W, is continuous, this method works both for classical fixed sample
size problems and for the sequential problems (i), (ii), (iii) subject to the addi-
tional restriction that the number of observations is bounded.

Admissibility is proved for a number of examples by Hodges and Lehmann
in [4] by a completely different method, which involves no appeal to Bayes solu-
tions, and which works for certain fixed sample size problems in which the method
of this paper fails. Their method, however, is restricted to number of observa-
tions and squared error of estimate for loss functions, and among sequential
problems will handle only (i), again subject to the additional restriction that
the number of observations is bounded.

5. Example: normal. Let X, X:, -- - be a sequence of independent random
variables, each being N (8, 1), i.e., normal with mean 6 and variance 1. A point
estimate z is wanted for the mean 6. Let

Wiln, z,8) =n, Wan, z,0) = W(z — 0),

where W is a non-decreasing function of | z — 8 |. The three classes of minimax
problems are

@) subject to sup Es(n) < M, minimise sup EyW(z — 9),
0

Gi) subject to sup EsW(z — 6) = L, minimise 5101p Ey(n),
[]

(iii) minimise sup {cEo(n) + EsW(z — 6)}.
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NotE. This problem was first considered by Stein and Wald in [1]. They solved
problems (i) and (ii) for the case W(z — ) = O or 1 according as [z — 0| < a/2
or >a/2; their estimates are thus canfidence intervals of fixed length a. For
this same case Wolfowitz in [2] solved problems (iii) and showed that these solu-
tions provide solutions for problems (i) and (ii). Wolfowitz also obtained solu-
tions of problems (iii) for the general W(z — 6), non-decreasing in [z — 6.
The question of admissibility is not considered in [1] or [2].

The remainder of this section will be concerned with proving the following
results.

THEOREM. To a given c there corresponds either an integer N or a pair of con-
seculive tnlegers N, N + 1. A class of solutions of the problem (iii) for this ¢ are
procedures in which the only possible sample sizes are N (or N, N + 1) and in

which the estimate used s 71—1 > X if n> 0. If N 0, all such solutions are ad-
=1

massible among the class of procedures with continuous risk functions. The class
of solutions so obtained, 0 < ¢ < oo, provides solutions for all problems (i) and (ii).

We will find solutions for problems (iii) by first finding Bayes solutions for the
corresponding problems (iii)’ when 6 has the a prior: distribution N (0, ¢°). The
Bayes problem is to find a sequential estimation procedure which will minimise
the risk

1 )
'\_/?—1_‘-—0' [ {CEO(n) + EOW(Z —_— 0)}6‘(1/272)02 de.
We will assume that W(z — 6) increases with | 2 — 6| slowly enough so that
f Ey,W(z — 0)6~ D002 gy~ o

for some oy, wo , % , and hence for all ¢ < a9, p, 2.
Let us first determine what should be our estimate z for 6 if we stop after
having observed z;, ---, .. For this we need to know the a posterior: dis-

tribution

p(olxly ""xm) = p(oyxl: "'7xm)/p(xl7 "'1xm)

— 2192 —337 (z:—0) 2
= cl(xly ”.,xm)e /20 )06 427 (z4—0)

—((mo2+1) [202) (0—(o2/ (mo? myo)2
= 02(171, . xm)e ((mo?+1) [202) (6—(02/ (ma2+1)) 2T'z3)

2 m 2
. . . g . g .
That is, 6, given %1, -++ , Tm, is N (W Zl: 25 ’m—l)' Given that we
observez; , - * - , Tn and then stop and estimatez(z; , - - - , &) for 6, our (a poster:-

or?) risk is therefore

om + V'ma*+1 f ® Wiz — §)¢(motHDI2eD =@ a1 2720? go
V2re o=
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Since W(z — 6) is a non-decreasing function of |z — 6], this risk is clearly

minimised by choosing z = Z z;, where we interpret E z; = 0 if

0'+1

= (. The minimum value is
Tc,c(’m) =cm + ME‘_E/ W( ) —((mo2+1) [202)y? dy

This does not depend on the observations, but only on the number of observa-
tions. Since 7., — ® as m — « it is clear that the sequence reo(m)im = 0,
1, 2, - - assumes a minimum value at a finite set ny, --- , np[p’ = P'(c, o))
of mtegels m. Hence if 8 is N(0, ¢°) a przorz any of the follow ing procedures is
Bayes: The only poss1ble sample sizes are ny , -+ - , Ny if the sample size is m,
the estimate z = Z z; is used for 6.

mo? -I— 1

To obtain minimax procedures, consider a sequence of ¢’s tending to «. As

g — OO,
To,o(m) — ro(m) = cm + /‘/g [ W(y)e ™»v* gy

form = 1,2, -+, and r.,.(0) — r.(0) = sup W(y).
v

Clearly re(m):m = 0, 1, 2, ... assumes a minimum value at a finite set
N, -+ ,Np[p = p(c)] of integers m.

Consider the following class @, of sequential procedures: The only possible
sample sizes aren, , - - - , n, . If the sample size is 0, estimate O for 6 (any estimate

whatever will do as well). If the sample size is m > 0 estimate z = 5—% > ziford.
1

Writing n; < ne < -+ < n,, the risk of any such procedure, if n, = 0, is

r¥0) = P(n = OW() + é{Po(n = n;) [Cni + E,W <1—i-‘ :; xj— 0)]}

= 0)IV () + g {Po(n = n;) [cn,- + 727'-—: [ : W(y)e ™ vt dy]}

IIA

P(n = 0) sup W(y) + }; Po(n = n9)re(n;)

sup W(y) = ro(ny), i=2---,p, forall 6.
v

Similarly, if n; # 0, it is easy to show that
i0) = ro(ny), 1 =1,.--,p, forall 6.

It follows at once from Lemma 6 that every member of €, is a minimax pro-
cedure for the problem (iii) with this c.
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We will next show that

em + 1/- [ Wiy)e ™ gy for m > 0,

sup W(y) for m =0
v

re(m)

Il

is a convex function of m. Let my be the smallest integer for which r,(m) < «;
this is the same for all ¢. Then r.(m) is continuous in m for all m = m, . Convexity
of r.(m) is equivalent to convexity of

om) = v/ [ W@ g

It is easy to show that for my £ m < o, differentiation under the integral sign
any number of times is valid for g(m). Therefore

1 o
g'(m) = N A W(y)e ™1 — my®) dy,

1 g o
g//(,m') —_ m’l u/(y)e ( /2)y2(m2y4 _ 2my2 _ 1) dy

1 ° 2
= Z—W./; w (\%Tﬁ) e Pt — 227 — 1) do.
Now

=2 —1<0 for 0=2z<V1+ 3
at =2 —1>0 for V145 <=z

Also, W(y) is non-decreasing as y > 0 increases and we will exclude from con-
sideration the trivial case W(y) = constant. It follows that

g"'(m) > 2 f\/1+\/2 (1/ 1_";}@) et — 22" — 1) da
m
1 1+\/§> el g
+4m“’ i 114 (/‘/___m__ e (2 2x 1) dx

-Lw (1/ 1_+\Q)f ¥t — 20— 1) do = 0.
4m? m ()

That is, g(m) is strictly convex for all m = m, . Hence r.(m) is continuous and
© strictly convex for m = my.

For any given ¢, it follows that r.(m):m = 0, 1, 2, - - - is smallest for at most
two consecutive integers m. If at two consecutive integers, these must be on
opposite sides of the m which minimises r.(m). (Thus p = 1 or 2. The same re-
sults are now obvious for any r.,(m), given ¢, o.)

For all ¢ sufficiently large, r.(m):m = 0, 1, 2, - -+ is minimised by m = mq
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only. Now, for any given m, r.(m) and or.(m)/dm and r.(m + 1) — r,(m) are
continuous and strictly increasing functions of ¢, 0 < ¢ < o. Therefore as we
decrease ¢ continuously from such a-.sufficiently large value, r.(m):m = 0, 1,
2, - -+ remains smallest for m = m, only, until a point ¢' is reached for which
ra(m)im = 0, 1,2, -+ - is minimised by m = mp and m = m, + 1. As we con-
tinue to decrease c, for ¢ sufficiently small and ¢! — ¢ < ¢ < ¢, re(m):im = 0, 1,
2, - - - is clearly smallest for m = my + 1 only. This remains true until we reach
a point ¢’ for which re(m)im = 0, 1, 2, - - - is minimised by m = ms + 1 and
m = mo + 2. As we continue to decrease ¢, r.(m):m = 0, 1, 2, - -- is smallest
for larger and larger m’s, which tend to « as ¢ — 0, because, for a given m,
dre(m)/dm < 0 for all ¢ sufficiently small. We note that only for a denumerable
set of ¢’sis r.(m):m = 0, 1, 2, - - - minimised by two consecutive m’s; for almost
all ¢’s this minimum occurs for only one m.

Let @, consist of those members of @, in which the sample size does not de-
pend on 6. Included are the procedures in which the sample size is randomised,
independently of the observations, between the possible sample sizes. Let

e = U e.. Now Ey(n) is constant for any member of €, implying sup
0<ec <o 6

{Es(n) + Eo(W)} = sup Es(n) + sup E¢(W). Lemmas 5, 2a and 3a are there-
[} [}

fore valid for €.

For every M, my = M < « there is clearly a member of @ having E4(n) = M.
Using continuity considerations it is easy to show that for every L,0 < L < o,
there is a member of @ having 5101p Ey(W) = L. It follows from Lemma 5 that €

contains a solution for every problem (i) with M = m, (problems (i) with M <
mo have no solutions) and a solution for every problem (ii). Selection of the
appropriate member of € is obvious for any particular problem (i), requires
successive approximation for any particular problem (ii).

Are the members of € = U @, admissible for the problems (iii) for
0<c<o

which they are solutions? We will answer this question first for those members
of €’ for which 0 is not a possible sample size.

For a given ¢, suppose that r.(m):m = 0, 1, 2, - -- is minimised by m =
N #£ Oonly,orbym = N £ 0and m = N + 1 only. Since, for every m,
Te,o(m) — ro(m) as ¢ — o, it is clear that if 6 has the distribution A, = N (0, ¢°)
a prior: with ¢ sufficiently large, say ¢ > K, then V and N + 1 are the only
possible sample sizes for a Bayes solution. We observe further that

re.e(N) = cN + —F/= ' /N 1 4 —((N+1/02) 2)y2
c,v( ) ’\/27I' + *0-2 .[,o T (y)e dy’

= ——1 — + 2 2
7c,a(N I' 1) C(N + 1) —|— '\/_ 1 / N + ].'_2 + 1 l W'(y)e ((N+1/0241)/2)y 1.

If ro(N) = r(N + 1), as we are assuming, it follows from the convexity of

om) = /m f W (y) & ™" dy that r. ,(N) < r0,,(N + 1). Hence N is the only
0
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possible sample size for a Bayes procedure, ¢ > K; . Therefore, for this given
¢ the (minimax) risk function for evely member of €, is

@) = r = oN + \/2 _ /N [ W (e gy,

and the Bayes risk for a pmom A, > K,
re = cN 4+ —F= \/2 /‘/ N+~ 1 [ W) @D g,

If the procedures in €, are non-admissible for this problem (iii) there must
exist a procedure S* having risk function r*(8) = r for all 8, with strict inequality
for at least one 6. Assuming r*(§) continuous this implies strict inequality for
some interval of values of 8. We can therefore find two constants @ and k, 0 <
a <rand 0 < k < o such that

1 k

% [k r*(0) df = a.
Also, given any fixede, 0 < ¢ < 1 — a/r, we can find K > K, so large that
for —k = 0 £k,

1—¢<e
Then for all ¢ > K we have

[ *(0))\’(0) de = \/2 [ *(0) —(1/202)062 de
< — [k r*(())e_(”z"zm do + ?___ ‘[o re—u/z«ﬂ)oz do
= \/2‘"’“ k vV 2me L
1 k 2o k
= —— *(p) (120702 L f —(1/20%)62
V2ne [kr @)e do +r V2re h e do

1 k 2r k
g\/ﬂa[kr*(a)-ld0+r—mj; 1—2¢) ds
1

= \/— 2ka + r — \/2 k(l - 8)

—_ 2)92
W20t 1 whenever ¢ > K.

2k -
where b = __Sr_\_/_z_ttr_re) > 0 is a constant.

Now the Bayes risk for A\, , ¢ > K, is

= 1= A [ waeena

1/ N+ L 1 f Wy )—((N+II¢2)12)1/2 y}
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We have seen that for m = N, the function g(m) = \/m /o‘ W(y) e ™" gy
has continuous derivatives g'(m) < 0 and ¢"'(m) > 0. It follows that
2 il
2 = —_—
7‘«_7'+\/21rg(N)02:

g'(N) being a negative constant. It is clear that for o sufficiently large,

2 1 b
= — g’ — —_
rezr+ =g (N) 5> — -

v

[ o a.
But this contradicts the fact that r, is the Bayes risk for A, , and so no such S*
can exist. Therefore, if 0 is not a possible sample size for members of €, , every
member of @ is admissible among the class of procedures with continuous risk
functions, for the problem (iii) with this c.

Furthermore, Ey(n) and Eo(W) are both constants for members of € which
belong to such a @! . It follows from Lemma 7 that such members of € are ad-
missible among the class of procedures with continuous risk functions, for the
problems (i) and (ii) for which they are minimax.

If W is continuous and the number of observations is bounded, it can be
shown that r*(9) is continuous. Thus if W is continueus, we have proved ad-
missibility among the class of procedures with n bounded.

There remains the question of admissibility for those €, in which the possible
sample sizes are 0 and 1, or 0 only. If 0 ane 1 are both possible sample sizes, two
members of @, are A: take 0 observations and estimate 0 for 9; and B: take 1
observation and estimate z; for . Procedure A has risk function »(6| A) =

1 0
W (6). Procedure B has risk function r(§ | B) = ¢ + \72—; f W(y)e™ dy =
sup W(y). It easily follows that, except for 4, all members of @, are non-admis-
v

sible. The procedure A is admissible. For let S be any procedure which assigns
probability a« > 0 to sample sizes > 0. Then we have

r0]8) 2 ac + W(0) > W(0) = r(0] 4),

so that no such S could make A non-admissible. Let T be any procedure which
assigns probability 1 to the sample size 0. For any such procedure the risk 7(6 | T')
is an average, for some distribution of z, of W(z — 6). Let (—8,, 6o) be the in-
terval or point on which W(8) = W(0). Clearly we cannot have (6 | T') = W(0)
for all @ ¢ (— 65, 6y) unless T coincides with A with probability 1. Hence no such
T could make A non-admissible, and it now follows that A is admissible. This
proof also shows that A is admissible when 0 is the only possible sample size
for members of €. .
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Similar arguments show that every member of @ which belongs to a €; of
the above types, is admissible for the problems (i) and (ii) for which it is minimax.

6. Extensions of normal example. An outline of the solution of the example
of section 5 shows that the same method can be used for other examples. Let X, ,
X, - be independent random variables, each having the same density py(z)
with respect to a fixed measure p. A point estimate z is wanted for the real pa-
rameter 6. Let

Wl("’) 2, 0) = Wl(n)i W2(n’ 2, 0) = W2(z’ 0)

and define the three classes of minimax problems as usual.

Suppose that we can find a sequence & , &, - - - of a prior: distributions and
a double sequence 2i0, 2x.1(T1), 2k (X1, T2), -+ ; k = 1, 2, - -+ of estimates of
6, such that if 6 has a prior? distribution £, and we observe z; , - - - , » and then
stop, the a posteriori risk is minimised by estimating 2, for 6, and the minimum
value is

Ten(m) = cWi(m) +f_ Wa(zem; 0)p@ |21, <« , Tm 5 &) d6,

depending not on the observations but only on the number m of observations
(and ¢, k). Clearly the same sequences will do for all ¢, 0 < ¢ < =, and for all
functions Wi(n).

Then the following procedures are Bayes for the problem (iii)’ with this c,
and with 0 having a prior: distribution £ : The only possible sample sizes are
those which minimise r.x(m):m = 0, 1, 2, - - - ; if the sample size is m estimate
2k,m for 6.

Suppose for a particular £ and for some particular ¢, that these possible sample
sizes are my < mg < --- . Since 7, (m) is continuous in ¢ for any k, m it is clear
that for ¢ sufficiently small and ¢ < ¢’ < ¢ + ¢, no value of m other than n,,
N2, - - - could minimise 7. x(m): m = 0, 1, 2, --- . And a minimum for any
m > n, would provide a contradiction of Lemma 3. Hence for¢ < ¢’ < ¢ + ¢,
rep(m):m = 0,1,2, -- - is minimised by m = n, only. It follows that randomisa-
tions in sample size for Bayes solutions are possible only for a denumerable set
of ¢’s; for almost all ¢, only one fixed sample size is possible.

Suppose that as k — « every sequence 2i,m, 22,m , - * - tends to a limit 2z, ,
and that 7, x(m) — r.(m) = cWi(m) + L(m), form = 0, 1, 2, --- . If the pro-
cedure: take a sample of fixed size m and estimate 2., for ¢ has risk function 2 (6)
= ¢Wi(m) + L¢(m) = r.(m) for all 4, the following procedures are minimax
for the problem (iii) with this ¢: The only possible sample sizes are those which
minimise r.(m):m = 0, 1, 2, - - - . If the sample size is m estimate z,, for 9.

Extension to problems (i) and (ii) can now be carried out as in section 5. We
note that a problem of this type when solved for one 1¥;(m) can be solved for
any other Wi(m) by merely determining the proper sample sizes. If r.(m) is a
convex function of m, the possible sample sizes are always one integer or two
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consecutive integers. But if r.(m) is not convex, practically any set of integers
can be possible sizes, as indicated in the following examples.

ExampLi. Let X;, X, --- be independent random variables, each being
N(6, 1). A point estimate z is wanted for the mean 6. Let

Wi(n) = %n for n=0,1,2,3,

= n_3 = .o
—1+——1—®_—~ for n = 4,5, ,

Wiz, 6) = (z — 6)>

Thus the first three observations each cost 4, subsequént observations each
cost t1z. Making the necessary substitutions in section 5, we get

re(m) =c711'—l--l for m=1,2,3,
3 m
_ cm —3) | 1 _
—C+—10_5—+;'-z for m—4,5, .

For ¢ = 1 it is easy to show that ri(m):m = 1,2, - - - is minimised by m = 2
and m = 10. For ¢ # 1, r.(m):m = 1, 2, - -+ is minimised by one integer or by
a pair of consecutive integers. Solutions are obtained for all problems (i), (ii),
(iii) as in section 5. The solution obtained for any problem (i) with ¥ = M = %
is the following:

16 — 16M
6
15M — 10
6

with probability take 2 observations,

with probability take 10 observations,

estimate z = L > xz; for 6.

1=l

ExampLE. Let X;, X, --- be independent random variables each being
N (6, 1). A point estimate z is wanted for the mean 6. Let

Wiln) =1 —-% for n=1,2 ---,

=0 for n =0,
Wiz, 0) = (z — )

Making the necessary substitutions in Section 5,

ro(m) =c+(1—-c)% for m=12,---.
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Clearly ri(m):m = 1,2, - - - is constant. Thus any procedure in which the sample

size is at least 1 and the estimate z = ! >~ x; is used for 6, is minimax for the

. nia
problem (iii) with ¢ = 1. If ¢ < 1, problem (iii) has no solution. (The larger
the sample size, the smaller is the risk.) If ¢ > 1, r.(m):m = 1, 2, - -+ is min-

imised by m = 1 only. (In both these examples the possibility n = 0 is excluded
because sup (risk) is then «.)
[}

7. Example: rectangular. Let X, X,, --- be a sequence of independent
random variables, each being R(§ — %, 6 + %), 1.e., rectangular with range 6 — 1
to 8 + 1. A point estimate 2z is wanted for the parameter 6. Let

Wiln, z,0) = n, Waln, 2,0 = W(z — 6),

where W is a non-decreasing function of | 2z — 6 |. The three classes of minimax
problems are

@) subject to sup Es(n) < M, minimise sup E;W(z — 6),
'] ]

(ii) subject to sup E,W(z — 6) < L, minimise sup Ep(n),
'] [’}

(iii) minimise sup {cEy(n) + E;W(z — 0)}.
']

Note. The problems (iii) are solved by Wald in [3] for the case W(z — §) =
(z — 6)’. We will show that Wald’s solution holds for any W(z — 6) which is
non-decreasing in | z — 6 |, and will obtain solutions of (i) and (ii). In addition,
admissibility results will be proved as in Section 5.

The remainder of this section will be concerned with proving the following
results.

TrEOREM. The following procedures are admissible solutions of problem (iii)
among the class of all procedures with continuous risk functions. If ¢* = sup

3
W(a) — 2 f W(a) da — ¢ < 0 take0 observations and estimate O for 6. If ¢* > 0
0

lake at least one observation and after the m* observation (m = 1,2, --- ) compute
the range rm of Ty, -+ , Tm . If ra > 1 — 1 slop and estimate the mid-range for 9;
if rm < 1 — I take another observation; if rn = 1 — 1 do either. If ¢* = 0 follow
either procedure. (Here I, to be defined later, is a cdnstant depending on ¢ and W.)
The class of procedures so obtained, 0 < ¢ < oo, provides admissible solutions
among the class of procedures with continuous risk functions, for all problems (i)
and (ii).

Solutions are found for problems (iii) by first finding Bayes solutions for
the corresponding problems (iii)’ when 6 has a prior: distribution R(a, b). The
Bayes problem is to find a sequential estimation procedure which minimises the
risk

b
B(r018) [0 ~ R, D) = p— [ (cEn| 9 + B |9} ds.
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Let us first determine what should be our estimate z if we stop after having

observed z;, -+ , Tm . For this we will need to know the a posteriori distribu-
tion p(@|z, -+, Tm). Writing %, = min (z1, -+, ¥») and ovm =
max (x1 , ", Tm), this dlstrlbutlon is easily found to be R(u,,, , v,,.), where
(tn , Um) = (@, ) 0 (v — % ,u,,.—l—l)form =1,2, and(uo,vo) = (a, b).
Clearly a best estimate, i.e., one mlmmlsmg the a posterzorz risk em +
fW(z — 0)p@ |z, -, Tm)df is 2 = tn -{2_ n the mid-point of (4, vm).

The minimum value is

1 "n U + Um

m

Tm
$tm

=cm -l— A W(a) da,

where tm = vy, — U, for m = O, 1,2,
To determine an optimum stopping rule we will need to know, for all ¢ > 0,
the conditional expected value of rn41 given ¢, = {. Now

=1 U + O b Um F m t)
P @1 |t = 0) = t—(length of (-—2— 5 + 5
n(xml—%,x,,.+1+%)).

From this it is easy to show that

_ 1/2
Ermt | tn = 0 = olm + 1) + 28 t ”f‘} W(a) de

+tf [ [[/2 W (@) da:l do

12
f W(a) da
o

+%[[0/2W(a)da:|dx

2 t/2
o) = om +7 fo W) da — E(tmi | tm = O,

for t = 1; and that for ¢ = 1,

E(msr | tn = §) = c(m + 1) +2(1 t— )

Let

the expected decrease in a posterior: risk due to taking m + 1 instead of m
obsérvations when ¢, = £. We have

(i __f W(a)da-i-(——2> mW(a)da—~f [f W(a)da]dx—-c
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fort = 1;and fort =< 1,
() =2 f W doc = [ W () da] & — c.
=

Now W(a), being non-decreasing for « = 0, has at most a denumerable set
of discontinuities. If W («) is continuous at @ = /2 we have, for { > 1:

, _ 1 t 2 t/2 2 1/2
() = 7 W<§) 2 fo W(a) doao — 2 ‘(; W(a) da

L2

()2 [ e a2 v
= [ [" W da]do +% [ I " W da|
) -2 1;2 W(e) do — ;52 fo 1 [ f :2 W(e) da:l dz
) -2t W(t-z-) ~iwma
2 W (%) 12 v @)

and if ¢ < 1 we have
y 4 [ 4 [ /2

o'ty =W (—) - = W(e) da + = I: f W(a) da] dx
2 tJo t?dh Lbh

¢ 4 t t/2 4 t 1/2’
=W<§>_Z§-£[o W(a)da]d@-l-; A [j; W'(a)da]dx
t 4 t t/2
=W(§>—t—2.£[z/2 W(a)da]d"c
N 4 AN
= (5)-iv ()i

If ¢/2 is a discontinuity point of W(e), the same inequalities hold for the one-
sided derivatives of ¢(¢), both of which exist. We observe that these inequalities
are strict unless W(e) is constant on the open interval (0, ¢/2). Noting that
¢(t) — —c as t — 0, we have proved that ¢(?) is continuous and non-decreasing
for ¢t > 0, being strictly increasing whenever ¢(f) > —c.

Hence ¢(f) < 0 for all ¢, or else ¢(f) = 0 has a unique root ¢. Using also the
fact that tmy1 < tm, we now obtain, by the methods of [3], the following results.
a+b

2

4 AT (o
+ - l:o W(a)da]dx

If ¢(f) < 1 for all ¢, a Bayes solution is: Take O observations, estimate
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for 6. If ¢(t) > 0 for some ¢, a Bayes solution is: After the mth observation

’ ’
(m=0,1,2---) compute tn = vy, — up . Il tm < { stop and estimate%?l‘
for 0; if ¢, > t take another observation; if ¢,, = I do either.

Consider now the following procedures Sp: If ¢* = sup W) -—

1/2
2 f W(a) de — ¢ < 0 take 0 observations and estimate 0 for 8. If ¢* > 0 take

at least one observation, and after each observation (m = 1,2, ---) compute
b= Un+ 32— Om—3) = Un — Om + 1;if tn < T stop and estimate =1’ YUm + Um
for 9, if 5 > 1 take another observation, and if # = 7 do either. Finally, if ¢* =0
use either of these two procedures.

If ¢* > 0 it is easy to show that Es(n | So), E¢(W | So) and

(0| So) = cEo(n | So) + Eo(W | So) = r

are all constants. Also, for any particular c, there is always an S, for which
Eys(n | So) is constant.

Let Sx be a Bayes procedure when 6 has the distribution & = R(—Fk, k) a
priori. If ¢* = 0, then for all k the procedure S; is: take O observations and
estimate O for ; it thus coincides with an S, . (Other possible Sy have the same
Sl:p 7(8 | So).) If ¢* > 0, then for all k sufficiently large the procedure S coin-

cides with S for —(k — 1) £ 0 = k — 1. Taking a sequence of
Si’s with k — oo, it easily follows from Lemma 6 that all procedures S, are
minimax for the problem (iii) in question.

By the same methods as are used in section 5 it is easy to show that the
procedures S, obtained above provide solutions for all solvable problems (i)
and (ii).

In the case ¢* > 0, for the procedure Sy to be non-admissible for the problem
(iii) for which it is minimax, there must exist a procedure S§ having risk function

r0]8;) <r forall 6

with strict inequality for at least one 8 and so, if r(0 | Sy) is continuous, for
an interval of values of §. We can therefore find 2 > % such that

1 h—1/2 "
éh———i [H]/2r(0|80)d0 =a<r

Now for @ = 42, +4, - - define the procedure S% as follows. If z; , z, - - -
are observed, use the declsmn procedure Sy for the sequence r; — oh,
— ah, -+ - and add ah to the resulting estimate. We clearly have

r(0]| S%) = r(0 — ok | S3).
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Now define the procedure S* as follows. Take at least one observation. If
1 ¢ (@ — lh, a + 1], @« = 0, £2, &4, ---, use the procedure Sk.
If0e(a — 1h+ %, a + 1h — %), then e (« — 1h,a + 1h]andsothe procedure
S* reduces to S% . Hence 7(6 | S*) coincides with 7(6 | S%) for

be(la—1h+ 3 a4+ 1h— %), a=0,+2 +4, .

And (6 | S*) = r for all 8. Therefore

1 il 2h — a + r (r —a)(2h — 1)
- 0| S* < Xr RN X e
2@k + Dh [(2k+1),.r( | §%) do = 2h r oh

But if 6 has the distribution R(— 2k + 1h, 2k 4 1k) a priort, the Bayes solution
coincides with S, for 8 ¢ (— 2k + 1 + 1,2k + 1k — 1). We therefore have
for this a prior? distribution

. 22k + )h — 2 r
> et T R T e e D
Bayes risk = 50k + Dh r=r CE T DL

For k sufficiently large this clearly exceeds r — (2h — 1)(r — a)/2h, contra-
dicting the above inequality on the Bayes risk. It follows that no such Ss as
assumed can exist and therefore that the procedure S, is admissible, among the
class of procedures with continuous risk functions, for the problems (iii) for
which it is minimax and also, by Lemma 7, for the problens (i) and (ii) for
which it is minimax.

If W is continuous and the number of observations is bounded it can be shown
that 7*(8) is continuous. Thus if W is continuous, S, is admissible, among the
class of procedures with n bounded, for the three problems.

It remains to consider admissibility for procedures S, where ¢* = 0. Proofs
for these cases can be given in the same way as for the corresponding cases
in Section 5. )

The solution for this example still works if we replace Wi(n) = n by some
other Wi(n), but only so long as the resulting function ¢(¢) is non-decreasing.

Norte. In the above examples, a procedure is called cogredient if for every
¢ the same number of observations is taken for z; + ¢, z; + ¢, - - - asfor 2,
Zy, --andz(@i+ ¢ -+, zn+ ¢) = 2(x1, -+ -, za) + c¢. Such procedures have
constant risk functions; so it follows that all the constant risk procedures ob-
tained in Sections 5, 6, 7 have uniformly minimum risk ambdng all cogredient
procedures for the problems for which they are minimax.

The author wishes to express his appreciation to Professor E. L. Lehmann
for valuable advice and assistance in the preparation of this paper, and also to
Jack C. Kiefer, who read the manuscript and pointed out an important correc-
tion.
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