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1. Summary. In this paper we derive the operating characteristic of the con-
trol chart for sample means when process standards are unspecified. Under the
null hypothesis the distribution of the process is N(u, ¢°), where u and ¢ are
fixed but unknown. Under the alternatiye the process mean is a random variable
with a N(u, 6°°) distribution. Exact results are obtained for cases ranging from
two samples of size 2 to four samples of 10. Bounds on the operating character-
istic are obtained in particular cases ranging from five samples of 5 to 25 sam-
ples of 10.

2. Introduction. The usual procedure in constructing control charts from
past data consists of the following steps [1].

(a) Classify the total number, N say, of observations to be drawn from the
process into m samples of size n according to some rational method of sub-
grouping.

(b) For each sample, calculate a mean and a range, plotting these values on
separate charts in the order drawn.

(¢) Using prescribed formulae based on the data collected and the sample
size, calculate upper and lower control limits for each chart.

(d) If all the plotted points fall within the control limits on both charts,
accept the hypothesis that the process is in a state of statistical control. Other-
wise, reject this hypothesis.

In what follows we shall confine our attention to the control chart for means.
Letting z;; denote the jth observation in the 7th random sample of size n, we
will be concerned with the following linear model

xii=l‘i+5ij7 i=172:"'7m;.7.=172)"'7n7

where
(1) the e; are statistically independent and distributed according to N(0, o%);
(2) the p; are statistically independent and distributed according to N (u, 8°0%);
(3) the u; are statistically independent of the e;; ;
(4) uand o are fixed but unknown.
Let #; and r; denote the mean and range, respectively, of the sth sample
Zi, '+, Tin. The usual control chart procedure prescribes that the limits on
the Z-chart be set at £ &= A7, where

=_szu) =

LS n,
MN Gl =1 m =1
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and A, is defined by E(As7) = 3¢/+/n when the underlying distribution is nor-
mal. What we seek then is the probability that the inequalities

& — AfF < & < & + A, i=1,2 - ,m,

be satisfied simultaneously. Deﬁnixfg

@1) m@=P(—g&f<@—i<§Aﬂ,n,—§&7<zm—i<§Aﬂ>
we wish to evaluate 8(3) under the hypotheses

Hy: 0 = 0;

Hy :0>0.

The null hypothesis, Hy , is the hypothesis of statistical control. Our choice of
the alternative § > 0 is motivated by practical considerations. Since shifts in
the mean of an industrial process might occur at any time and be of any mag-
nitude, an alternative which ordered the w; in a particular way would be of
limited interest. By treating the u; as random variables we are taking into
account the “average effect” of m independent assignable causes of varying
magnitude. Although we are unable to specify the size of any particular shift, a
measure of the size of the u; as a group is given by the parameter 6.

3. Taylor’s series expansion of 3(3). The general method employed in cal-

culating B(3) is first to obtain
d = = o . . % s _= 7

Tm — T
e <)
as a function of & for fixed m. We note that By(k) is of considerable interest in
its own right, since 8o(3) represents the probability that the &-chart will show
control when ¢ is known.

To evaluate 3(3) we multiply the conditional probability that (for fixed 7)
—Af < & — & < Aof (£ = 1,2, --+, m) by the pdf of ¥ and integrate on 7
from 0 to «. For fixed ¥ we have

(3.1)

—P(;rc<gz‘_’-c k k <
ST em B T

P(—A27’<§1—5<A2f,°")
‘ AlF I — AqF V1 Ay 7
=P<‘a/x/ﬁ<a/\/ﬁ<a/x/ﬁ"">="°< o )

Let gmn(F; o) denote the pdf of the average range of m random samples of n
from a N(u, ¢°) universe. Then

BB = l i gmn(w; 0)Bo (\/ n Ag :‘0> dw.
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Letting gma(w; 1) = gma(w), we have
1 w
Gun3.9) =~ gon (2)-

g

60 = [ o (%) o (vaa:?) aw

Finally, letting 7 = w/o yields

(3.2) 88) = [ ga(Be(v/ms7) 07

Thus

We now expand Bo(\/n A7) in a Taylor’s series with remainder about the point
7 = dy, where dyo denotes the expected value of the range in a random sample
of n from a N(u, ¢°) population. Clearly

33) Bo(v/nds®) = BoB) + bi(F — d) + -+ + ;’,—, F — 4’ + R'®),

where the b; are the sth derivatives of Bo(\/n As7) with respect to 7, evaluated
at 7 = ds, and

’ bpri(8) . 1 _
(3.4) R@=Qﬁqﬂ@—m+, t=d+alf —d), O0=a=l

This expansion is valid since all the b; are continuous. Now, taking the expecta-
tion of both sides of (3.3) yields

[ am@/nds) dr = 88) [ gun(®) de
0 0

b [ = @) a4 [ R @ganl?) i
0 0

But since the first integral on the right side is unity and the second zero, we have

(3.5) 86) = B3 + B wld) + -+ + 2@ + B,
where the u,(7) are central moments of average range, and

[T bena(®) o yeR oy oo
(3.6) . R = b+ D1 (F — do)" gma(F) dF.

For the actual numerical computation of 8(3), relation (3.5) is used in the form

_ b. Mz(T) bs Ma(”) by 1 2
(387 BB = Bo(3) + 31 m 31 m +71_';n—3 [pa(r) + 3(m — Dpa(r)] 4+ -,
where the u;(r) are the 7th central moments of the range in samples of n from a
N(x, 1) population. In each case, a sufficient number of terms of (3.7) is used
to insure that the remainder, R, is small.
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4, Derivation of 3,(k). As indicated in the previous section, our first task is
to obtain an expression for By(k). It is apparent that it can be written as

Tm — I — iq >

(4.1) Bo(k) = P< /\/~ < k, o/ <k

where I and Zqy are the largest and smallest sample means, respectively. To
obtain a tractable express10n for thlS probablhty we shall first investigate the

joint distribution of " and - . For this purpose let us consider
/ V/'n /\/

the joint pdf of the ordered variates £y < £ < *++ < &(m . Since T; = u; + &,

where & = Z};, e;;/n, we see that the distribution of Z, is normal with mean u

and variance (6° + 1/n)¢". Assuming x = 0 (with no loss of generality) we have
m!

f@ay, -+ Fm) = 2 <1 T >m/2 exp|: 20 + n0) P N ;xm]

as the joint pdf of gy < Ty < +++ < T(m . To obtain the joint distribution of

T —
m =2 and 22D ey

o/ /\/' ’

ag
\7;1 V20 = —3o + &,

g —_—
:/—;z V320 = —Zo —Im + 28w,

g
=V = 3)(m — 2) tns = —F@ — &@ — -+ —Fm-n + (M — 3) T,

Vn
»\_;;’ V(m - 1)(m - 2) U2 = _(m el 2).’2(1) + ﬁ@) -|— [N _I_ x-(m—l) ,

o -
\—/7'—% \/m(m — 1D vpa = —T ~T» — *** —Tm-n) + (m — 1) Zm

T
be/ﬁvm =Ty + T+ -+ Tmn + Tom -

This transformation gives
m!

g(vla e vm) = (2 )ml2(1 + né )mlz exp[ 2(1 _I_ n02) 12; V; ]
as the joint pdf of the v;, defined over the region S given by

7)1>0, 1)1‘</‘/1/-:27)1+1, (1:=1,...’m_4)’

S{vmm — 2) v > V(M — 1)(m — 3) Vns + O,

m—1 A L Um—3
1/m—2v”“2>\/§+\/??§+ T Vm—dm -3
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Now, we integrate out v, and let

v o= u, t=1-.--,m—3),
_ U m — 1
Um—2 = vV (m — 1)(m—2)+ m—2"

m
vm—1=/‘/ U
m — 1

where in terms of the original variables
x(m) -z
“o/v/n’
37 T — T

= /v

The Jacobian of this transformation is | J | = v/m/(m — 2). The joint density

(4.2)

of g, Us, ++*, Ums, U, v is finally obtained as
m!
hm(ul,"',um-—3,uyv)= — m_2 —]
(4.3) (2,,.)(»: 1)/2(1 + ngz)(m 1)/2

'exp[ 21 + 2(1 + ) g” ] exp[_ ﬁ"—azﬂ

over S’, where

_m—=1, n 2
Am—m_z(u + v9) 5 U,
u1>0,u>0,v>0,u.-<,‘/i_’;2um, G=1,-,m—4),
Slis{ W1 | _ U Um—s 1
vityveat T Vmoam-9 <m0

\/(m—2)(m—3)um_3< (m — Du — o

For the cases m = 2 through m = 4, 8y(k) is obtained by integrating (4.3) over
the range w;, -, Ums € S, u < k, v < k. 8(3) is then evaluated from the
series (3.7). For cases where m > 4, bounds on the desired probabilities are ob-
tained by methods described in Section 5D.

6. Exact evaluation of 3,(k) and 3(3).
A. Case m = 2. In this case, Bo(k) becomes simply

Bolk) = P<—k <§;/_\/f"; < k)
(5.1) _
| 2 (A2) - 2 (- i)
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¢ " dt. The series expansion for 8(3) becomes

where &(z) = \/— f

(52)  BEB) = Bo(3) + ? pa(r) + Ms( ) + o5 b (ua(r) + 3uz(r) + -

192

where

b= [/ dun) |

The moments u;(r) are obtained from Hartley and Pearson [2]. Expression (5.2)
is used to evaluate 8(3) for n = 5 and n = 10. For the sake of completeness
the case n = 2 is also included. In this case, the pdf of the range is

Fe=dg

]. 2 2 ~
B = —=— 1D 5 0),
.\/—

o

Hence, by the standard convolution (see [4], p. 191),
2%
gulf; ) = 2 [ hQF — 0 hO) &,
0

which reduces to

4 -G 7 7
922(7-.; 0_) = ﬁ;a e (72/(202)) [‘P (:;)_ d (_ _E)il'
Hence

83) = [ 0a@8e(n/24:7) dr

= [ 5 e — o)

|: ( Vv +2 ) < 2 aﬂ)]
1 — B(3) is then evaluated by numerical integration.

The results for m = 2 are summarized in Tables I and II below.
B. Casem = 3. We find from (4.3) that the joint density of u and v is given by

N 3! '\/5 1 2 2 ’
(5.3) fs(u, U) = m} exp [ mz—) (u uv + v )] over S )
where
, s )0 <v < 2u,
& {0 <u<
Then

k u
Bo(k) = 2 fo du f} T, 0),
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by virtue of the fact that f;(u, ») is symmetric about the line u = v. This inte-
gral reduces to

§ k/(24/14n062) .
(5.4) Bo(k) = 6 4/ = / e Ry () dt,
m™ Jo
where Fy(z) is defined by .

Fy(z) = _\72_; fo .

F,(x) is the cdf of the extreme deviation from the sample mean in samples of n
from a N (0, 1) population. This function has been tabulated by Grubbs [3]. 8:(3)

TABLE I TABLE II
Bo(3) for m = 2 B(3) form = 2

0 n=2 | n=5 | n=10 6 n=2 | n=5 | n=10
0 1.00 1.00 1.00 0 .96 1.00 1.00
.5 1.00 1.00 .98 .5 .94 .98 .96
1.0 .99 .92 .80 1.0 .89 .89 .79
1.5 .93 77 .62 1.5 .82 .75 .61
2.0 .84 .64 .49 - 2.0 .75 .63 .49
2.5 .75 .55 .40 2.5 .67 .54 .40
3.0 .67 .47 .34 3.0 .61 .46 .34

is evaluated from (5.4) by numerical integration and 8(3) obtained from the
series (3.7). The results for this case are summarized in Tables III and IV.
C. Case m = 4. From (4.3) we obtain the joint pdf of u;, u, and v as

4
41 1/:
2 ~ud/(20+n02)] ~[A4/(2(1+n02))]
56) hlwm,u,v) = —— T = g™ e over S
U 2n )™ ’
where
Ay = 35" + %) — uw,
(P 0,u>00v>0,
Sis{vV2wu < 3 — u,
V2u < 3u — .
To obtain fi(u, v), the joint density of w and v, we integrate over the range of
U , with the following result

-— 2 92
0, 61/t mf
0

@—wivE {2/ 2(14+n62))]
¢ /G gy for v < w < 3,
f4(u7 1)) =

(s} e—[A 1/(2(1+n62))]

(3u—v)/\/§ 2
— 2
f U EEHID o <y < By,

0
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where
4! 1/1
Ch=_ ¥V 2
P e+ ne)FR
But
(3v—u) /A/2 (3v—)/(24/14n62)
f YO Gy = /2 /T F nf? f e dt
) o
N v — u
= /‘/72—'-\/1 —|—n02F2<ﬁ——+—nez>.
TABLE 111 TABLE IV
Bo(8) for m = 3 B(3) form = 3

[/ n=2 n==5 n =10 [/ n=235 n =10
0 1.00 1.00 1.00 0 .99 1.00
.5 .99 .96 .88 .5 .94 .86
1.0 .92 .71 .48 1.0 .69 .48
1.5 .74 .45 .27 1.5 .45 .27
2.0 .56 .30 .17 2.0 .30 .17
2.5 .42 .21 11 2.5 .21 11
3.0 .32 .15 .08 3.0 15 .08

In exactly the.same manner

(3u—v)//2 - 3u —_
—[u3/(2(1410%)] -4/ 5 LA
L e 1 duy 4/2\/1+n0 F2<2\/1 n02>'

Therefore
falu, v) = C4 4/ % V1 T ngt ¢ BV aey g,
where
3u — v
' Fz <2m> fOI‘ u < v < 3u,
Gy, v) = 3 "
o —
F, <m) for v < u < 3.
Then

Bo(k) = 2 fo * du f 1:3 falu, v) du,
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since fi(u, v) is symmetric in » and v. After some reduction we find

/‘/g 2k/(3+/1+n62) .
(5.7) Bo(k) = 12 '\_/_Q— A e IR, 3(8) dt,
L

where

Fot) = 2$ = g, (3“> dz.

As before, Bo(k) is evaluated by integrating (5.7) numerically and 8(3) is ob-
tained from the series expansion. The results for this case are summarized in
Tables V and VI.

TABLE V TABLE VI
Bo(8) for m = 4 B@3) form = 4

0 n=2 n=25 n =10 9 n=2_5 n =10
0 1.00 1.00 1.00 ) 0 .99 1.00°
.5 .98 .91 .76 .5 .87 74
1.0 .82 .52 .27 1.0 .51 .27
1.5 .56 .25 .11 1.5 .26 .11
2.0 .34 .12 .05 2.0 .13 .05
2.5 .22 .07 .03 2.5 .07 .03
3.0 .14 .05 .02 3.0 .05 .02

D. Case m > 4. In this section we derive upper and lower bounds for Bo(k)
and B(3). Recalling that Bo(k) = P(u < k, v < k) we immediately obtain the
upper bound Bo(lc) =< P(u < k). But since u = (&m — %)/(c/N/n), we see that
u/A/1 + n6? is distributed as the extreme deviation from the sample mean in
samples of m from a N(0, 1) population. Hence, using Grubbs’ notation [3]

(5.8 Bo(k) < F (Wk-l-_-Toz) .
It follows that
69 80) = [ m@n(va i) &S [ gudFn <%) i,

(5.9) is then expanded in a Taylor’s series with remainder by the method of
Section 3.

To obtain a lower bound, we have from elementary probability considerations
Plu <korv<k)=Pu<k)+Pw<k) —Plu<kv<k),or

(5.10) P(u < k,v <k) =Pu<k)+Pw<k)—Pu<korv <k).
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Since the last term in (5.10) cannot exceed unity we have
Plu<kov<k)=20k)=Pu<k)+Pw<k)—1

But
L] k
P(u<k)=P(v<k)=Fm<m>
TABLE VII
Bounds on 8o(3)
m=235 m=10
[’}
n=35 n =10 n=25 n =10
0 1.00 1.00 .98" .99 .98 .99
.5 87 .94
1.5 00 .12 .00 .06 .00 .01
2.0 .00 .14 .00 .05 .00 .01
2.5 .00 .07 .00 .02
3.0 .00 .04 00 .Ql
m =15 m =20
0
n=5 n=10 n=5 n=10
0 97 .98 .97 .98 .96 .98 .96 .98
.75 .00 .26 .00 .04
1.0 . .00 .13 .00 .02 .00 .06
1.25 .00 .01
1.5 .00 .01
m =25
[} n=25 n =10
0 .95 .97 .95 .97
.25 .80 .91
.75 .00 .18 .00 .02
1,00 .00 .03
Therefore
k
5.11) k) 2 27 ( ) -1
The corresponding lower bound on 3(3) becomes
° A, 7
5.12 )2 [ gl [2F,,. (_‘/_Li—>— 1] dF
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which is again evaluated by a Taylor expansion. The results given in Tables VII
and VIII do not include certain intermediate values of # in the range 0.25 to
1.50 because the lower bounds (5.11) and (5.12) are very weak in this range.

TABLE VIII
Bounds on 3(3)
m=25 m = 10
[}
0 99 1.00 .97 .99 98 .99
.5 81 .99
1.5 .00 .12 .00. .06 .00 .01
2.0 .00 .14 .00 .05 .00 .01
2.5 .00 .07 .00 .02
3.0 .00 .04 .00 .01
m =15 m = 20
[}
n=235 n=10" n==5 n =10
0 96 .98 .96 .98 94 .97 .95 .98
.75 00 .27 .00 .04
1.0 00 .13 .00 .02 .00 .06
1.25 .00 .01
1.5 .00 .01
m = 25
0 n==5 n =10
0 .94 .97 .94 .97
.25 .80 .90
.75 .00 .18 .00 .02
1.00 .00 .03

An important feature of Tables VII and VIII is the close agreement between
corresponding values of 8,(3) and 8(3). Our ignorance of ¢ is of little consequence
so far as these results are concerned.

6. Bounds on the remainder term. In each of the Taylor expansions used in
Section 5, there is a remainder term of the form

T be(® _ o
R—fo fm(r_d“’)Jrgmn(r)dr.
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In order to determine a bound on R, we note that

|R| < /:le—-dzlpﬂgm(f)df‘

(+ D!
Max I bp+1(£) I “ _ p+1 = —
< 297 | Teils) | —
= (p I 1)! I r CLz I gmn(r) d”'.
If we restrict p to be an odd integer, we have
Max [ bpu(® |
< 207 Tl |

In practically all cases given in the preceding tables, a sufficient number of
terms of the series (3.7) is used to insure that the bound (6.1) does not exceed
0.005. In isolated instances where this is not possible; terms up to and including
be/6! us(7) are employed.
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