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where 0 < 8 < 1,A > 0. We find that

a, = )\_-.’-n——.lﬁ(]__l_)\ﬁ)..(n_1+[)\+n_2]‘3)’ n ]_,2’...,

n!
with @ = 1. In particular, when A= 1, we have
an = (1+ §)"78, n=12-"-,
with ap = 1, and each row of A is a truncated modified geometric distribution.
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ON MINIMUM VARIANCE ESTIMATORS!

By J. KiEFER
Cornell University

Chapman and Robbins [1] have given a simple improvement on the Cramér-
Rao inequality without postulating the regularity assumptions under which the
latter is usually proved. The purpose of this note is to show by examples how a
similarly derived stronger inequality (see equation (2)) may be used to verify
that certain estimators are uniform minimum variance unbiased estimators.
This stronger inequality is that which (under additional restrictions) was shown
in [2] to be the best possible, but is in a more useful form for applications than
the form given in [2]. For simplicity we consider only an inequality on the vari-
ance of unbiased estimators, but inequalities on other moments than the second
(see [2]), or for biased estimators, may be found similarly. The two examples
considered here are ones where the regularity conditions of [2] are not satisfied,
where the method of [1] does not give the best bound, and where the method of
this note is used to find the best bound and thus to verify that certain estimators
are uniform minimum variance unbiased. (For the examples considered this also
follows from completeness of the sufficient statistic; the method used here ap-
plies, of course, more generally.)

Let X be a chance variable with density f(x; 6) with respect to some fixed o-
finite measure u. (6 € @, x € ). We suppose suitable Borel fields to be given and
f(x; 6) to be measurable in its arguments. @ is a subset of the real line. For each
6,let Qo = {h| (6 + h) cQ}. For fixed 6, let \; and \; be any two probability

measures on  such that E:h = hd\; (h) exists for = = 1, 2. Then, for any
Q¢
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t(x) for which Est = 6, we have

/;r (t — 6) /T3 0) {[10 f(z; 0‘+ k) d\(h) — >\2(h)]} @ 0) du
(1) . flz;0)

= E h — Esh.

Applying Schwarz’s inequality, we have after some obvious manipulations,
(E1h — E:h)?

©  Eut—0) 2 sup { [ 7650 + 1) dpu —x2<h>1}2 ,
” D) au

where for each 6 the supremum is taken over all A; and N for which \; = \,
and for which the integrand of the integral over X is defined a.e. (u).

We remark that the supremum of (2) is easily seen to be unimproved if \;
and E;h are multiplied by real numbers ¢; (¢ = 1, 2) with respect to which the
supremum is also taken. From this fact it is easy to verify that the right side
of (2) must coincide with the expression given in Theorem 4 of [2] (for s = 2
there), and which Barankin shows (under the assumption that f(z; 6 4+ h)/f(x; 6)
is defined a.e. (u) and (for our case) belongs to L, with respect to the measure

v(A) = f f(z; 0) du for all h £ Q) to be the best possible bound. However, the
A

form of equation (2) is more useful for applications, since one can sometimes find
\: for which the bound is attained but where no discrete \; (essentially what are
used in the form of [2]) aetually give this bound.

It will often suffice in applications to let A\, give measure one to the point h =
0. This gives

(E1h)*
9 B e
(3) Bt — 0 2 supd | [ a0+ b d 0w .
A f LYQg d gy — 1
x f(z;6)
If we consider only those \; which give measure one to a single h, we obtain
1
—0)? > ’
@ R { [0 B, )
» BBl (@3 6) J

where the infimum is over all & £ 0 for which & ¢ Q5 and for which f(x; 6) = 0
implies f(x; 6 + h) = 0 a.e. (u). The latter is precisely the condition of equation
(2) of [1], the result of which thus coincides with (4).

We now give two examples where the right side of (3) suffices to give the best
bound, where the right side of (4) does not give the best bound, and where the
previously mentioned restrictions of [2] are not satisfied. In both examples u
is Lebesgue measure on the real line.
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ExampLE 1. We have n observations from a rectangular distribution from 0
to 8 (@ = {6]|6 > 0}). It suffices to consider the maximum Y of the observa-
tions, whose density is ny"™'/6" for 0 < y < 6, and 0 elsewhere. For n = 1, the
denominator of the right side of (4) becomes inf_scpco{ —1/[R(8 + R])}, so that
(4) gives the bound 6°/4. It would be too tedious to carry this calculation out
for each n, but it can be shown that, as n — «, (4) asymptotically gives the
bound .6486°/n’. On the other hand, if we put d\i(h) = [(n + 1)/6] (h/6 +
1)*dh for —6 < h < 0, the term in braces on the right side of (3) becomes
6*/[n(n + 2)], which is in fact attained as the variance of the unbiased estimator
[(n + 1)/n]Y.

Exampre 2. We have m observations from the distribution with density
e “ ™ for z = 6 and 0 elsewhere (Q is the real line). Here the minimum Z of the
observations is sufficient and has density me ™*™®, z = 6. The denominator of
(4) is infiso ([¢™ — 1]/A%). The infimum is attained for mh = 1.5936, and
yields .648/m® as the bound given by (4). On the other hand, putting d\;(h) =
me ™ dh for 0 < h < « and 0 otherwise, the expression in braces of (3) becomes
1/m?, which is actually attained as the variance of the unbiased estimator
Z — 1/m.
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BHATTACHARYYA BOUNDS WITHOUT REGULARITY ASSUMPTIONS

By D. A. S. FraseEr AND IRWIN GUTTMAN

University of Toronto

1. Summary. In [1] a method for removing the regularity conditions from the
Cramér-Rao Inequality was given and applied to the estimation of a single real
parameter. It was noted there that the method would extend to problems more
general than estimating a single real parameter. However, the method extends
also for the estimation of a single real parameter and produces analogues of the
Bhattacharyya bounds with and without nuisance parameters.

2. Introduction. Let u(z) be a o-finite measure defined over an additive class
@ of subsets of a space %, and let X be a random variable with density

f(.’l?; O, - ,ok)
with respect to u(x). 6y, - - , 6 are real with (6;, -++ , 6) = @ ¢ A C R". The
carrier S(61, - - - , 6i) of the distribution is defined by

S(ol,"' ) 0’#) = {x|f(x; 01)”‘ 70k) > O}



