ORTHOGONAL ARRAYS OF STRENGTH TWO AND THREE

By R. C. BoseE anp K. A. Busu
University of North (:'arolina and Unaversity of Illinois

1. Summary. Orthogonal arrays can be regarded as natural generalizations of
orthogonal Latin squares, and are useful in various problems of experimental
design. In this paper the known upper bounds for the maximum possible number
of constraints for arrays of strength 2 and 3 have been improved, and certain
methods for constructing these arrays have been given.

2. Introduction. A £ X N matrix A, with entries from a set = of s = 2 ele-
ments, is called an orthogonal array of strength ¢, size N, k constraints and s
levels if each ¢ X N submatrix of A contains all possible { X 1 column vectors
with the same frequency \. The array may be denoted by (N, k, s, £). The num-
ber N may be called the index of the array. Clearly N = \s'.

The set = will for convenience be taken as the set of integers 0, 1,2, --- ;s — 1.
For example the orthogonal array (18, 7, 3, 2) with index 2 is given below. It is
easy to verify that in any 2 X 18 submatrix, each of the column vectors (0, 0),
0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2) occurs twice.

012012012012012012
012012120201120201
012120012201201120
(2.0) 012201201012120120
012120201120012201
012201120120201012
000000111111222222

If the orthogonal array A is of strength ¢ so is any subarray of k&’ rows (con-
straints) if & < k. Hence the non-existence of (As’, ¥, s, ) automatically im-
plies the non-existence of (\s’, k, s, t) if & > k’. Again if A4 is of strength ¢, it is
also of strength ¢ for all ¢ < ¢.

The optimum multifactorial designs considered by Plackett and Burman
[1] are essentially orthogonal arrays of strength 2. They have shown that the
maximum number of constraints % for an orthogonal array of size \s’, s levels
and strength 2, satisfies the inequality

@2.1) k= |:)‘s2 — 1],

s—1

where [z] is largest possible integer not exceeding z. The square bracket is used
in this sense throughout this paper.
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The existence of the orthogonal array (s°, k, s, 2) is combinatorially equiva-
lent to the existence of a set of ¥ — 2 mutually orthogonal s X s Latin squares
(such a set is usually said to have k constraints, represented by rows, columns
and the £k — 2 squares). The inequality (2.1) for the case A = 1 states the well
known fact that the maximum number of mutually orthogonal s X s Latin
squares cannot exceed s — 1.

Again for the special case s = 2, (2.1) gives ¥ £ 4\ — 1. Plackett and Bur-
man have actually constructed orthogonal arrays (4N, 4N — 1, 2, 2) for all
values of N = 25, except for A = 23. They also give a number of arrays of strength
2 for other values of s, and establish a connection between orthogonal arrays
and affine resolvable balanced incomplete block designs [2], and between orthog-
onal arrays and partially balanced designs [3].

Rao [4] studies hypercubes of strength d, which are orthogonal arrays for which
the index N is a power of s. He has used them in connection with confounded
factorial designs. The concept of orthogonal arrays in its most general form is
also due to Rao [5]. He discusses the use of these arrays together with some
methods of constructing them and gives the following generalization of the ine-
quality of Plackett and Burman.

TuEOREM. For an orthogonal array (\s', k, s, £), t = 2, the number of constraints
k satisfies the inequality

(22) N —1=Cis—1)+ - + C:s — 1)* ift = 2u,
N =1 =ZCis—1)+ - +Cs — 1)* + 5 — 1)*™!

2.3
@3) ift=2u+ 1

When ¢ = 2, this leads to Plackett and Burman’s inequality (2.1). When
t = 3, we get

CoroLLARY. For an orthogonal array (A, k, s, 3) of strength 3, the number of
constraints k satisfies the inequality

A — 1
(2.4) k§[8_1]+1.

Theorems 1A and 2A proved in Sections 3 and 4 give an alternative proof of
the inequalities (2.1) and (2.4). Theorems 1B, 2B, 2C improve these inequalities
except for certain special values of s.

Sections 5, 6 and 7 are devoted to the investigation of methods for con-
structing orthogonal arrays of strength 2. A difference theorem is proved, which
when used in conjunction with Galois fields enables the construction of the ar-
rays (18, 7, 3, 2) and (32, 9, 4, 2). The first of these has been constructed by
Burman [1] by trial and error methods. It is shown that if p is prime and s = p°,
\ = p* [u/v] = c, then we can construct an orthogonal array (\s’, k, s, 2), where
E= N\ = 1)/ = &)) + 1.

" Theorems 5A and 5B of Section 8 establish a connection between orthog-
onal arrays and the theory of confounding in symmetrical factorial designs
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(based on the use of finite projective geometries) first developed by Bose and
Kishen [6] and later amplified by Bose [7]. It is shown that the problem of con-
structing the orthogonal array (s", k, s, £), r = , s = p” and the problem of ob-
taining a symmetrical factorial design with s levels and % factors, in which the
block size is s” and in which all ¢-factor and lower order interactions are left un-
confounded, both depend on finding a set of k points in PG(r — 1, p™) no ¢ of
which are conjoint. Such sets have been obtained by Bose in [7] and his results
can be immediately translated into the language of orthogonal arrays. This has
been done in Section 9. Theorems 5A and 5B were given by Bush in his unpub-
lished thesis [8]. It has recently come to our notice that Rao [9] independently
obtained a theorem equivalent to 5A, and derived from it the array (27, 2”7, 2,
3) given by us in Section 9(a). The results in paragraphs (b) and (c) of Section
9 are new. An improvement of the inequalities (2.2) and (2.3) has been given by
Bush [8, 10] for the special case N = 1.

3. Upper bound for the number of constraints for orthogonal arrays of strength
2. Two columns of an orthogonal array are said to have ¢ coincidences if there
are exactly ¢ rows in which the symbols appearing in the two columns have the
same value (i.e., are the same elements of ). For example, the first column in
the array (2.0) has 1 coincidence with each of the second and third columns, but
has 3 coincidences with the fourth.

For any orthogonal array (N, k, s, t) of index N let n; denote the number of
columns (other than the first) which have ¢ coincidences with the first column.
Since the total number of columns is N = As’,

k
(3.0a) Somi=2s' — 1.
1=0

We shall show that
k
S =1 - G=h+Dni=kk—1) - E&—h+ DA = 1),
(3.0b) =0
1=<h=st

The formula (3.0a) can be regarded as a degenerate case of (3.0b) for A =.0.

Consider the subarray obtained by choosing any h rows of (N, %, s, t). The
first column vector of this array appears in exactly A\s*™ — 1 other columns of
this subarray. Since it is possible to choose the subarray in Cj different ways the
total number of A X 1 vectors appearing in columns other than the first which
are identical with the corresponding vector of the first column is (A\s"™ — 1)Cj.
But any column which has i-coincidences with the first contributes nothing or
C} to this number according as ¢ < h or ¢ = h. Hence

k
(3.0c) > n;Cr = Cis™™" — 1),

=0

where C; is to be interpreted as zero if 7 < h. This is equivalent to (3.0b).
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Let us now confine our attention to orthogonal arrays of strength 2. Then
(3.0a) and (3.0b) lead to

(3.1a) ioni = )\82‘— 1,
(3.1b) io g = kEQs — 1),
(3.1¢) ‘io it — Dng = k(k — 1)(A — 1).

Consider the function
k
f@) = Z(:) (@G —2)¢@ —1— 2)n,

defined for integral values of z. Then

32) fz) =0

since n; = 0, and the factors (7 — z) and (¢ — 1 — x) are both negative if 7 < z,
and both positive if ¢ > x + 1. Also one factor is zero if ¢ = z or z + 1. Now

flx) = ioi(i— 1)n;—2xiin;+x(x+1)ilni;

whence from (3.1), we get
f@) = NMk(k — 1) — 2kzs + z(x + 1)s’} — {k(k — 1) — 2kz + z(z + 1)}.
From (3.2)

(3.3) Vs k= 1) — 2ks + (@ + 1)
. “= k(e — 1) — 2kzs + z(x + 1)s*’

Setting
a=k—1—2s

we can after some reduction, write (3.3) in the form

(3.4) “:2_" 11 >k {1 + “__(SD_—“)}
where D can be expressed in two equivalent forms

(3.5a) D=(G-1)k—a—1)+ala+1)
(3.5b) =k(s—1) —(a+1)(s—1— o).

We shall now prove Plackett and Burman’s inequality (2.1) for orthogonal
arrays of strength 2, and then proceed to improve it if X\ — 1 is not divisible
by s — 1. Let

A—1=a(s— 1)+ b, 0=b<s—1, a=0.
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Therefore

(3.6)

2
AW =1 s adat b
s—1 s—1

Suppose there exists an array with & = As + X 4+ a + 1. Then
k—1=sA+a) +0b+ 1.

The integer z is at our disposal. Let us choose £ = X\ 4+ a;then a = b 4 1,
sothat 0 < a < s.
From (3.5a) we have

D =3s(s— 1N+ a) + ala + 1) > 0;
so that

a(s — a)

D > 0.

Hence from (3.4) and (3.6)

b
s—1>1’

which is a contradiction. Hence, the value k = As 4+ X\ 4 a + 1 is inadmissible,
and so are all higher values. This proves the inequality of Plackett and Burman.

TrEOREM 1A. For any orthogonal array (\s% k, s, 2) of strength 2, the number
of constrainis k satisfies the inequality

A — 1
< |2 .
k“[s—l]
Consider now the case when A — 1 is not divisible by s — 1,sothat 0 < b <
s — 1. Let

Ek=Xs+N+a—n, b>mnz=0.
Therefore
k—1=sAN+a)+b—n
Choosing z as before, we now have
0<a=b—-—n<s-—1
Therefore
(@4 1)(s—1—a)>0.
Hence from (3.4) and (3.5b)
als — @)

A — 1
s—1 >k_‘n(s—l)’
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or
b S _n+(b—n)(s—b+n).
s—1 s—1
Therefore
(3.7) b—-—n)0b+1—-mn)—sb—2n) >0.

Hence if n is any integer (b > n = 0) for which the relation (3.7) is contra-
dicted then the value £ = As + X\ 4+ a — n and all higher values are impossible.
The first term in (3.7) is never negative, so that for n > b/2, this relation will
never be contradicted. Hence we may drop the restriction b > n. The quadratic
equation obtained by replacing the inequality by equality in (3.7) has one posi-
tive and one negative root, since the product of the roots is —b(s — 1 — b) and
0 < b < s — 1. The positive root may be written as

_ Vit —1=b - (@—2—1
2 .

(3.8) 0

The largest value of n which contradicts (3.6) is [6]. Hence we may state the
following theorem.

THEOREM 1B. IfA — 1 = a(s — 1) + b,0 < b < s — 1, then for the orthogonal
array (N, k, s, 2) of strength 2, the number of constraints k satisfies the inequality

(3.9) k< [)‘;2_— 11] —[6] -1,

where 0 s the positive number given by (3.8).

4. Upper bound for the number of constraints for orthogonal arrays of strength
3. Consider an array of strength 3, and let n; denote the number of columns
(other than the first) which have ¢ coincidences with the first column. From
(3.0a) and (3.0b)

(4.0a) é ni = A’ — 1,

(4.0b) g in; = k(\s* — 1),

(4.0¢) Z:j i — Dni = k(k — 1)(As — 1),

(4.0d) };z(z — DG — 2ni = k(k — Dk — 2)(\ — 1).

If x is any positive integer then

k

(4.1) f@) =26 —1—2)G — 2 — )n; = 0;

=
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whence from (4.0) we get
flx) =kt — 1)k — 2)A — 1) — 2zk(k — 1)(As — 1)

(4.2)

+ kz(z + 1)(As2 — 1) = 0.
Since & = 1, we have .
(4.3) z =D& =2 20— 1) + 26+ 1)

k= D& — 2) —2x(k — 1)s + z(z + 1)s*’

which is the same as (3.3) with & — 1 instead of k. Hence reasoning as before we

can prove the following theorems.
TuroreM 2A. For any orthogonal array (\s’, k, s, 3) of strength 3, the number
of constrainis k satisfies the inequality

4.4) k< [)‘82 = 1] L

s—1
TaeoreM 2B. IfA — 1 = a(s — 1) + b,0 < b < s — 1, then for the orthogonal
array (s, k, s, 3) of strength 3, the number of constraints k satisfies the inequality

4.5) k< ["f_‘f] — 16,

where 8 is the posilive number given by (3.8).

Theorem 2A is the same as the Rao inequality (2.4) and Theorem 2B improves
it for the case when A — 1 is not divisible by s — 1.

We shall now show that when X — 1 is divisible by s — 1, we can still improve
the inequality of Theorem 2A, except in certain special cases. In fact we can
state the following theorem.

Taeorem 2C. For any orthogonal array (\s’, k, s, 3) of strength 8, if A — 1 =
a(s — 1), and (s — 1)°(s — 2) is not divisible by as + 2 then the number of con-
straints k satisfies the tnequality

(4.6) k< [“2 — l:l -1

s—1

Now [(\s® — 1)/(s — 1)] = as’ + s + 1. If possible let k = as’ + s + 1. Choose
z = as. Then it is easy to verify from (4.2) that f(x) = 0. Hence

k

> it —1—as)i —2 — as)n; = 0.

=0

Since n; = 0, it follows that n; must vanish for all values of 7 except ¢ = 0, as +

1, as + 2. From (4.0b) and (4.0c) we get
(as + 1D)ngssa + (as 4 2)nge42 = k(as® — as® + s* — 1),

aSNass1 + (@S + 2)asys = ks(as® — as + s — 1).
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Solving we get
Nas41 = ]{)(8 - 1)7

n =lcs(as2——2as+a—l—s——1)
ast? as + 2

(s = 1)°(s — 2
as + 2 :

Since 74,42 must be integral, we arrive at a contradiction if (s — 1)’(s — 2)
is not divisible by as -+ 2. Hence in this case k < as® + s.

Consider the special case A = s. Then a = 1. If (s — 1)*(s — 2)/(s + 2) is
integral, then 36 must be divisible by s + 2. We can therefore state the following
corollary to Theorem 2C.

CoROLLARY. For the orthogonal array (s, k, 5 3) if 36 1s not divisible by s + 2,
then the number of constraints k cannot exceed s° + s.

=k(s— 1% —s(s—1)(s—2) +

6. The method of differences for constructing orthogonal arrays of strength 2.
The method of differences has been elsewhere used [11] for constructing incom-
plete block designs. Here we shall use it to construct orthogonal arrays
of strength 2.

Let X = ofB. An orthogonal array (\s’, k, s, 2) of strength 2 is said to be B-re-
solvable if it is the juxtaposition of g = as different arrays (Bs, k, s, 1) of index
B8 and strength 1. A 1l-resolvable array is said to be completely resolvable.
For example, the array (18, 6, 3, 2), obtained from (2.0) by deleting the last
row is completely resolvable.

If A = of and the orthogonal array (\s®, k, s, 2) is B-resolvable, then we can
add at least one more row and get an orthogonal array of k& + 1 constraints. In
the new row we have to put the first element of 2 in the columns belonging to
the first component array, the second element of = in the columns belonging to
the next component and so on. As will be seen later under appropriate circum-
stances, it may be possible to add more than one row without destroying the
orthogonality of the array.

TueoreM 3. Let M be a module (additive group) consisting of s elements, e ,

e, , es_1. Suppose it is possible to find a scheme of r rows, with elements be-
longing to M

G Gz *** Qin
(5.0) Go G =0 Gon

Ar1 Grg ¢+ * Orp

such that among the differences of the corresponding elements of any two rows, each
element of M occurs exactly N times (n = Ns) ; then the method of constructing a com-
pletely resolvable orthogonal array (%, 7, s, 2) of strength 2 is as follows: Write
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down the addition table of M. Then replace each element in the scheme by the row
of the addition table correspondmg to the element (using only the suffixes if the set
2 s taken as 0, 1, , 8 — 1). Thas gives the completely resolvable array (\s*, r,
s, 2). A new row can be added to obtain an array ', r + 1, s, 2) of r + 1 con-
straints. .

Before proceeding to a formal proof we shall illustrate the use of the theorem,
by constructing the orthogonal array (18, 7, 3, 2). For M we take the Galois
field GF (3), whose elements are residue classes (mod 3). Let ¢ = 0, &1 = 1,

= 2. The addition table of M is

€ €1 €

() € €1 €

(5.1)

é1 €1 €2 €
€2 e € €
It is not difficult to construct by trial a six rowed scheme

€ € € € € €
€ € €1 € € €
€ €1 € €2 €2 €1
€ €2 €2 € €1 €61
€ €1 62 €1 € €2
€y €2 €1 €1 €2 €

(5.2)

where among the differences of the corresponding elements in any two rows
each of the three elements ¢, , e; , €2 occurs twice. In order to convert the scheme
(5.2) into the completely resolvable orthogonal array (18, 6, 3, 2), we replace
each element of M by the suffixes in the corresponding row of the addition table

(5.1). Thus
e—0, 1, 2,
ee— 1,2 0,
e— 2,0, 1.

We thus obtain the first six rows of the array (2.0) given in the Introduction.
Finally to obtain the array (18, 7, 8, 2) we add a new row consisting of six
zeros (occupying the columns of the first two groups) followed by six ones, fol-
lowed by six twos. It should be noted that from Theorem 1B, 7 is the maximum
possible number of constraints for an array of size 18 and strength 2 with 3 levels.
We shall now proceed to a formal proof of Theorem 3. The s* 2 X 1 vectors
whose components are elements of M can be divided into s classes, each class

corresponding to one element of M. If e; — ¢; = ¢ then( ) belongs to the

. class corresponding to e, . Now in the addition table of M the difference of the
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corresponding elements of two different rows remains constant so that the vec-
tors formed from the rows corresponding to e; and e; consist of all vectors of the
class corresponding to e; . Since in our scheme among the differences of corre-
sponding elements of any two rows, each element of M occurs just A times, when
our scheme is expanded and each’ element replaced by the corresponding row
of the addition table, every vector will occur N times. (Replacing the elements
by the corresponding suffixes will change the set = from M to the set 0, 1, 2,
cee s — 1)

6. Construction of a completely resolvable array (As’, As, s, 2) of strength 2
and As constraints, when the index A and the number of levels s are both powers
of a prime p. Let A = p*, s = p’. Consider the Galois field GF(p“™). The ele-
ments of the field can be expressed either as powers z* of a primitive element
x(? = 0,1, -+, p“* — 1) together with the element zero, or as polynomials of
degree u 4+ v — 1 with coefficient from GF(p), the field of residue classes (mod p).
(For a brief exposition of these properties of Galois fields see [11] and [12].) To
add two elements we use the polynomial form adding the coefficients (mod p),
and to multiply we use the power form remembering the relation

pu+v

(6.0) z = z.

For example if p = 2, u = 1, v = 2, we consider the Galois field GF(2%), whose
elements may be exhibited (using the minimum function z* 4+ z* 4+ 1) as

a0=0=0

a; =1

I
8]

a = =2z

ag=z+1=2a,
(6.1) . .

ag =T =,

a5=x2+1=x3,

a6=x2+x=x,

I
8
()
+
8
+
ot
I
8
S

ay

We have ordered the elements of the field in what may be called the lexico-
graphic order, that is, if a; = axx® + @@ + a, then the integer ¢ is expressed as
a1 in the scale of numeration with radix 2. The same is done for the general
case GF (p"™). If

(6.2) 0= Ot e Far Fa s Faz +oa,

then 7 = a,—; « - - @10 In the scale of numeration radix p, where n = u 4+ .
Consider the sub-class M of the elements of GF (p“™) for which the coefficients
‘of £” and higher powers of « are zero, when the element is expressed in the poly-
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nomial form. In our example the sub-class M consists of the elements ay, a1,
oy, az . In general M will consist of the first p° elements of GF(p“*") when they
are arranged in the lexicographic order. We now establish a correspondence
between the elements of the field, and the elements of M in the following manner:
The element a; of GF(p“*?) giveh by (6.2) corresponds to the element

(6.3) @ = st + - + aw + a

of M, the coefficients of 2°~* and lower powers of  for a; being the same as the
coefficients of the corresponding powers of z in «; . It is clear that «; is uniquely
determined by «; , and that

J = ¢ (mod p"), 0=j<p.

Conversely to each a; of M there correspond p* elements of GF (p“**), since if

a; is given by (6.3) then for a; the coefficients a,—1, - -+ , @, are arbitrary each
taking p possible values. It should be noticed that M is a direct factor module
in GF(p“**) and that the correspondence used by us is a projection.

In the example under consideration the correspondence between the elements
of GF(2% and M is given by

g, Qg —> o,

g, 01 — o1,

(6.4)

ag, 0 —> Qg,
a7, 03 —™> Qg .

If we write down the rows of the multiplication table of GF(p*“*) and then
replace each element by the corresponding element in M, we get a p“* rowed
scheme which can be shown to satisfy the conditions of Theorem 3. If we take
the difference of the corresponding elements in any two rows of the multiplica-
tion table, then every element of GF(p“*) occurs exactly once. Also if the ele-
ments a; , o; of the field correspond to the elements of «;, a;; of M, then the
element a; — a; of the field corresponds to the element a; — a;. of M. This
shows that in the scheme we have obtained each element of M occurs exactly
N = p“ times, among the differences of the corresponding elements of any two
rows. It follows from Theorem 3, that if each element of the scheme is now
replaced by the corresponding row of the addition table of M (retaining only
the suffixes) we get the completely resolvable array (As”, \s, 5, 2) where A = p",
s =7

For example when p = 2, u = 1, v = 2, we have to write down the rows of
the multiplication table of GF(2%). This can be done by using the identifications
given in (6.1), remembering that z° = x. We thus get
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Oy Gy Qp Qp Qp ¢y Gy Qp
Qp 01 Qg Qg 04 O Qg O
o) Qg Q4 Qg O Q7 Q) Q3
(6.5) Oy OlgaQg Ol Ol Qg O7 Oy
Op Q4 O 0 Q7 g O O
oy g Q7 O O3 g (g4 QA
Oy g 1 Q7 Q2 04 3 Qp
Qp 7 Q3 Q4 Qg O] O (g,

Using the correspondence (6.4) the difference scheme is given by

o) Qo Qp CQp o g o Qo
oy O Qg O3 Cp 1 Qg Q3
Qp Oy O Oy ] O3 1 a3 °
(66) Qy a3 Oy 01 Q1 Oy 3 O
Q) Qp 1 1 Q3 O3 Qg Qg
Qp Q1 O3 Oy Q3 Oy Oy
Qp Qg Q1 O3 Ay Oy Qg Qg
Qpy 03 3 Oy Qg 1 1 (g W

To obtain the completely resolvable array (32, 8, 4, 2) we replace the o’s in
(6.6) by the suffixes in the addition table of M. These replacements are

oy — 0, ]., 2, 3,
ay — 1, 0, 3, 2,
6.7) @w— 2301,
o3 — 3, 2, l, 0.

Finally the orthogonal array (32, 9, 4, 2) can be obtained by adding a final
row consisting successively of 8 zeros, 8 ones, 8 twos and 8 threes. The com-
pleted array is

01230123012301230123012301230123
01231032230132100123103223013210
01232301012323011032321010323210
01233210230110321032230132100123
69) 01230123103210323210321023012301
01231032321023013210230101231032
01232301103232102301012332101032
01233210321001232301103210322301
00000000111111112222222233333333.

It should be noted that 9 is the maximum possible number of constraints for
an orthogonal array of size 32 and strength 2 with 4 levels (cf. Theorem 1B).

7. Adjunction of new rows to the completely resolvable array s, 2s, s, 2),
"where & = p“, s = p’ and p is a prime. As already explained we can add at
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least one more row to the array without destroying its orthogonality giving As +
1 constraints in all. Let

= cv =+ d, c=0, 0=d<w.

If ¢ = 0, we stop after one row has been added. But if ¢ > 0 we shall show that
we can do better. Now u = ». Let us denote by (4,) the original completely
resolvable array (As’, \s, s, 2). Using the same construction as for (4,), we can
obtain another completely resolvable array (A\is%, Mis, s, 2) where \; = p“ ", Let
us call this array (A:). It should be noticed that the number of columns in (A4;)
is equal to the number of arrays of strength unity composing (A,) since \;s* =
\s = p**". We now inflate (4,) by repeating each column s times, thus arriving
at the array (A7), which has the same number of columns as (4,). We now ad-
join (A7) to (4,) placing the former just below (4,). The result is that below any
component of (4,) we get the same column of (4;) repeated s times. In view of
the resolvability property of (A4,) it is clear that if we choose a particular row
of (4,) and a particular row of (A1) then every ordered pair occurs \ times.

Hence the whole array <j9) is of strength 2 and has As 4 ;s constraints.
1

Since A4, is completely resolvable, <j‘/’) is s-resolvable. If ¢ = 1, then \; < s,
1

we stop after adjoining a final row to <i9> consisting of As zeros followed by
1
As ones and so on, getting As + A\;s + 1 constraints in all.

On the other hand if ¢ > 1, we do not adjoin the final row as yet but construct

a completely resolvable array (\ss”, Nss, s, 2) where A, = p“ . Denote this array

by (4s). We next inflate (4s) to (45) by repeating each column s times and ad-
Ay

join it to (j?) arriving at the array | A1 | of strength 2 with As 4+ M\is + \gs con-
1 n
Ay

straints. If ¢ = 2 we finish the process by adding the final row but if ¢ > 2 we
continue on as before.

The whole process therefore leads to an orthogonal array of strength 2 in
which the number of constraints is given by

(7.0) ; Ns NS+ o0 FAs + 1, Ni = N/s'.

We can therefore state the following theorem.

THEOREM 4. Given s = p°, N\ = p" (where p is a prime) then we can construct
an orthogonal array (\s%, k, s, 2) of strength 2, in which the number of constraints k
18 given by

c+1
_ AT =) +1,

8¢ — Sc—l

(7.1) k

where ¢ = [u/v].
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8. The use of finite projective geometries in the construction of orthogonal

arrays.
TueoreM 5A. If we can find a matrixz C of k rows and r columns

.
cu C2 *** C1r

Ca Co2 *+*  Co

(8.0) C=
Ckt Ck2 *°*  Cpy

whose elements c;; belong to the Galois field GF(p"), and for which every partial ma-
trix obtained by taking t rows is of rank t, then we can construct an orthogonal array
(s, k, s, t), where s = p".

Proovr. Consider 7 X 1 column vectors £ whose coordinates belong to GF(p™).
Then there are s” different £. Form the matrix 4 whose s” columns are the & X 1
vectors Cf{. Then A is the required orthogonal array.

If A’isat X s submatrix of 4, and (" is the corresponding ¢ X r submatrix
of C, the columns & of A’ are C’¢, and since €’ is of rank ¢, each « is obtained
from s"* different £. Hence in A’ each possible ¢ X 1 column vector occurs with
the frequency N = s"', which shows that A is an orthogonal array of strength
¢t and index A.

The rows of the matrix C may be interpreted as the coordinates of a point
in a finite projective space PG(r — 1, p") such that no ¢ of the points are con-
joint. We thus get the following theorem:

TuroreM 5B. If we can find k points tn PG(r — 1, p™) so that no t are conjoint,
then we can construct an orthogonal array (s, k, s, t) for which X = s s = p".

It has been shown by Bose [7] that the maximum number of factors that it
is possible to accommodate in a symmetrical factorial experiment in which each
factor is at s = p" levels, and each block is of size s”, without confounding any
t-factor or lower order interaction, is given by the maximum number of points
that it is possible to chdose in the finite projective space PG(r — 1, p") so that
no ¢ of the chosen points are conjoint (a set of ¢ points are said to be conjoint
if they lie on a flat space of dimensions not greater than ¢ — 2). This number is
denoted by m.(r, s). It is clear from Theorem 5B that we can always construct
an orthogonal array (s", k, s, t), for which the number of constraints & < m; (r, s),
if s = p” where p is a prime. The value of m,(r, s) has been determined by Bose
in a number of important cases, and the corresponding set of points in which
no ¢ are conjoint has been obtained. These results are used in the next section
to construct some orthogonal arrays of strength 3.

9. Construction of some orthogonal arrays of strength 3.
(a) Consider the special case s = 2. In PG(r — 1, 2) consider the set of all
points, which do not lie on the (r — 2)-flat

(9.0) @+t -+ =0
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There are exactly 2"~* such points, namely the points in whose coordinates there
are an odd number of unities, and the rest zero. No three of these points are col-
linear since in PG(r — 1, 2) each line passes through exactly three points, and
one of these lying in the plane (9.0] is excluded from our set. Taking the coordi-
nates of these points for the rows of the matrix C of Theorem 5A, we can construct
the orthogonal array (2", 277, 2, 3) of strength 3 and 2"! constraints. Theorem
2A shows that this is the maximum possible number of constraints.

As an illustration consider the case » = 3. The four points of PG(2, 2) not
lying on the line ; + 2, + 5 = O are (1, 0, 0), (0, 1, 0), (0,0, 1), (1, 1, 1). Hence
the corresponding matrix C is

100
010
9.1) C = 00 1
111
The eight possible column vectors ¢ are
01000111
00101011
00011101
The columns of the required array (8, 4, 2, 3) are obtained by forming C% given

below.

01000111
00101011
02) 00011101
01110001.
Similarly the array (16, 8, 2, 3) is given by (9.3)
0100011100001 111
0010010011010111
0001001010111011
93 0000100101111101
(9.3) 0011111100010001
0101110011001001
0110101010100101
011100010110001 1.
(b) Let s = 2". In the finite projective plane PG(2, 2") take the non-degen-

erate conic
(9.4) axi + brs + cxh + feaws + g3 + hxixe = 0,
where

A = af’ + by’ + ch® + fgh #= 0.
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Of course no three of the points Py, P,, -+, P,y on the conic (9.4) are col-
linear since no line can cut it in more than two points. Through any
point, (2 , x5 , x3) on the conic there pass s + 1 lines, of which s join it to the re-
maining points of the conic, while there is one line which does not meet the
conic in any point other than (x;, z5, #3). This may be called the tangent at
(1, x5, x3). Its equation is

(9.5) f(x:’,'xz -+ xéxa) + g(x{x;; + xéﬂfl) + h(x;xl + xiﬂfz) = 0.

It is a peculiar feature of the finite projective geometry, based on a field of
characteristic 2, that every tangent to a given non-degenerate conic passes
through the same point. For example in the present case the arbitrary tangent
(9.5), passes through the point P, with coordinates (f, g, ). The s + 1 tangents
to (9.4) account for all the lines which pass through P, . Hence no line through
P, can meet the conic in more than one point. Thus Py, Py, Py, -+, Poy1is a
set of s 4 2 points, such that no three are collinear. Hence from Theorem 5B
we can use the coordinates of these points to construct an orthogonal array
(s, s + 2, s, 3) where s = 2",

Similarly when s = p" where p is an odd prime we could construct the array
(%, s + 1, s, 3) by using the coordinates of the s 4 1 points on a non-degenerate
conic of PG(2, p).

One of the authors, Bush [10], has shown that for an orthogonal array
(s', k, s, t) of index unity and strength £, the number of constraints % satisfies
the inequality

(9.6a) E=s+t—1 when s is even,
(9.6b) Ek=s+t—2 when s is odd.

Using this result for { = 3, we find that the number of constraints obtained
by us for arrays of size s°, s levels and strength 3, cannot be improved.

(c) Let ¢(x, y) = axi + 2hxs + bz be a homogeneous quadratic with co-
efficients belonging to GF(p") and irreducible in it. If s = p", it can be shown
[7] that the quadratic surface

2 2
axi + 2hxixs + bxs = 25704

contains exactly s* 4+ 1 points no three of which are collinear. We therefore get
a method of constructing an orthogonal array (s*, k, s, 3) with & = s* + 1 con-
straints, when s is a prime or a prime power. On the other hand, Theorem 2C
gives an upper bound s* + s for & when s 5% 2, 4, 7 or 16 and an upper bound
for k for these exceptional values of s is given as s + s 4+ 2 by Theorem 2A.
Thus there remains a gap between the number of constraints which might be
attainable, and the number of constraints actually attained except for the case
s = 2, for which we have already obtained an array (s, 8, 2, 3) by the method
(a). It is not known whether this gap can be bridged. It has been shown [7] that
when p is odd we cannot get more than s* 4+ 1 points in PG(3, p™) no three of
which are collinear. The same has been proved by Seiden [13] for the case s = 2%
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Hence for these cases the geometrical method cannot lead to more than s* 4 1
constraints, but there remains the possibility that some other combinatorial
procedure may lead to a larger number of constraints.

As example consider the case s = 3. The coordinates of the 10 points lying
on the quadric z; + 3 = zs2s of PG(3, 3) are (0, 0, 1, 0), (0, 0,0, 1), (0, 1, 1, 1),
0,1,2,2), (1,0,1,1), (1,0,2,2), (1, 1,1,2), (1, 1,2,1), (1, 2, 1, 2), (1, 2, 2, 1).
Using these as the rows of the matrix C, we get the orthogonal array (81, 10,
3, 3), and 10 is the maximum number of constraints obtainable by the geometri-
cal methods. Theorem 2C gives & < 12. We do not know whether we can get 11
or 12 constraints in any other way.

REFERENCES

[1] R. L. PraceerT AND J. P. BurMAN, “The design of optimum multifactorial experi-
ments,’”’ Biometrika, Vol. 33 (1943-1946), pp. 305-325.

[2] R. C. Bosg, ““A note on the resolvability of balanced incomplete block designs,”’
Sankhya, Vol. 6 (1942), pp. 105-110.

[8] R. C. Bosk anp K. R. NaIr, ‘‘Partially balanced incomplete block designs,’”” Sankhya,
Vol. 4 (1939), pp. 337-373.

[4] C. R. Rao, “Hypercubes of strength ‘d’ leading to confounded designs in factorial
experiments,” Bull. Calcutta Math. Soc., Vol. 38 (1946), pp. 67-78.

[5] C. R. Rao, “Factorial experiments derivable from combinatorial arrangements of
arrays,’’ Jour. Royal Stat. Soc., Suppl., Vol. 9 (1947), pp. 128-139.

[6] R.C.BosEt anp K. KisHEN, ““On the problem of confounding in the general symmetrical
factorial design,’” Sankhya, Vol. 5 (1940), pp. 21-36.

[71 R. C. Bosg, “Mathematical theory of symmetrical factorial designs,’”’ Sankhya, Vol.
8 (1947), pp. 107-166.

[8] K. A. BusH, “Orthogonal Arrays,’”’ unpublished thesis, University of North Carolina

(1950).
[9] C.R. Rao, “On a class of arrangements,’’ Edinburgh Math Soc., Vol. 8 (1949), pp. 119-
125.
[10] K. A. Busg, “Orthogonal arrays of index unity,”’ Annals of Math Stat., Vol. 23 (1952),
pp. 426-434.

{11] R. C. Bosg, ““On the construction of balanced incomplete block designs,”” Annals of
Eugenics, Vol. 9 (1939), pp. 353-399.

[12] R. C. Bosg, “On the application of the properties of Galois fields to the construction
of hyper Graeco-Latin squares,” Sankhyd, Vol. 3 (1938), pp. 323-338.

[13] E. SE1DEN, ‘A theorem in finite projective geometry and an application to statistics,”
Proc. Amer. Math Soc., Vol. 1 (1950), pp. 282-286.



