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Table I gives approximate 90 per cent probability limits for estimates of =
based on 101 falls by the three methods considered. For estimates based on the
average number of intersections the limits are given by = =+ 1.645 o3. For the
estimate based on variation in the number of intersections, the limits are the
estimates corresponding to V = (1/1.28)(1 + 2/x= — 16/7") = .0121 and
V = 1.24(1 + 2/ — 16/2") = .0192 where 1/1.28 and 1.24 are the 5th and
95th percentiles of the distribution of Fie,« respectively.

TABLE I
Estimates of = based on 101 falls; 90 % probability limits

Buffon needle case l

L= 1o | 2.75 to 3.53
Cartesian grid system l

Mean number of intersections............... ' 3.09 to 3.19

Variation in number of intersections. ........ 3.138 to 3.146

The estimate based on variation in the number of intersections is relatively
insensitive to counting and measurement errors. Thus a 10 per cent error in
measuring L will produce only 1{ of 1 per cent error in the estimate of . A similar
error in measuring L will produce a 10 per cent error in the estimate of = by the
other methods. It should be remarked that the situation here is unusual in that
the sample variance provides a much better estimate of the true mean number
of intersectionsthan does the sample mean. This is in contrast with the case of the
Poisson distribution for which the sample mean provides the best estimate of
the population variance.
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A HIGHER ORDER COMPLETE CLASS THEOREM!

By LioneL WEISS
University of Virginia and Cornell University
1. Introduction. The purpose of this note is to show that one can prove com-

plete class theorems in which the risk for each possible distribution is not only a
scalar, as is usual in the Wald theory, but actually a vector with as many com-

Received 5/7/53.
1 Research under contract with the Office of Naval Research.

_ . b
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%j:q

The Annals of Mathematical Statistics. RIKOIRS ®
Www.jstor.org



678 LIONEL WEISS

ponents as desired. The proof is an almost trivial reformulation of the proof of
Theorem 1 in [1]. Other known results may be extended in a similar manner.
An example of the application of the theorem will be found in Section 3. This
is a coraplete class theorem which requires no assignment of a loss (weight)
function, but only the classification of decisions into two classes, favorable and
unfavorable, for each distribution function. This result may be satisfactory to
those who maintain that in some or many situations the assignment of a loss
funetion is difficult.

2. Complete class theorems when the risk is a vector. Let « be the generic
point of a Euclidean space Z (the extension of the results of this paper to general
abstract spaces is trivial). Fi(z), Folz), - -+, Fn(x) are m (>1) given cumulative
probability distributions on Z. The statistician is presented with an observation
on the chance variable X which is distributed in Z according to an unknown one

of F,, -+, F, . On the basis of this observation he has to make one of L de-
cisions, say di, - - -, d. . Let s be a positive integer and W, (z) (¢ =1, -- -, m;
j=1,---,L;k =1, ---,s) be measurable functions of z such that

[ Wit 1P < .

A randomized decision function, hereafter called “test” for short, and generi-
cally designated by n(2), is defined as follows: n(x) = [m(x), - -+, n.(zx)], where

(a) n(x) is defined for all z,

(b) 0= 77](50) fOI‘j =1, )L’

(¢) D i1 m;(x) = 1 identically in z,

(d) 9;(x) is measurable forj = 1, ---, L.

Let i = fz Ly @ Win(@) dF; and r* = (ra), (= 1, -+, ms b = 1,

-, 8). Thus to each test n(x) there corresponds the sth order risk point r°.
The test T with sth order risk point 7° will be said to be uniformly better (s)
than the test 77 with sth order risk point " = (ri) if 74 < ri for every 7 and k,
with the inequality sign holding for at least one pair (z, k). A test 7" will be called
admissible (s) if there exists no test uniformly better (s) than 7. A class C of
tests will be called complete (s) if, for any test 7’ not in C, there exists a test T
in C which is uniformly better (s) than 7”. A complete (s) class will be called
minimal if no proper subeclass of it is complete (s).

Wald’s proof given in [1] obviously holds and we may state: The class of all
admissible (s) tests is a minimal complete (s) class.

Any set £ = (¢g), @ = 1,---,m; k = 1, ---, s) of nonnegative numbers
which add to unity (a convenient normalization) will be called an a priori dis-
tribution (s). A Bayes solution (s) with respect to £ is a test 7™ which minimizes

(1) }_:, Euri(T)

with respect to all tests 7.
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TraEorREM. Every admissible (s) test is a Bayes solution (s) with respect {o some
a priori distribution (s). Hence the class of Bayes solutions (s) s complete (s).

Proor. Let {Gu(z)} G =1, -+ ,m;k =1, ---, s) be m-s distribution func-
tions on Z, and let Gix(x) = Fi(zx) for every ¢ and k. Suppose the statistician has
to make one of a set of L decisions which we may call dy, - -+, d, . Let W ()
be the loss incurred when x is the observed point, G:.(x) is the distribution func-
tion of X, and the decision d; is made. Let 7"*(n) be the first order risk point of
this problem for the decision function 5(z). Then 7°(y) = *(n). The desired
result now follows from Theorem 1 of [1], for the requirement made there that
the F'; are distinct is never used.

Let f; be the density function of F; with respect to a measure u with respect
to which all F; are absolutely continuous. There is always such a measure. To
construct an sth order Bayes solution with respect to £ = (¢x) (¢ = 1, --- , m;
k =1,---,s) one may proceed as follows: n;(x) = Oforallj (j = 1,---, L)
for which > 7 D iy £afi(x)Wi(x) is not a minimum with respect to j; u,(x)
is defined arbitrarily between zero and one, inclusive, for all other j, provided
only that every component of the resulting n(z) is measurable and the sum is
always one.

Other results found in [1] and elsewhere may be extended in a manner similar
to that of the present theorem.

It is also obvious that one may prove similar results with the inequality signs
reversed, by using anti-Bayes solutions (s), that is, tests which maximize (1)
instead of minimizing it.

Using the ideas of [2] the above results may easily be extended to the case
where the number of distributions and/or decisions is infinite and where the
observations are taken sequentially, to obtain e-complete (s) theorems.

3. Application to controlling probabilities of making the various decisions.
P(i,7| T) will denote the probability of making decision d; when F; is actually
the distribution and the test T is employed. In other respects the notation of
Section 2 is used. For each 7, we suppose that there are certain decisions which are
favorable (i.e., we prefer to make them when F; is the distribution), and the
others are unfavorable (we prefer not to make them when F; is the distribution).
We assume that for each ¢ there is at least one favorable and one unfavorable
decision. For our present purpose, s is equal to L, the number of decisions. For
given 7 and k, we define TV.;(x) as follows. If d; is favorable relative to F';,
Wiin(z) = 0if j = k, Wiu(x) = 1if j # k. If di is unfavorable relative to F,
W) = 1if j = k, Wi(x) = 0if j5 k. Then we have the following result.
Let T be any test which is not a Bayes solution (s). There is a Bayes solution
(s), T, such that for any ¢ (¢ = 1, --- , m) and any j such that d, is unfavorable
relative to F;, we have P(¢,7 | T") < P(¢, 7| T); while for any ¢ and any j’ such
that d; , is favorable relative to F;, we have P(i, j/ | T") = P{, j' | T). The
inequality sign holds in at least two of these relations, one in each set.
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4. Other applications. We mention two other applications of the results. If
there are s individuals with possibly different loss functions, W ;;(z) can denote
the loss suffered by individual k¥ when d; is made and F is true and « is observed.
Or different true situations may lead to the same distribution of the observable
chance variable, so that W,;(x) is the loss incurred under the kth true situation
leading to the distribution F;. The range of & may depend upon z, and all the
results hold.
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CORRECTION OF A PROOF*
By J. KieFER
Cornell University

In the proof of Theorem 3 of “On Wald’s Complete Class Theorems” (Ann.
Math. Stat., Vol. 24 (1953), pp. 70-75), the inequality appearing in the definition
of r2,m(£) should be altered to read r(¢, 8™) = r(¢, 8:) — ¢/2; the remainder of
the proof is then easily altered to give the desired result. Without the ¢/2, one
would still have to prove that the space D is large enough togive limm—, r2,m(£) <
. The author is indebted to Mr. Jerome Sacks for pointing out this fact.

* Received 7/11/53.
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1. On the Probability Function of the Quotient of Sample Ranges from a Rec-
tangular Distribution. LEo A. AroiaN, Hughes Aircraft and Development
Laboratories, Culver City.

In a recent paper Paul R. Rider (J. Amer. Stat. Assn., Vol. 46 (1951), pp. 502-507) has
derived the probability functicn of « = R,/R:, the quotient of the sample ranges of two
independent random samples from f(z) = 1/z for 0 < z < %, f(«) = 0 elsewhere, where
R, is the sample range in a sample of m and R is the sample range in a sample of # from
f(z). The power function of the test is derived, the tables are extended for the 5 per cent,
23 per cent, 1 per cent, and } per cent levels of significance. In case m and n large a Cornish-
Fisher expansion for the levels of significance is derived. The transformation w = % log. u
is found convenient and use is made of the moment generating function of w to find the



