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AN EXTENSION OF THE BUFFON NEEDLE PROBLEM
By NATHAN MANTEL

Biometrics Section, National Cancer Institute'
Bethesda, Maryland

1. Introduction. An empirical determination of the value of = can be made
from the relationship®

(1) E = 2L,Ly/(w4),

where E is the expected number of intersections of a group of line segments of
total length L; with a group of line segments of total length L., both groups
being distributed over an area A. This relationship applies under the following
conditions.

(i) The arrangement of the two groups of line segments on the area 4 must
be independent of each other, but the individual line segments of a group may
have a systematic arrangement relative to each other.

(ii) The arrangement of at least one of the two groups of line segments on
the area A must be at random. The randomness must be such that the proba-
bility of a specified point on a line segment falling into a sub-area of A4 is pro-
portional to its area and the segment may assume any angle relative to some
base line with equal probability.

Two applications of this relationship to the estimation of = are considered
below.

2. The Buffon needle problem using a parallel line system. Consider an area
A on which is superimposed a series of equally spaced parallel lines (without
loss of generality we shall take the common distance between them to be unity),
on which a straight line of length L £ 1 is allowed to fall at random. At each
fall the line must either intersect the series of parallel lines only once, or not at
all. Thus the expected number of intersections, E, is the probability, I°, of an
intersection occurring at a fall. And since for this system the total length of the
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parallel lines is A, (border effects would result in a total length different from
A, for areas with dimensions which are large relative to the distance between
parallel lines these border effects would be trivial.) P = 2L/x. Thus from an
empirical determination of the probability, P, can be made an empirical de-
termination,

2) # = 2L/P

This determination is subject to sampling variation. Taking into account that,
on the basis of N falls, the standard error of P is /P(I — P)/N it follows that,
asymptotically,

3) SE# = n\/(x — 2L)/2LN.

This formula indicates that more precise estimates of = can be made by
using a longer line relative to the spacing of the parallel lines.

Various empirical determinations of the value of = have been made and
published making use of the foregoing relationship, the experimental results
serving simultaneously as an empirical demonstration of the correctness of
Bernoulli’s theorem. Curiously enough, virtually all the results published have
been closer to the expected value than should be expected, with some signifi-
cantly too close. Apparently only those experiments which gave good results
have been published. However, one example in the literature gives patent
indication of having been terminated when the results obtained were good.
Thus Lazzerini’s experiment in 1901 with 3,408 falls provided an estimate of =
equal to 3.1415929, having an error of only 0.0000003. Terminating the experi-
ment one fall sooner or later would inevitably have lost half the decimal places
of accuracy.

3. The Cartesian grid system. Consider an area A on which are superimposed
two series of equally unit-spaced parallel lines, the two series being at right
angles to each other. The expected number of intersections with this system of
a straight line of length L falling at random is 4L/x for all values of L. The
estimate of 7 yielded by N falls with an empirical average of ¢ intersections per
fall is

(4) # = 4L/¢c
with standard error of estimate

720,
(5) SE# =~ NN

where o, is the standard deviation of the number of intersections at a fall. This
standard deviation can be evaluated either theoretically or empirically for any
value of L. :

The theoretical evaluation of o, for large L is of interest. Consider an L so
large (L > 1) that certain marginal effects can be disregarded. (These marginal
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effects arise from the actual location of the end of the line within the square in
which it falls, they would slightly increase the value of o- over what is shown
here, but would have no effect on E(c).) For any given angle 6, at which the line
falls, there would be L | sin 6 | vertical intersections and L | cos 6 | horizontal
intersections. Then the expected number of intersections is given by

~f2
(6) E(e) = 72; ,’ L(sin 6 + cos 8) d¢ = 4L/x.
Jo
The expected square of the number of intersections is given by
2 T[2 . 2
") E(d) = ~j L*(sin 6 + cos 0)* do = L* <1 +—>.
T Jo g
These yield
(8) o = B(&) — Bo) = I <1 +2- 1—?)
™ ™
and substituting in (5)
9) SE# = 7/ (x? + 2r — 16)/16N
for large L.

The quantity inside the square root sign is numerically equal to .0095/N.
This compares with the value for the quantity inside the square root sign for
(3) of .5708/N for L = 1 (the most efficient value of L for that situation) and
would indicate that more information about the value of = is yielded by a
single fall in this system (with large L) than by 60 falls in the parallel line
system with L = 1.

4. An alternative estimate. The preceding section has covered the estimation
of = from the average number of intersections per fall. Equation (8) would
suggest that an estimate can be made from the variation in number of inter-
sections from fall to fall. Let V = 43/L*, where &, is the sample standard devia-
tion of intersections per fall. Then equation (8) yields as an estimate of = the
solution to (1 — V)X* + 2X — 16 = 0,

—14+VIF 1601 = V)
1—7V :

(10) # =

How good are estimates so obtained? For any sample, V must lie between
0 (all falls give same number of intersections) and 14 (3 — 24/2) (half the
falls parallel or perpendicular to system, remainder at an angle w/4 or 3w/4;
that is, half the lines have the minimum number of intersections and half have
the maximum number). But corresponding to V = 0, # = 3.1231, and corre-
sponding to V = 14(3 — 24/2), # = 8.1752. This can be considered a dernonstra-
tion that = must lie between 3.1231 and 3.1752, and indicates that the procedure
wili give satisfactory estimates.
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Table I gives approximate 90 per cent probability limits for estimates of =
based on 101 falls by the three methods considered. For estimates based on the
average number of intersections the limits are given by = =+ 1.645 o%. For the
estimate based on variation in the number of intersections, the limits are the
estimates corresponding to V = (1/1.28)(1 + 2/= — 16/7°) = .0121 and
V = 1.24(1 + 2/ — 16/7") = .0192 where 1/1.28 and 1.24 are the 5th and
95th percentiles of the distribution of Fie,« respectively.

TABLE I
Estimates of = based on 101 falls; 90 % probability limits

Buffon needle case l

Lom Lo | 2.75 t0 3.53
Cartesian grid system l

Mean number of intersections............... ' 3.09 to 3.19

Variation in number of intersections. . ....... 3.138 to 3.146

The estimate based on variation in the number of intersections is relatively
insensitive to counting and measurement errors. Thus a 10 per cent error in
measuring L will produce only 1{ of 1 per cent error in the estimate of . A similar
error in measuring L will produce a 10 per cent error in the estimate of = by the
other methods. It should be remarked that the situation here is unusual in that
the sample variance provides a much better estimate of the true mean number
of intersectionsthan does the sample mean. This is in contrast with the case of the
Poisson distribution for which the sample mean provides the best estimate of
the population variance.
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1. Introduction. The purpose of this note is to show that one can prove com-

plete class theorems in which the risk for each possible distribution is not only a
scalar, as is usual in the Wald theory, but actually a vector with as many com-
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