AN OPTIMUM SLIPPAGE TEST FOR THE VARIANCES OF %
NORMAL DISTRIBUTIONS

By DonaLp R. Truax
Unaversity of Washington

1. Summary and introduction. In many practical problems, the experimenter
is faced with the task of deciding if the variability within several classes is uni-
form throughout the classes, or if not, which class exhibits the greatest amount
of variability. This type of problem arises when the data relate to several proc-
esses, to the same process at different times, to several different products, or to
the same products from different sources. If the variability is not uniform
throughout the classes, then misleading results would be obtained in comparing
the classes in other respects. If the experimenter expects the variability to be
uniform throughout the different classes, and if the variability is large in a par-
ticular class, he will consider the situation to be ‘“out of control” and take
measures to locate the source of the large variability.

The problem we will consider here is that of comparing the variances of &
populations, II; , Iy, --- , I, on the basis of n observations zi1, Zi2, * - , Tia
from the 7th population. We will assume that these observations are normally
and independently distributed with unknown mean m; and unknown standard
deviation o; for 2 = 1, 2, -+ -, k. Our problem is to find a statistical procedure
which will, on the basis of these observations, decide if all the populations have
equal variances, and if not, which has the largest variance. We would like the
procedure to be in some sense “optimum.” We will say that our procedure is
optimum if, subject to certain restrictions, it maximizes the probability of mak-
ing the correct decision. A similar problem dealing with the means of several
normal distributions has been studied by Paulson [1].

Let D, be the decision that all k£ variances are equal, and let D; be the decision
that D, is false and ¢ = max (o3, - -+, ot) forj = 1,2, - - - , k. Our problem now
is to find a statistical procedure for selecting one of these & + 1 decisions.

Let z,, denote the ath observation from the 7th population, and let &, =
> r i tia/n. Let s = D r 1(zia — %)°/(n — 1) denote the unbiased estimate of
the variance of the ith populatlon We will say that II; has “slipped to the right”
ifol = =d%y =i = - = orand o’ = N’} where |\ | > 1. In our first
formulation of the problem we will want to find a statistical procedure which
will select one of the & + 1 decisions Dy, D;, ---, D; so that (a) when all the
variances are equal, Dy should be selected with probability 1 — «, where « is a
small positive number fixed prior to the experiment.

Since the class of possible decision procedures seems to be too large to admit
an optimum solution we will impose the following restrictions which seem to be
reasonable: (b) the procedure should be symmetric, that is, the probablhty of
selecting D; when o} = -+ = ¢%y = 0%y = -+ = op and o> = \o} should be
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670 DONALD R. TRUAX

the same for all ¢; (c) the procedure should be invariant if all the observations
are multiplied by the same positive constant; and (d) the procedure should be
invariant if some constant b; is added to all the observations in the ¢th popula-
tion. We will now reformulate the problem as follows. We want a statistical pro-
cedure for selecting one of the k& + 1 decisions Dy, D1, - -+, D; which, subject
to conditions (a), (b), (c), and (d) will maximize the probability of making the
correct decision when one of the populations has slipped to the right. We shall
prove that the optimum solution is the following:

k
if sﬁl/z st > Ly select Dy ;

=1

k
if s% Z §% £ Lq select Dy,
=1
where M denotes the population yielding the largest sample variance. L. is a
constant whose value is determined by restriction (a). This statistic has been
suggested, on intuitive grounds, by Cochran [2], and a good tabulation of L,
for several values of «, n, and k is available [3].

2. Derivation of the optimum procedure. Since (1, %2, . .., &k, S, S5, n.,Sh)

constitute a set of sufficient statistics for the unknown parameters (m; , mg, -+,
2 2 2 . . . . .
mi, 01, 05, -+, or) there will be no loss in considering only procedures which
depend on this set of statistics. We can also show that any allowable procedure
will depend only on (sf, s3, - -+, si). Let 6(Z1, -+ -, &, s, -+ ,si) denote any
allowable decision procedure. If 6 depends on one or more of the Z;, then for
N _/ _’ _" " ar=! =/ 2

some pair of sets (Z1 , -+, Tx), and (&, -+ , &) wehave 6(Ty, -+ , T, 81, 7,
) 5 6(zy, -+, @k, st , -+, st). Now we define b; = &7 — &%, and we have the

following:
BT, o T, sty e, 80 O A by, e, B i, sty e, S0

This, however, contradicts restriction (d) which states that any allowable pro-
cedure is invariant if a constant b; is added to each observation in the ¢th popula-
tion. Also, because of restriction (c), any allowable procedure will depend only
on the k — 1 statistics s{/sp, - -+, St—1/st . Let ua = su/sifora=1,2---,
k— 1and ve = o2/cifora = 1,2 -+, k — 1. The joint probability density of
Uy, Uz, -+ , g will depend on the parameters vy, vz, - -+, te—1. We will let
Do denote the decision that v, =9, = -+ =y =land D, (i = 1,2,---,k — 1)
denote the decision that v; = vy = -+ = v;iqg = vy = -+ = 1 = 1 and
v; = A\?, and let D, be the decision that v; = vs = -+ = 91 = 1/A\% Since any
allowable procedure for selecting one of the set (Do, D1, - - -, D;) will be a func-
tion of (uy, us, -+ , Uk—1), it can be transformed into a procedure for selecting
one of the set (Dy, Dy, ---, D) by making D; correspond to D; for ¢ = 0,
1, ---, k. Because of (a) the probability that any transformed procedure will
select Do when v; = v = -+ = 9,1 = 1 must be 1 — a. Also, the probability
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that any procedure will select D; when o® = of = -+ = 041 = ofp1 = -+ =
ot and o7 = Mo’ must be equal to the probability that the transformed pro-
cedure will select D, when D; is true. This probability must be the same for all <.

The proof that the indicated solution is the optimum solution consists mainly
of showing that there exists a set of nonzero a priori probabilities py, p1, -,
pr. which are functions of A, so that when the decision procedure is transformed
into a procedure for selecting one of the set (Do, Dy, -- -, Dy) it will maximize
the probability of making the correct decision among the set (Do, Dy, -+, Dy)
when p; is the a priori probability that D; is true. This will be equivalent to
showing that the procedure for selecting one of the set (Do, Dy, ---, Dy)is a
Bayes solution with respect to po, p1, - -+ , P when we introduce the loss func-
tion W;; = 1if ¢ &£ jand W;; = 0if ¢ = j, where W, represents the loss in mak-
ing decision D; when D; is true. Assuming that we have shown this, it follows
that the indicated solution is the optimum solution. For suppose there exists
another allowable procedure §* which for some A has a greater probability of
making the correct decision when some population has slipped to the right.
Then 6*, which must be a function of u;, uz, - - -, us_1 when transformed into
a procedure for selecting one of the set (Do, Dy, - -+, D;), will have a greater
probability than the indicated solution of making the correct decision when D;
is true (¢ = 1, 2, ---, k) and will have, because of (a), the same probability
when Dj is true. This contradicts the fact that the indicated solution is a Bayes
solution relative to the nonzero probabilities po(A\), pi(N), - -+, pe(N) since its
Bayes risk is larger than that of §*.

Since our procedure will depend on u; , u2, - -+ , us_1, we will need to find the
joint probability density of these random variables. It is easy to verify that this
is given by

r [k(n — 1)_1
_ 2 . [ s - - - )0
gur, Uy, -+ ) = n— 1\ = k(n—1)/2"
[F < >:l [7)11)2 e 1)1‘;—1](7._-1)/2 I:Z = -+ I‘I
2 a=1 Vg -
Letg: = glur,uz, -+ + U | D;) be the joint probability density of uy , uz, + - - ,
u,—1 when D; is true. Let po, p1, -+ -, px be a set of a priori probabilities, where

p: is the a priori probability that D; is true. The decision procedure which maxi-
mizes the probability of making the correct decision is the Bayes solution with

respect to po, P1, - -+, pr and this is known to be given by the rule: for each 7,
(7 =0,1,---,k), select D; for all points in the u;, us, - - - , up—1 space where
P;9; = max(Pogo , Pig1, * -, Pegr) [4]. Consider the special a priori distribution
po= (1—kp),pr=p: = - = pr = p. We can then calculate for each j the

region where D; is selected.
As an example we will compute the region where D, is selected. We must have
g > g;forj =23, -k, and pg; > (1 — kp)gs .
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Region where g1 > ¢; .

[ uz -+ - - wpl ()12

g =0C () @D ’:Z: Ug — (1 — -—) + l:lk("nl)l2
[urug - - - Up—1] =8z

gi = c ()\2)(75—1)/2 _ii:l Ue — Uj <1 - %—2> + l]k(”_l)lz

where

e[t 2]/l ()]

The region where g1 > g¢; is given by

k—1 1 k (n—1) /2
Bemno-) ]
a=] Xz

k-1 k(n—1)/2
[Eeu(-2) ¢

a=1

or equivalently w3 > ujforj =2,3,---,k — 1.
Region where g. > gi .

[ua U« -+ g2

C (k—1) (n—1) /2 k—1 k(n—1)/2
O[5

A a=1

[ul Ug * * * Ug—1

C 2 (n=1) /2 k—1 1 k(n—1) /2
0 2 e+ |

I

gk

](n—3) /2

Hence we must have

1 1
= > 1
Eua— (1'—"‘>+1 Zua+_
a=1 a=1

which reduces to \* — 1)(I — ) < 0. Since A’ > 1 we must have u; > 1.
Region where pg1 > (1 — kp)go .

_c [tz - -+ )

k—1 k(n—1) /2 °
]

a=1

(n—3) /2

Thus, pg1 > (1 — kp)go is equivalent with
P (1 — kp)

. /2 k—1 k(n—1) /2 > k—1 k(n—1)/2 »
R P O B U

a=1
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This may be expressed as

p 1 U k (n—1) /2
(N2 =D72 -0 —kp)|1— <1 - )\_2> ) >0,

D U+ 1

a=]1
where the left-hand side is a monotonically increasing function of
1/(2°6Z1 ua + 1). Therefore this region must be of the form /(3524 ua + 1)
> £* where £* may be written as

2 2/k (n—1)
o 2 [ (e )
1 — A2 \(1 — kp)()\z)(n—l)lz

Hence we would select Dy if uy > 1, uy > ujforj=2,3,---,k — 1, and
w/ (e ua + 1) > £*. Similarly we can show that D; is selected for 7 =
L2, k—1Lifu>lLwu>uforj=12--,¢—1Li+1,---,k—1,
and if u;/ (O %2 ue + 1) > £*. It remains to calculate the region where D, is
selected. This is obtained in a similar manner and the result is stated without
derivation. Accept Dy whenwu; <1(j =1,2, ---,k —1)and1/ 53 ua + 1)
> £* where £* is the same constant as above.

Hence the Bayes solution with respect to (1 — kp), p, p, - - - , p, is the follow-
ing:for1 < j = k — 1select D; if w; > 1, and u; > max(uy, uz, - -+ , Uj_1,
Uipr, <+, W), and u;/(Q et u. + 1) > £* Select D, if u; < 1 for
J=1,2 - ,k—1and 1/(Q %% ua + 1) > £* Otherwise select D, .

The existence of a priori probabilities will now be shown for which the above
procedure, with £* replaced by the fixed L, determined by condition (a), is a
Bayes solution. Let us define the function

F(p) = ()\2“)—(?“_“;—1)/2 — (1 — kp) [1 — L <1 —~ %)T(n_w.

This is a continuous function of p with F(0) < 0, and F(1/k) > 0. Hence, there
exists a p* with 0 < p* < 1/k which is a function of A\* so that F(p*) = 0. To
get the Bayes solution relative to (1 — kp*, p*, - - -, p*) we merely replace £*
by L, .

We now substitute u, = s2/si and the Bayes solution relative to (1 — kp*,
p* -+, p*) reduces to the following when D, is made to correspond to D; :

k
if sy / 2 s% > Lg select Dy,

a=1 ‘
k
if s / D s < La select Dy,
a=]
where s = max(s; , s3, - - -, s). Since this is an allowable procedure we have
proved it is an optimum one. :
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AN EXTENSION OF THE BUFFON NEEDLE PROBLEM
By NATHAN MANTEL

Biometrics Section, National Cancer Institute'
Bethesda, Maryland

1. Introduction. An empirical determination of the value of = can be made
from the relationship®

(1) E = 2L,Ly/(w4),

where E is the expected number of intersections of a group of line segments of
total length L; with a group of line segments of total length Ls, both groups
being distributed over an area A. This relationship applies under the following
conditions.

(i) The arrangement of the two groups of line segments on the area A4 must
be independent of each other, but the individual line segments of a group may
have a systematic arrangement relative to each other.

(ii) The arrangement of at least one of the two groups of line segments on
the area A must be at random. The randomness must be such that the proba-
bility of a specified point on a line segment falling into a sub-area of A4 is pro-
portional to its area and the segment may assume any angle relative to some
base line with equal probability.

Two applications of this relationship to the estimation of = are considered
below.

2. The Buffon needle problem using a parallel line system. Consider an area
A on which is superimposed a series of equally spaced parallel lines (without
loss of generality we shall take the common distance between them to be unity),
on which a straight line of length L £ 1 is allowed to fall at random. At each
fall the line must either intersect the series of parallel lines only once, or not at
all. Thus the expected number of intersections, E, is the probability, I°, of an
intersection occurring at a fall. And since for this system the total length of the
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