DISTRIBUTION OF THE MEASURE OF A RANDOM
TWO-DIMENSIONAL SET

By HERBERT SoLoMoON

Teachers College, Columbia University

1. Summary. This paper considers the distribution of the measure of a special
random two-dimensional set. Related work, usually motivated by a search for
principles for bombing operations, deals exclusively with moment problems and
appears in [1], [3], [4], [5], [6], [7], [8]. A one-dimensional distribution problem
appears in [2]. The random set considered is the intersection of a fixed circle
with the union of N random circles. Centers of the random circles are subject to
the variability imposed by the bivariate normal distribution with circular sym-
metry and means not necessarily coincident with the coordinates of the center of
the fixed circle. The measure of interest is the ratio of the area of the intersection
(“covered area’) to the total area of the fixed circle. For N = 1, the distribution
is determined and its use facilitated by the graphs in Fig. 1 and Fig. 2. A pro-
cedure for obtaining upper and lower bounds of the distribution for N = 2 is
given. Tables I, IT, ITI, and IV give upper and lower bounds for the percentage
points of the distribution for N' = 2 for some special illustrative situations.
For N = 1 in all situations, and for N = 2 in many situations; the graphs
and tables demonstrate that a realistic decision can be made rather easily
without resorting to the usual practice of random number “Monte Carlo” de-
vices for each ad hoc situation of interest.

2. Development of distribution. Consider a fixed circle of radius 7 and an
aiming point at a distance R from the center of the fixed circle at which are
dropped N random circles of equal radius W according to the aforementioned
bivariate normal distribution specified by the parameter ¢. Define ¢c(0 < ¢ =< 1)
as the fraction coverage, that is, the ratio of the area of the intersection to the
total area of the fixed circle. We are interested in finding

Pe = Pr{c = C/W, T, R, s, N}

where P is the probability of getting at least C fraction coverage for specified
values of the parameters: W, 7', R, o, N. In order to achieve C' coverage for
N = 1, the center of the random circle must fall on or within the circle having
the same center as the fixed circle and a radius R* = W + aT. The relationship
between a and ¢ is developed by integration from the geometry of the picture
and is

¢ =31+ 8 = ~ @) — S)
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where S = W/T, f(x) = arcsin z + V1 — 22,2« =v 4+ (1 — 8)/v, 28 =
—v/8 + (1 — §8%/vSand v = S + a. This relationship is graphically depicted
in Fig. 2.

The problem, then, of finding P¢ is equivalent to the probability of getting a
point in an offset circle whose radius, center, and distance between center and
aiming point are known. From the bivariate normal law assumption, the prob-
ability, dp, that the center of the random circle Wlll fall within an area, d4, at a
distance, D, from the aiming pointisdp = (27d”) " exp (—D?/26%) dA. Since the
center of the fixed circle is at a distance R from the aiming point, if we choose
polar coordinates p, 8 about the former, then D* = R* + o — 2pR cos 6 and we
may write

I R* 4+ p° — 2pR cos 0
p=2~7’[ / exp[—( i 202’) ) pdpdf

TT~ «0 <0

o [ st e [_<R2 + Pﬂ do

Jo

or

where R* and R are now in ¢ units; I,(x) is the modified Bessel function of the
first kind for order n and argument x.

It is useful in graphically depicting the distribution to have the slopes of the
constant contours of probability in the RR* plane. If we define ¢(R*, E) by
¢(R*, R) + p(R*, R) = 1, then by the theorem or implicit functions we have

d © A
OR* ag?/ ~ fR [0’ I(pR) — pRIs(oR)] exp [—3(p" © =" 7=

oR 98¢ R*Io(RR*) exp [—3(R** + R?)]
oR*

since d[Iy(2)]/dz = I.(z). Integrating the numerator by parts and making use
of the equality

pRI1(pR) = —I:(pR) + pRIo(pR)

where the prime refers to differentiation with respect to (pR) we get after sim-
plification, the interesting relationship dR*/dR = Ii(R*R)/I«(R*R). Since for
large = I.(z) ~ ¢°/\/2mx we get for large (R*R) dR*/dR ~ 1. Hence the family
of curves in the RR* plane defined by P, = constant (see Fig. 1) has a slope
which approaches unity quite rapidly, for from [9] and [10] we see

LG) Las) LG
[ R 7T R X c1)

Since for R = 0, p = 1 — exp ( —1(R*")) it becomes possible to construct the
contours of equal probability because the initial point and the slopes of all points
on any one contour are known. The unabridged printed listings mentioned in
[11] however were used in constructing the contours.

= .99.
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3. Use of the graphs. Figures 1 and 2 represent the distribution for N = 1.
As an illustration, suppose W = 1, T = 1, R = 1 (¢ units) and P s is desired.
Fig. 2 shows that @ = .075 for C = 35, 8§ = 1. Thus W + aT = 1.075 and
referring this to Fig. 1 we get P 5 = .30. Conversely, let W = 3, T = 2, R = 2,
(¢ units), P¢ = .50 and C is desired. In Fig. 1, for P¢ = .50 and R = 2, we
get W + aT = 2.25, then @ = —0.375. Then referring to Fig. 2 with S = 1.5,
we get C = .67.

4. Upper and lower bounds. Let P(C, N) and P(C, N) represent lower and
upper bounds for the probability of obtaining C coverage or better when N
random circles are dropped for a specified set of parameters: T, W, R, o. Then
certainly

.E(C)N) =1- (l—PC)jN
P(C,N)=P{Cl+02+ +CNgC}y

where the c; are the coverage random variables for N = 1, and P, = P{c; = C}.
Now each c¢; has a distribution which is a combination of a continuous distribu-

tion with density f(c) at [0, 1] plus discrete probabilities at [(1)] if W= T,and

2 2
at l:WéT:I if W < T; where
d
f(c) = —E‘c Pc, g(c) = W+ a(c)-T,

g (c) 2 2
P, = fo pIo(pR) exp [—(p _; i )] dp.

Then f(c) = —g'(c)-g(c)Lulg(c)-R] exp —3{[g(c)]* + R*} where ¢'(c) = dg(c)/dc
is never positive. A glance at Fig. 2 will demonstrate this. Thus for N = 2,
we get

» C C—cy
p(C,2) = P} — / £(er) dey /0 f(c2) des + 2(1 — Py)P.
This reduces to
(o]
P(C,2) = 2P; — PoPy + /0 F(e)Pos, des.

Thus P(C, 2) is easily determined by numerical integration since f(c) and Pc_,
can be computed for any value of ¢. To compute f(c), it will be necessary to
find ¢’(c) = a'(c)-T where the prime refers to differentiation with respect to c.
To find a’(c) we first determine

d,,_,da 52—1]
d—c(a)—zl_ic—I:1+T ’

d Lda 18 =1
Jé(ﬁ)='2‘ac““{§[ o —l:l}’
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where S, «, 8, are as defined previously. Then

2 2
w=§%—vT??[L+S:1]+SVT:F[S:1—1}

de v v
1,

when S8 = 1, this reduces to

‘@ = -3 | —s
VG"<2>

In the numerical integration trouble results in the interval from 0 to Ac because
¢'(c) has a discontinuity at ¢ = 0. However since we are actually interested in an

JAcy

upper bound we can replace / fle)Pe_a dey by
Jo

[_fOA“ oxp {_[g(cl)]; -+ R2} d{[g(CI)]Z}:I - [-max Pe_e, Io[g(cy) -R]]

2 0toAcy

or

0 0 to Acy

exp {._W}:'Ml. [max Pc_., Io[g(cr) - R]]

and thus avoid this difficulty.
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(Figs. 1-2 and Tables I-TV follow)
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RELATION BETWEEN COVERAGE AND a FOR FIXED
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TABLE 1
Lower and upper bounds for probability of coverage
W/e =1, T/e =1, R =0, N =2

EREIERE 5] 6 | 71| 8 9

| | [

‘ !

| .926 | .853 | .733 | .619 | .483 | .329 l .208 | .098 | .059

‘ .937 | .888 | .796 | .726 | .638 ! .533 | .440 | .342 .275
TABLE II

Lower and upper bounds for probability of coverage
S =1, C=.5 N=2

Qs

.l

N e el

o

5o 1 1 2 2 2 ] 3 3 3 3

o o 1 ¢ w0 |t 2 B o 1 2 3

.159 | .483 | .339 | .098 i .924 | .798 .445&.107 .997 | .978 | .815 | .407
.185 | .638 | .445 | .122 | .993 | .947 .7275‘240 1.000 |1.000 | .990 | .858

TABLE III1
Lower and upper bounds for probability of coverage
S =2, C = .5, N =2

ERERE

L

NI o

.609 | .974 | .916 | .609 | .190 : .999 | .996 | .935 | .609 | .190
.646 | .987 | .963 | .691 | .248 |1.000 | .998 | .983 | .752 | .280

TABLE IV
Lower and upper bounds for probability of coverage
S = .5, C=.2 N =2

|Da|Nal=s

©

1Y

»

1 1 1 1.5 1.5

1.5 1.5 1.5
2 2 2 3 3 3 3 3
1 2 3 0 1 2 3 4

.708 | .278 | .040
.922 | .564 | .118

.878 | .737 | .360 | .069 | .990 | .953
.975 | .881 .500 | .418 | 1.000 | .996
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