ON STEIN’S TWO-STAGE SAMPLING SCHEME!
By B. M. SEELBINDER
University of North Carolina

Summary. This paper gives a method for determining the size of the first
part of a two-stage sample for estimating the population mean with a given
accuracy. The method is based on a scheme of Stein [4]. The tables necessary
for application of this method have been given. A more detailed summary will
be found at the end of the Introduction.

1. Introduction. When it is desired to investigate the characteristics of a
specified population on the basis of a sample, the size of the sample depends on
the accuracy which it is desired to attain. Thus, in order to estimate the mean
or average of the population we may fix an allowable discrepancy d, and a risk
or significance level o, such that the chance of the absolute difference between
the true mean and the estimate exceeding the allowable discrepancy d is not
greater than «. Thus

(1) P{|T —m|zd} £ aq,

where m is the true mean and T is its estimate.

One approach to the problem of sample size is to use a two-stage sampling
plan, the size of the second part of the sample depending on the information
supplied about the variance of the population by the first part of the sample.
Stein has suggested such a two-stage plan, but in his work the size n; of the
first part of the sample is left to the discretion of the experimenter. If n is the
total size of the sample (including both parts), then the expected value of n
depends on n; . It would thus be worthwhile to have some clues for the proper
determination of n; . In this connection Cochran [1] states:

“The average value of n that is required in a given situation depends on the
choice of n;. Exact information about the optimum value of 7, is not yet
available, the optimum being that value which leads to the smallest average n.
It appears however that the optimum 7; would be such that a second part will
usually be necessary. In other words, if it is convenient to take the sample in
two parts, n; should be chosen as somewhat less than the size that seems to be
needed.”

It is the object of this study to throw further light on the choice of the value
of n1, the size of the first part of the sample. For this purpose we first compute
the expected value of the total sample size for given n,, when « and ¢ = d/¢
are given. The necessary formulae for computing tables of these expected values
are derived.

! Part of a Master’s thesis presented to the Department of Mathematical Statistics,
University of North Carolina.
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It was shown by Stein that the computation can be made to depend on the
knowledge of Pearson’s Incomplete Gamma Function I(u, p). An approxima-
tion whereby the computation can be made to depend only on the knowledge of
the normal distribution function ®(L) is also developed. Numerical evidence
for the adequacy of the approximation for moderately large values of ni(n; = 61)
is adduced. Limiting values for the expected value of the total sample size E(n)
are given for fixed n; and « with varying c.

The use of the tables in choosing n; is discussed. If we have an approximate
knowledge of o, enabling us to fix an interval in which ¢ might be assumed to
lie, then the value of n; can be determined with the help of the tables by using
the minimax principle (i.e., minimizing the maximum loss in observations due
to ignorance of ¢). Reasons are given which point to 250 as a practical upper
limit for the size of the first part of the sample in a two-stage sampling scheme
when we have no precise knowledge of o. Tables for four different significance
levels of « are included at the end of the paper.

2. Stein’s method. Stein’s two-stage plan for estimating the population mean
may be stated as follows. Given d and «, we start with a random sample of size
n1 . An estimate of the population variance o° is given by the sample variance

n1
2) st = Zl (x; — )"/,
where np = n; — 1 and &; is the sample mean. A confidence interval for m may
now be calculated. The half-width of this interval is given by

3) sit/vVm

where ¢ = (e, no) is the value of ¢ corresponding to the given significance level
a, for ny degrees of freedom. If

(4) sit/Vm = d,

the sample is already sufficiently large and we stop here, saying that the estimate
T of misgiven by T = & . If

() sit/V/ny > d,

then additional observations are taken so that the total sample size is the
smallest integer not less than n, where 7 is given by

(6) n = &it’/d".

The estimate of m is now given by T = Z, where Z is the mean of the total
sample.

When this procedure is adopted (1) is satisfied. Thus given 7;, « and d,
if the event (4) occurs then the total sample size is n; . On the other hand, if
(5) occurs, we shall make our calculations as if the total sample size were n
given by (6), neglecting the small discrepancy introduced by the fractional
nature of n.
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3. Expected sample size E(n). Now
(7) X\ = nesi/o"

obeys the x” distribution with n, degrees of freedom. Setting d*/o> = ¢, we see
that when (4) happens

(8) 0< X2 = 627'L0711/t2,

and n = n; . When (5) happens

9) ' x> c'nom/ 1,
and n = £%/c*ng . Recalling that the x distribution with n, degrees of freedom
is

e—x2/2(x2)no/2—l

(10) FGE, mo) dy’ = ST (ne/2) dx’,

we may write

©

(D) By = | im0 dt = | i, d + [

X

0 2 2

U'x 2 2
gﬁ—n;f()(yno) dX7

where x5 = ¢’ngny/t*. Evaluating the second integral above by parts we have

(12) B =m | 16, m) it + 5 [ | 566 m) ax® + K,
Jo ¢ Jyz
where
2 nol2
;ﬂ) I'(no/2)exi'?
Let
(14) FOD) = [ $6¢/m) ax

Now Karl Pearson’s Incomplete Gamma Function is defined as

\ wWrl g7
(15) I, p) = jo R
Putting » = x°/2, p = ne/2 — 1, u = x0/A2ny , we see that
(16) F(xs) = I(x0/ N 2nq, m0/2 — 1).
Using (16) in (12) we have
2 2
an By = [+ 1) = |76 + S0+ &1

(This formula may be compared with formula (16), p. 247 of Stein’s paper.)
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4. Normal approximation for expected sample size. For large values of n; we
may use the fact that

e=V2¢ — Vo —3

is asymptotically normally distributed with zero mean and unit variance. We
shall discuss later, on the basis of the evidence provided in the numerical calcula-
tions, what constitutes a sufficiently large value of n; for the approximation
derived below to hold.

When (4) happens, (8) may be written

(18) —o £ -2 —3=z= L,
where
(19) L= f N 2mem; — V/2n, — 3.

The sample size is in this case n = n, .
When (5) holds, (9) may be written

(20) z > L.

Thus the sample size in this case is

2
t2 (Z + V 2n1 - 3)2-

n =
2¢*ny

Hence the expected sample size can be written

. m b 1 > S5\ 2 —22/2
(21) E(n) = o [w e dz + \/51;/1. 2, (e +V2n — 3)% dz,

where in the first integral in (21), the lower limit has been put as — « instead
of —+/2n; — 3. For moderately large values of n, , say n; > 10, this will cause
only a negligible difference. On evaluating the second integral in (21) we get

2 2 L 2 \/ 2 0 — 1
(22) En) = [(no +1) - 2-2] ®(L) + i—2 [1 + ;ﬂemlz\n@; ]’

where as usual

1 L 2
®(L) = \/—2—#[ e de.

5. Make-up of tables and use of normal approximation. Formulae (17) and
(22) were used to determine E(n) for assigned values of ny = m; — 1 with four
different significance levels « = .01, .02, .05 and .10 and values of ¢ = d/o
ranging from .01 to 1.0. For each combination of ¢ and «, a value of E(n) is
listed in the tables. The size of a sufficiently large value of no for the normal
approximation to be valid was determined on the basis of the numerical calcula-
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tions. For 10 < my < 60, the values of E(n) were computed both by the x°
method and by using the normal approximation, which served primarily as
a check in this interval. A comparison for the results for E(n) is given below for

a portion of the data as computed for Table IIB.

Ezxpected sample size for « = .05

d/e
[ 1 I 2 i 3 f 4 ! 5
! |
‘ X N X N X N | X ¥y N
60 | 400.00 400.00 | 100.03 100.04 | 61.11 61.10 | 61.00 61.00 | 61.00 61.00
ng 30 | 416.98 416.98 | 104.25 104.28 | 46.65 46.71 | 32.02 31.99 | 31.01 30.94
20 | 435.14 435.14 ' 108.75 108.78 ] 48.33 48.40 | 28.15 28.20 l 21.95 21.92
A similar comparison table for « = .01 was computed and the same degree of

agreement was found to exist. In no instances did any pair of values of E(n)
computed by (17) and (22) differ by more than one observation. In fact, for
ny = 60, the two computed values of E(n) were so close as to warrant use of
only the normal approximation when n, > 60 (for all four significance levels).
Figures in Tables I to IV are correct to the penultimate digit. The last digit
shown may be in error by unity (e.g., a value listed as 20.8 might actually be
20.7 or 20.9).

6. Limiting values of E(n). Let us consider the value of E(n) given by (17).
For fixed no and «, ¢ is fixed. As ¢’ increases, both x5 and F(x3) increase. Dif-
ferentiating E(n) with respect to xs , we get

23) wm =" r0h) — o+ g

Now F(x;) £ 1 and K = 0. Hence E’(n) is negative, which shows that E(n) is
a monotonically decreasing function of x; or of ¢’ for fixed ny and «. With ¢
fixed, as ¢’ increases F(x;) — 1 and K — 0, causing E(n) to approach no + 1.
It should be noted in the tables that for any row the value of E(n) for increasing
¢ has been given until it sensibly becomes equal to n, + 1. In the blank space
left thereafter in the Tables IB, IIB, IIIB and IVB values of E(n) will sensibly
remain equal to n, + 1, since obviously,

24) E(n) = no+ 1.
Let us set
(25) En) — £/¢ = ¢(x).

Integrating (14) by parts we find
Xg 6—12/2(x2)n0/2

¢ XD dh
27T (ng/2)

(26) FGE) = K + 7% |
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Hence
2 % 2 ‘ X 2
@27) s = o+ 1) [ 0 m) | 1= %5 | ax

Also,

T N n(mo +1)  (mo + 1) X e=xM2(y2)ml2
(28)  ¢'(x0) = E'(n) + S jo A

0
Now 0 < x> < xi . Hence 0 £ (1 — x*/x5) = 1. It follows from (27) that

Ay’

(29) 0 = ¢00) = (mo + DF(x).
Hence ¢(xs) is positive and tends to zero as xs — 0. Thus
(30) E(n) = /¢,

and

31) lim [E(m) — /€] = 0.

Also from (28), ¢'(xs) is positive, which shows that E(n) — /¢ monotonically
decreases as ¢ decreases. In calculation of the tables we have used the fact that
when E(n) sensibly becomes equal to £/¢* for any value of ¢, it will remain so
for smaller values of ¢ (n, and « remaining fixed).

7. Use of tables for a two-stage scheme. When an approximate estimate of
o is available, and the sample size is determined by one-stage sampling, the
mean eventually determined may have less accuracy than what is desired, for
it may turn out that the estimate of ¢ is in error. This situation is avoided by
using Stein’s two-stage plan. Our Tables I, II, III and IV give a good guidance
for choosing a suitable size for the first part of the sample when used in conjunc-
tion with the minimax principle (i.e., minimizing the maximum loss in observa-
tions due to ignorance of ). Of course, the tables allow for only four significance
levels, namely « - .1, .05, .02 and .01, but these are likely to suffice in practice.

Let E(n | n1) denote the value of E(n) corresponding to n; . For each value of
¢ in the tables we have a minimum value for E(n) = t%/¢’ = E(n | &2/c"), which
is the total sample size if ¢ were known. Let D = E(n | ny) — E(n | &2/¢"). This
difference D represents the loss in observations brought about by our ignorance
of o.

If it is believed or assumed that o lies within a certain interval,say o1 = ¢ = o2,
we can calculate, for fixed d, an interval for ¢, say ¢1 £ ¢ £ ¢.. In choosing a
starting sample size n;, we want to select that value of n, which gives us an
optimum D, that is, that value of D which causes us to lose the least number of
observations.

Let nF¥ be the value of n; corresponding to the optimum D. The following
procedure may be employed to find an optimum D and n¥ . For each value of
¢ in our guessed interval there is a smallest E(n) = E(n | n1) and its corre-
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sponding n; . We take these values of n; along with our values for ¢ and tabulate
values for D. From this tabulation we select the two m; values which would
lead to the smallest value of D over the interval for ¢. Using interpolation
between these two values of 7; we arrive at an optimum D and n} .

Thus n; = [nf], where [n7] indicates the smallest integer =ni , gives us the
first part of our sample. After the estimated variance s from this part of the
sample has been calculated, we proceed to take the second part of our sample.

The above discussion may be illustrated by considering a specific example
based on data by Cochran [1]. Suppose d = 10, « = .05 and ¢ is believed to lie
in the interval 100 = ¢ = 25. Thus .1 = ¢ £ 4. In Table Il for¢c = .1, .2, 3
and .4 we find that the n; corresponding to the smallest E(n | n;) for these values
of ¢ are n; = 241, 61, 31 and 21. Using these values of n; with the values of c,
we get the following tabulated values of D.

Starting sample b
S12€ T c=.1 c=.2 c=.3 c=4
241 4 145 198.3 217
61 16 4 18.3 37
ny = 47.3 23.7 5.8 11.7 23.7
31 33 8 3.8 7.9
21 51 13 5.3 4.1

From the above figures we see that if we started with n; = 61 we might expect
to lose no more than 37 observations, or if n; = 31 we might expect to lose no
more than 33 observations. Interpolating between these two values of n;, we
find that the optimum D is 23.7 and nf = 47.3. Thus n; = 48 should be our
starting sample size and should cause us to lose no more than 24 observations
if o lies between 100 and 25.

Thus when the sample is to be taken in two parts and we can assume an
interval for o, use of the minimax principle in conjunction with our tables is
recommended as the procedure to be adopted in selecting a starting sample
size.

8. An upper limit for n;. The minimax principle is very satisfactory if the
true value of ¢ lies within our assumed interval. However, if we do not feel safe
in assuming an interval for ¢, we still want to limit our loss in observations if at
all possible.

An examination of the tables reveals that if ¢ < .1 or ¢ = 10d, then for all
four significance levels the expected sample size for n, = 241 differs from the
minimum E(n) given by t5/¢’ by comparatively few readings. For fixed a,
n; and ¢, the value of E(n) could never be smaller than the value given by
£2/c". If we define percentage loss as [E(n | ny) — E(n | £5/¢))/E(n | n), we see
that this ratio is less than or equal to .02 for all four significance levels when
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¢ = .1 and n; = 241. Since E(n | ny = 241) > E(n | ny > 241) our percentage
loss could never be greater than .02 for n; > 241 and ¢ < .1.

If we have no precise knowledge of ¢ we could go far wrong in choosing n, .
For example, suppose & = .10 and we choose n; = 2400. Using formula (22) we
can compute E(n | n; = 2400) for any given c. Let us consider the following
tabulation.

Ezxpected sample size for a = .10
c

.01 .02 .03 04 .05 .06 .07 .08 .09 .1 2

/et 27060 6765 3007 1691 1082 752 552 423 334 271 67.6
n1 2400 27090 6772 3010 2400 2400 2400 2400 2400 2400 2400 2400
240 27290 6822 3032 1706 1092 758 557 426 337 273 241

We see from the above figures that if the true ¢ leads to a value of ¢ < .03,
ny = 2400 would be a slightly better starting sample size than n; = 241, But, if
the true o leads to a value of ¢ > .03, n; = 241 is far more efficient than n, =
2400 since our values of E(n | n; = 241) are considerably smaller than the
E(n | n, = 2400).

There is of course no peculiar virtue in the precise number 241 and we may
round off our figures to 250 stating the following rule. When using Stein’s two stage
sampling scheme and the value of ¢ is uncertain, but there is reason to believe
that ¢ is not so small as to make ¢ = d/e¢ appreciably greater than .1, then the
size of the first part of the sample should be taken to be 250 or thereabouts.
Thus we may regard 250 as a sort of practical upper limit for the size of the
first part of our sample.

I am indebted to Professor R. C. Bose under whose guidance this research
was carried out.
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TABLE IA

Ezxpected sample size for a = .10

d/e
.01 .02 03 04 .05 .06 .07 .08 .09 .10
& /c2 | 27,060 6,765 3,007 1,691 1,082 752 552 423 334 271
Ny 240 | 27,290 6,822 3,032 1,706 1,092 758 557 426 337 273
120 | 27,500 6,875 3,055 1,719 1,100 764 561 430 339 275
TABLIS IB
d/a
R 2 3 4 5 .6 7 8 9 1.0
240 273 241
120 275 121
80 277 81.0
60 279 71.6 61.0
no 50 281 70.6 51.0
40 284 71.0 41.4 41.0
30 288 72.0 34.8 31.0
20 298 74.4 33.5 224 21.0
10 328 82.1 36.5 20.8 14.6 12.0 11.2 11.0
5 406 102 45.1 25.4 16.2 11.4 8.8 7.3 6.6 6.2
& /c? 271 67.6 30.1 16.9 10.8 7.5 5.5 4.2 3.3 2.7
TABLE IIA
Expected sample size for a = .05
d/e
.01 02 03 .04 .05 .06 .07 .08 .09 .10
& /c? | 38,410 9,602 4,268 2,401 1,537 1,067 784 600 474 384
no 240 | 38,810 9,702 4,312 2,426 1,552 1,078 792 606 479 388
120 | 39,200 9,800 4,355 2,450 1,568 1,089 800 612 484 392
TABLE IIB
dfo
.1 2 3 4 5 .6 T 8 9 1.0
240 388 241
120 392 121 ‘
80 396 101 81.0
60 400 100 61.1 61.0
No 50 403 101 52.6 51.0
40 408 102 47.9 41.1 41.0
30 417 104 46.6 32.0 31.0
20 435 109 48.4 28.2 21.9 21.0
10 496 124 55.1 31.1 20.2 15.1 12.4 11.0
5 661 1656 73.4 41.3 46.4 18.5 13.9 10.9 9.1 7.9
£ /c 384 96 42.7 24.0 15.4 '10.7 7.8 6.0 4.7 3.8
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TABLE IITA
Expected sample size for a = .02

d/e
‘ .01 .02 .03 .04 05 .06 07 .08 .09 .10
ti/c’ 54,100 13,520 6,011 3,381 2,164 1,503 1,104 845 668 541
no 240 | 54,850 13,712 6,094 3,428 2,194 1,524 1,119 857 677 548
120 ‘55,600 13,900 6,178 3,475 2,224 1,544 1,135 869 686 556
TABLE IIIB
dfe
1 2 3 4 5 6 7 ] 9 1.0
240 548 241
120 556 139 121
80 564 141 81.1 81.0
60 571 143 67.3 61.1 61.0
No 50 577 144 63.9 51.2 51.0
40 587 147 65.4 43.1 41.1 41.0
30 604 151 69.1 39.0 31.8 31.2 31.0
20 639 160 71.0 40.1 26.9 22.1 21.2 21.0
10 764 191 84.9 47.8 30.6 21.5 16.4 13.5 12.0 11.4
tz‘,‘,/c2 541 135 60.1 33.8 21.6 15.3 11.0 8.4 6.7 5.4
TABLE IVA
Ezpected sample size for o = .01
d/o
( .01 .02 .03 04 .05 .06 .07 .08 .09 .10
tf,/c2 66,360 16,590 7,373 4,148 2,654 1,843 1,354 1,037 819 664
No 240 | 67,440 16,860 7,493 4,215 2,698 1,873 1,376 1,054 833 674
120 i68,500 17,125 7,611 4,281 2,740 1,905 1,398 1,070 846 685
TABLE 1IVB
d/o
R 2 3 4 5 6 7 8 9 1.0
240 674 241
120 685 171 121 '
80 696 174 84.5 81.0
60 708 177 79.1 61.1 61.0
Mo 50 717 179 79.9 53.1 51.1 51.0
40 731 183 82.3 48.1 41.2 41.0
30 756 189 84.0 47.6 33.7 31.1 31.0
20 809 202 89.9 50.6 32.8 24.7 21.7 21.2 21.0
10 1,004 251 112 62.8 40.2 279 20.8 16.5 13.9 12.4
t";,,/c2 664 166 73.7 41.5 26.5 18.4 13.5 10.4 8.2 6.6
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