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Summary. We give in this paper the solution to the first passage problem for
a strongly- continuous temporally homogeneous Markov process X (). If T =
Tap(x) is a random variable giving the time of first passage of X (¢) from the
region @ > X(¢) > b when a > X(0) = z > b, we develop simple methods of
getting the distribution of 7' (at least in terms of a Laplace transform). From
the distribution of T' the distribution of the maximum of X (¢) and the range of
X(t) are deduced. These results yield, in an asymptotic form, solutions to
certain statistical problems in sequential analysis, nonparametric theory of
“goodness of fit,”” optional stopping, etc. which we treat as an illustration of the
theory.

1. Introduction. There are certain generalizations of the classical gambler’s
ruin problem which appear in various guises in numerous applications—besides
statistical problems there are physical applications in the theory of noise, in
genetics, etc. The exact solution of the associated random walk (or Markov
chain) problem is often analytically difficult, if not impossible to obtain, and
one is usually content with asymptotic solutions. The nature of the asymptotic
solution is generally such that it is the solution to a Markov chain problem
in which the length of the steps, and the interval between them, approach zero
and which may in the limit be regarded as some sort of continuous stochastic
process.

This circumstance suggests we might solve directly the associated problem
with regard to the stochastic process and so obtain the asymptotic solution to
the Markov chain problem without the intervention of a limiting process.
Aside from the difficulty of justifying the interchange of these limiting opera-
tions, it turns out that this procedure is often quite feasible and leads to simple
solutions. Using this idea Doob [7] obtained in a direct way the Kolmogorov-
Smirnov limit theorems and the principle was further exploited by Anderson
and Darling [1]. The general principle is, of course, quite old, and in connection
with random walk problems goes back at least to Rayleigh.

A general feature of this method is that the analytical difficulties, if any, are
revealed as more or less classical boundary value problems, eigenvalue problems,
etc.—this intrinsic nature of the problem often being masked by the discrete
approach. On the other hand, it suffers from the serious defect of giving no
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information as to the difference between the actual solution and the asymptotic
one—information which is essential in the numerical applications.

In the present paper we treat the first passage (or ruin, or absorption proba-
bility) problem for a general class of Markov processes (cf. Section 2) and
obtain the solution in the form of a Laplace transform (Section 3). This Laplace
transform is generally given as a simple function of the solutions to an ordinary
differential equation (Section 4). The methods used are similar to those used
in the discrete theory by Wald [17] (fundamental identity) and Feller [9] (re-
newal and generating function techniques), but the analysis is considerably
simplified, at least in a formal way, and not restricted to additive processes.
It turns out that there is an intimate relationship between the one- and two-
sided absorption probabilities, and the probability of eventual absorption in
one of the boundaries.

We illustrate the theory in Section 5 by solving a problem of Wald [17] in
the sequential test of the mean of a normal population against a single alternative,
the derivation of a nonparametric test used by Anderson and Darling [1] and
the solution to the optional stopping problem (Robbins [15]). These problems
are treated by solving the associated absorption problem with the Wiener-
Einstein process and the Uhlenbeck process.

In Section 6 we study the first passage moments which can be obtained by an
expansion of the Laplace transforms or again through differential equations
which can be explicitly solved in quadratures. There are some quite interesting
relations between the moments.

In Section 7 we develop the distribution of the range which has been used by
Feller [10] in a statistical study.

2. Definitions, notations, assumptions, etc. Given a stochastic process X (f)
with X(0) = z, a > z > b, we define the first passage time Tou(x) as the random
variable

T =Tax) =sup {t|a>X() >b0= 1=t

We make the following assumptions about the stochastic process X (¢).
A) X (t) has a transition probability

Py t) =Pr{Xt+s) <yl X(s) =z}, s> 0,

satisfying the Chapman-Kolmogorov equation
P(xly:tl + t2) = [ P(zlyyt2)dzp(xlz,t1), t1 > O,tz > O;

that is, X(¢) is temporally homogeneous and stochastically definite (e.g.
Markovian). _

B) X(¢) is continuous with probability one (or is strongly continuous).

If X(¢) satisfies A) sufficient conditions on P are known that it satisfy B), cf.
Doeblin [5], Fortet [11], Ito [12]. These conditions generally imply further that
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P satisfies the diffusion equation of Section 4. Note that A) and B) imply the
existence of the random variable T', and we denote by Fu(z | ¢) the distribution
function of T, Fa(zx | t) = Pr{Tws(z) < t}.

In the work to follow we shall presume P and F have derivatives p, f; these
being the densities

)
mu%n—@Puwm

Ta@|) = 5 Fulz]0),

the modification of the results if these conditions are not met being more or
less immediate. The existence of a density for T has been established by Fortet
[11] under some circumstances. In this fundamental paper of Fortet on absorption
probabilities there is just one absorbing barrier, but the modification of his
results for two barriers is easy.

Ifa= 4« orb = — » so that we have a one-sided absorption time we write
T.(x) as the corresponding random variable. That is

T..x)ifxz>c

T.(x) =
@ {Tc,_w(x) ifz <c

with a corresponding distribution function F.(z | t) and density f.(x | £).

It may happen of course that absorption is not a certain event and that 7' is
not a proper random variable, that is Pr{T.(x) < «} = F(zx | ©) < 1 (or
similarly for T.(z)) and in this case we may still meaningfully treat the con-
ditional density of T, under the condition T < .

We need, in addition, the conditional distribution of T (x) under the con-
dition that the absorption takes place into the barrier g, which we denote by

Fo(x | 0):
Fh(x | t) = Pr{Ta(x) <t Ta(x) = Tuz)}
and Fa(x | t) will denote a similar expression for the lower barrier b. Hence
Fa(x|t) = Fhx | + Falx | ¢

and the corresponding densities are f;(z | t) and fa3(x | £).
We denote by a circumflex over the corresponding function its Laplace
transform on ¢; for example

x|y, = fo e Mp(x |y, 1) di,
Ja(@ [N =j0' e MNfh(x | t) dt,

etc. The continuity of the process X (¢) ensures the existence of these transforms.
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3. The distribution of T. In this section we obtain the distribution of 7' in
terms of the transition density p of the process. Theorem 3.1 for the one-sided
barrier is due to Siegert [16] essentially.

TrEOREM 3.1. If X(f) satisfies conditions A) and B), then p(x | y, N) s a
product

u(@)ui(y), y>z
o g2 =
P lu) {v@)vxy), y <o
and
(?i(—x—) r<c
3.1) iy = @
@ xr>c
v(c)’ )

We note that absorption may be uncertain and f,(z | 0) = Pr{T.(z) < =}
may be less than 1. A necessary and sufficient condition that absorption be
certain is that f.(x | 0) = 1.

To prove the theorem we use a renewal principle which is very old. We have
by A) and B) fory > ¢ > =z

pely,d = [ felnplyt - dr

by a direct enumeration of the paths going from z to y. On taking Laplace
transforms we obtain

P |y, N) = felx | Nple | v, \), y>c>a

and thus p(z | y, A) is a function of = times a function of y, say u(zx)ui(y) and
hence for y > ¢ > z we get fo(x | \) = u(x)/u(c). Similarly, for y < ¢ < z we
obtain f.(z | A\) = »(x)/v(c) and hence for any ¢,  we obtain the conclusions to
the theorem. Finally it follows by cancelling any factor which depends only on
A that u(x) and v(x) are uniquely determined.

TueorREM 3.2. Let X (1) satisfy A) and B) and let the functions u(x) and v(x)
be as in Theorem 3.1. Then

. _v(b)ulz) — ulb)(z)
(32) Jal@ [N = s = a(a)

ula)v(z) — v(a)ulz)

(33) Jale | N = o = a (@)
(3.4) faa | ) = 1@@ = wd) ~ u@)la) = o))

u(a)v(b) — u(b)v(a)
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To prove the theorem we consider the two expressions

fula |9 = flz | ) + f falw | Db |t — 1) dr

£z |t = fak |t + fo 5| Dfla |t — ) dr

which are established by a direct enumeration. Considering f* and f~ as un-
known this pair of simultaneous integral equations is solved immediately by
taking Laplace transforms

(3.5) fu@ [ N) = Fh@ | N) + fal@ | Mfu® | N)
(3.6) fi@ [N = fa@ | N) + fa@ | M@ | N)

which are 2 linear equations in 2 unknowns. On using the expressions in Theorem
3.1 for f, and f, we get (3.2) and (3.3) for £ and f;; and the last expression
(3.4) is obtained by noting fu = fi + fu -

A random variable closely related to T is the maximum of X(¢), and we
define

3.7 M, ~ sup | X(n) |, X(0) = .
Denoting the distribution of M by G(x | £, t) we have clearly
(3.8) G@ | & 1) = PriM(z, ) < &} = Pr{Te(@) > 1}

=1—Fy x|, £> |z,

so that the distribution of M is given directly through that of 7. On taking
Laplace transforms of (3.8) we obtain the following corollary

CoroLLARY 3.3. G(z | £2) = 1/A(1 — fg,_g(x | A)) for fi _¢(x | ) as in Theorem
3.2.

For a symmetrical process there is a specially simple formula for the Laplace
transform of T, _.(z). A process X (t) is symmetrical if p(z | y,¢) = p(—z| —y, )
for all z, y, t. In this case u(z) = v(—z) and Theorem 3.2 yields the following

corollary.
COROLLARY 3.4. F.-» a symmetrical process
. _u(x) + u(—x)
(3.9) Joale | N) = 2@ Ful=a)’ |z | < a

4. A differential equation. Tue function p(z | y, £) will in most cases of interest
satisfy the so-called diffusion equation

9 _ 9P, ip ‘_3_217
(4.1) o Al) 5= + 3B°(@)

with initial and boundary conditions p( |y,t) = p(—» |y,t) = 0,p(x|y,0) =
8(x — y) (the Dirac function). Sufficient conditions on p, involving the infini-
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tesimal transition moments, are known in order that p satisfy an equation of
the type (4.1), and which generally further ensure the process is continuous with
probability one (cf. Doeblin [5]). When A and B? are given a priori, conditions
on them are known which ensure that (4.1) has a unique solution which is the
transition density of a process continuous with probability 1. (Cf. Fortet [11]).
But general necessary and sufficient conditions are not known, and it does not
appear to be known under what conditions a process continuous with probability
one satisfies a diffusion equation. However, for specific processes these points
are generally easy to resolve.

The following theorem shows that for processes satisfying (4.1) ¥ and ¢ can
be determined from a differential equation.

TuEOREM 4.1. If p(z | v, t) uniquely satisfies (4.1) with the stated boundary
conditions and X () is continuous with probability one, the functions u(x) and v(zx)
can be chosen as any two linearly independent solutions of the differential equation

(4.2) 1B(x)—+A()——)\w—0

To prove the theorem we note that if p satisfies (4.1) its Laplace transform
satisfies
d’
(4.3) A + 1B’ dxff
and indeed — 7 is the Green’s solutlon to this equation over the infinite interval
(—» < z < ). As a consequence, if u(«w) = »(—») = 0 and u(z), v(x)
satisfy (4.3) we obtain to a constant factor

. _ Jv@u(y) yz=z
so that we obtain the previous expression (3.1) for f.(z | \) and consequently
we obtain (3.2), (3.3) and (3.4). But since (3.2), (3.3) and (3.4) are invariant
under any nonsingular linear transformation of % and » we obtain Theorem 4.1.

As for (3.9) we can choose for u(z) any solution to (4.2) provided u(z) and
u(—z) are linearly independent.

The customary way to obtain the first passage probability fu(x | t) is to
solve (4.1) with the boundary conditions p(a | y, §) = p®b | y, t) = 0,

p(x | y,0) = 8(x — y) and then we should have Fau(z |§) = 1 — f p(x |y, t)dy
b

(cf. Fortet [11] for a proof and Lévy [14] for a general discussion). By using the
Laplace transform method this will give (3.4) for fa(x | A), but it does not
appear to give /¥ and /.

Since fi5(x | 0) is the probability that absorption in the barrier @ occurs
before absorption in b, we should expect that, putting A = 0 in (4.2), the solution
to '
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with ¢(a) = .1, ¢(b) = 0 should give this probability. Khintchine [13] has proved
this result directly from the limiting case of a Markov chain without the use of
a stochastic process. Barnard [3] has considered this result in connection with a
sequential analysis problem.

6. A few examples.

a) The Wiener-Einstein process. Here X (¢) is the free Brownian motion;
X (¢) is Gaussian with mean 0 and covariance E(X(s)X(¢)) = min (s, ¢) and its
transition density p satisfies the differential equation g:’ ;ge (ie. 4 = 0,

f 1). Two hnearly independent solutions to $W” — AW = 0 are u(z)
e_\/”’ and v(x) = eV®* = y(—z) and hence we obtain from (3.9)

. _cosh V2 z
(51) fa.—a(x l >\) - COSh \/2—-)\ a’ I x l < a.

The inversion of this Laplace transform is easy, and we obtain
foalz | 1) = __Z (—=1)° (] + 1) cos {(] 4+ 3 7"-’”} —(5+1) 272t /202

and by integration on ¢
Foo(x|t) = Pr{T. u(x) <t}

0 _ J .
=1- gzj( 1)_ cos {(j + %) 1;} g b Entizal
2

This completely solves the case of Brownian motion for general barriers, since

b
(5.2) Faop(z I t) =F a2 ~@-b/2 < - ——_*2-—~ ) .
This result is well known (Bachelier [2], Lévy [14]) and alternatively can be
obtained by the method of images with the heat equatio a—t}-’ = %g;g

b) The Uhlenbeck process. Here X (t) is stationary, Markovian, and Gaussian,
with mean 0 and covariance E(X(s)X(¢)) = ¢*~*" and the transition dens1ty
satisfies (4.1) with B> = 2, A = —uz. Solutions to

d'w dw

et x% - =0
are u(r) = e’z“D_)\(x) and »(z) = e’z“D_x(—x) where D,(z) is the Weber
function, (cf. Whittaker and Watson [18]). Hence (3.9) gives

x_2 _ Lf} D_\(x) + D_\(— z)
4 D_\(a) + D\(— a)’

(5.3) faza(® | N) = exp {
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but it appears very difficult to invert this transform. For the particular case
z = 0 this result (5.3) was obtained from a limiting case of an Ehrenfest urn
scheme describing molecular equilibrium by Bellman and Harris [4].

c) A problem of Wald in sequential analysis. Let X;, X, --- , be independent
random variables, normally distributed with an unknown mean 6 and a known
variance K°. That is, the density of X, is

—(z—0)2/2K2

1

According to the sequential likelihood ratio test of Wald, in order to test the
hypothesis H, that 6 = 8, against the hypothesis H, : § = 6, we consider random
variables

Z; =

o(X:,0) _ 6 — 02( ) __01+02>
log Sx oy~ B\ 2

andlet S; = Z, + Zo + --- + Z;. Then for ¢ > 0 > b we study the random
variable N defined as the smallest integer for which either Sy > a or Sy < b
and determine for this N the probabilities of these outcomes.

Now

(5.4) =

(5.5) Var (Z) = (”‘ - ”2>2 = o

so that this suggests we study a Gaussian process S(f) with independent incre-
ments and with E(S(t)) = ut and Var (8(f)) = o’t (a linear transformation of
the Wiener process). Then the joint distribution of Si, Ss, ---, S;is the same
as the joint distribution of S(1), 8(2), --- , 8(5), and in place of finding the
distribution of N we approximate to it by finding the distribution of the ab-
sorption time 7', +(0) in connection with the process S(t). It should be remarked
that the nature of this approximation is quite different from Wald’s approxima-
tion of “neglecting the excess” since the process S({) may leave and re-enter
one of the barriers between two consecutive integer time instants.

The differential equation satisfied by the transition density p of the process
S(t) is

9 _ _1’ o’ _P
at ox + 2 9z?
that is, A = u, B® = o°, and (4.2) becomes
2 2
(5.6) cdw =0

o der " H dx



632 D. A. DARLING AND A. J. F. SIEGERT

It is simple to solve this equation with constant coefficients and since the two

2
rootsof;—£2+u£—'y=0are

=k + Vi + 24

o2

_—p = Vi F 20\
Ez - 0_2 )

b=
two linearly independent solutions to (5.6) are u(z) = ¢!*" and v(z) = €*** and
hence by Theorem 3.2 we immediately obtain f*, /=, and f and the problem
is formally solved.. The expressions are to be considered for z = 0, and (3.2)
gives for x = 0, with this u(z), v(z),

¥ ehb . e’ézb
FHOIN = ;
e 20+§1b eila+52

and at A = 0 this gives the probability of being absorbed into the barrier a
before b, and we abbreviate L*(8) = f:£(0 | 0) for this probability. For A = 0
we have & = 2u/0’, &2 = 0 so that

e—(2ﬂbI¢3)__ 1

(5.7) L*0) =

e—@uleb __ o~ (2ulota

According to the test of Wald we should choose the barriers @ and b so that
L) = 1 — B, L*(6:) = & where «, B8, are given positive numbers with
a4+ B < 1. For6 = 6, we have 2u = o and for 6 = 6, we have 2u = —¢” from
(5.4) and (5.5). Hence from (5.7) we get as two equations for ¢ and b

1 e’ —1 ¢ —1
b=

which are easily solved to give

a=log1;6, b = log 8

1—a

These are the formulas of Wald.

From (5.2) and (5.3) we see that 2u/c” = (20 — (6, + 65))/(6, — 6s) which
denote by h(8). Then setting A = (1 — 8)/a, B = 8/(1 — a) we obtain from
(5.7)

B—‘h(o) _ 1
+

L@ = B0 — 4-h®°

the probability of absorption in the barrier @, which is the power of the test
(i.e., the probability of rejecting Hs: 6§ = 6, when 6 is the true mean) and
1 — L*¥(6) = L7(6) is the expression given by Wald for the operating charac-
teristic of test.
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For the distribution of T' (approximate number of observations necessary to
terminate the test) we use the expression (3.4) with = 0 to give

b foby (eha . efza)

{3
ATap 0y _ 3 _ (e —e
E(@ a ) = fab(o | )\) = e£2a+21b _ eEzb+€1a

which can be inverted to give a rather complicated expression:

Fau(0]8) = Pr{Tu(0) < ¢}

2 2 © "

o n(—1) bie? . MTA w2 . mwb

= 1 - (a _ b)2 ’; “2 O'anﬂ'z {eﬂ sSin m —_— el‘a sin __7)
ZTOJ 2(a — b)2

—_ a —

' exP( {262 2(; n—rb) })

But the moments are easy to obtain by expanding about A = 0, since we have
the moment generating function of T (note that T is a proper random variable,
that is, absorption is a certain event since fab(O |0) = 1). An alternative way is
to use the result of the next section which gives the moments as the solutions to
differential equations. If we let m(z) = E(T.,b(x)) then from (6.6) it follows
that m satisfies the differential equation io'm’’'(z) + um/(x) = —1 with m(a) =
m(b) = 0.
Assuming first that u ¢ 0 we obtain by solving this equation

m(0) = B(T) = l—} (aL*(6) + bL™(8))

while for g = 0

b 1 - 1 - 2
BE(T) = —i:——lo< a“>10g< BB>(01£{02)2.

Here L™(6) = 1 — L*(6) is the probability of absorption in the barrier b, as
before, and a, b, u, o* have their former significance.

It is rather remarkable that despite the differing nature of the approximations
of Wald and the approximations by presuming a continuous process as here,
they should give the same formulas.

d) A nonparametric test in “goodness of fit.” In a test related to the Kolmo-
gorov-Smirnov tests the following important absorption probability problem
arose. If X (¢) is the Uhlenbeck process (cf. example b) above) calculate the
probability

bE| ) = Pr{| X(n) | <£0 S r = ()

where X (0) has its stationary distribution. Thus we have the problem of finding
the distribution of the random variable M (z, t) defined by (3.7) whose distribu-
tion function is G(z | &, ¢) as in (3.8).
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For |z | < ¢ we have G(z | £,£) = 1 — Fy_¢(x | ¢) and since for | z | = £ we

have G = 1 we define F = O for | z | = ¢. The stationary distribution of X (¢)
is N(0, 1), that is, has a density ¢(z) = (2r) %" and hence

bel) = [ #@G@|t0de = [ P i) da.
On taking Laplace transforms we get
. 1 § - 1 ¢ .
b\ = s~ [ . @) Fy (x| N) do = )—\{1 - [ . o(@)fe—e(x | N) dx}
and substituting from (5.3) we have

a 1 § e——E’/«i
b L1 4/2
€ A {1 /‘/w D_\(¢) + D (—¢)

S , 1
. ‘/0 e *"(D(x) + D_(—2)) dxj.

This result was given, without proof, in [1].

e) The optional stopping problem. In [15] Robbins outlined the optional
stopping problem. Let, as in example c¢) above, the problem be that of testing
the mean of a normal universe with known variance, say o’, but instead of
testing the hypotheses H; and H, of example c) we have the hypothesis H; :
6 = 0 to test against H, : 6 % 0 (Robbins considers H; : § > 0). As sketched by
Robbins the basic problem is to calculate the probability, when 6 = 0, S, =
X+ X+, 00, + Xa,

g, e, @) = Pr{| 8. | < acN/n, m < n < ny)

for given a, n; and n,. For the case of S, instead of | S, | Robbins gave an
inequality, and here we give an approximate and an asymptotic result.

The random variables {S./ov/n}, n = m, my + 1, --+ , ny have mean 0,
variance 1, are normally distributed and form a Markov chain with covariance

E{ ‘Si . Sn_} - min (.7; n) - e—]glogj—ilogn).

a\/f oV'n Vin

Hence their joint distribution is the same as the joint distribution of X (3 log n,),
X (3 log (ny + 1)), -+, X(% log nz) where X(¢) is the Uhlenbeck process; (cf.
examples b) and d) above). Hence we have, using approximations like those in
example c),

glni, ma, 0) 2 Pr{|X()) | < o, 5 logm St < §logn = b<a|%log%),
1

where b(¢ | t) is the function of example d) and of which we have the Laplace
transform.
It is also possible to give an exact asymptotic result which is applicable even
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1f the variables are not normally distributed, but merely have mean 0, variance
o*, and obey the central limit theorem (e.g., if they are identically distributed).
Let My — ®©, Ny — o, m/n, — 1,0 < ¢ < 1, and consider a sequence {t,}, n =
N, + 1, -+, m deﬁned for fixed ny by t. = n/ng ; this sequence depends
upon 7z, {t.}a,, and for ny — o becomes everywhere dense in the interval
t = r = 1. That is, given any 7({ £ r < 1) we can choose an element 7, from
{t»}1 such that limy_, .7 = 7.
Then since

g(n1’n27a) = PrM < a\/Z., m=nz= nZ}
lovm,
it will follow from a theorem of Donsker [6] that the limiting distribution g
can be expressed as the distribution of the corresponding Wiener functional.
Hence for n; — w0, ny — o, m/ne — 1,0 < t < 1,

g(nl’n2’a)_)Pr{l W(T) I < a\/;,t =7= 1}’

where W (t) is the Wiener-Einstein process (cf. example a) above).
Now if X(t) is the Uhlenbeck process (cf. example b)) we can write W(f) =

V1 X( log t) (Doob [8]) and thus
N l)
3 log i)

limg =Pr{|XGlogr)| <ot=r=1}
- Pr{IX(T)I <a0=7s< %log%} - b<a
and since 1/t = lim ny/n; we obtain g ~ b(a | § log na/ny), the approximate
expression deduced above. It seems somewhat striking that these two expressions
should agree, being deduced from essentially distinct principles.

6. On the moments of T. In the preceding work the distributions were
generally expressed as Laplace transforms which are often difficult to invert
but which give immediate information about the moments of 7.

In the present section we suppose that Pr{T < «} = 1, that is, that T is a
proper random variable, as otherwise the moments will not exist. If the corre-
sponding Laplace transform is 1 for A = 0 the variable is proper. Let us put

tai’ (@) = B(Ta(x)),  ”(2) = E(T2(x))

which we suppose to exist for n < ny. We have by a series expansion

Jalx |2 = ZO t“‘?)(x) (=N)" 4 o(\™), A—0
6.1) . o)
fein = 3 @ (=0 + o(x™), x>0

from which the moments are determined.
From equations (3.5) and (3.6) it is possible to express fu = fif + f in
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terms of the transforms f, and from this fact we can express the moments (3’
in terms of the one-sided first passage moments ¢{™. We get in fact from (3.5)
and (3.6)

Fal@ | NGala|N) — 1) + fola [N (Falb | N) — 1)
6.2 ab
62)  fal@|N) = F TN =1

and it follows that 3’ (z) will be given by an algebraic combination of ¢ (z)
and #”(z) for k¥ < n, j < n, provided these moments exist. But it should be
remarked that t(")(x) will exist in general for finite @, b, even though {* (z) may
not, as the simple Wiener-Einstein process, for which t*(z) = « for k = 1,
shows.

In particular for n = 1, where we put ¢ = ¢, we get for the mean first passage
time by a simple expansion of (6.2),

L(@)t(a) + &(x)ta(b) — a(b)tb(a)
talr) = t(0) + (@)

This formula leads to interesting consequences. Let ¢ and b be such that
t:(b) = t(a). Then since #(a) = t.(a) + &(x) (6.3) becomes simply

(6.3)

(64) tale) = BE = @
2

The right-hand side of (6.4) is independent of b, and since {s(x) = 0 we have
the result that when a > x > b and t,(b) = t(a) then t,(x) = i,(a). Thus it is
possible in a stationary process that the mean length of time it takes to go
from a less probable state to a more probable state for the first time is longer
than that it takes to rever.e ithe journey. It is simple to construct processes for
which this result obtains, fo1 exaraple, « .»e in which the stationary density is
symmetric and bimodal.

It is possible also to express the prob .lility of absorption in the barrier a
before b by means of the one-sided first passage moments. Since fqh(x|0) is
this probability we obtain from (3.5) and (3.6)

rie iy _ Ja®INB@ D) — fu@ ()
N = G RGY — 1

hence letting A\ — 0 we obtain the conclusion that if the first passage moments
exist the probability of absorptionina beforeb isgiven by P = (t.(b) + t(x) — tu(x))/
(ta(d) + t(a)). ,

Since the expressions f, /*, and f~ satisfy the differential equation (4.2) if
the corresponding transition density p satisfies (4.1) it is possible to find the
moments ¢ directly through a differential equation, and this often affords a
method that is computationally more feasible than a direct evaluation of f.
We have in fact the following theorem.

TueoreEM 6.1. Lel X (t) satisfy the hypotheses of Theorem 4.1. Then if T = Tu(z)
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18 a proper random variable whose moments of order n = nq exist, " =t (2)
salisfies the system

2,(n) (n)
2dt + A dt _ _nt(n——l)’ "

1 <
:B dx? dx ="
(6.5) 9 =1
13 (@) = t5(b) = 0, n > 0.

To prove the theorem we merely substitute the expansion (6.1) in the dif-
ferential equation (4.2) and equate the coefficient of A™ to zero.

The system (6.5) is particularly easy to solve since the substitution Z” =
dt'™ /dz renders each equation linear of the first order, and the solution can be
written immediately in quadratures. Starting with n = 1 each t™ can be ob-
tained in turn in quadratures from the previous {*’(k < n). In particular for
n = 1 we have

d’t de ®
(©6) Wmtdg="1 -
) t(a) = ) =0,

a result we have used already in Section 5, Example c).

7. The range of X(¢). In this section we develop a formula for the distribution
of the random variable
R(z,¢) = sup X(r) — inf X(7)
<<t <7<t
which is called the range of X (t), or the oscillation of X(t), and we denote its
distribution by ®(x | r, t) = Pr{R(z, {) < r}. Note that this probability exists
if X (t) satisfies conditions A) and B) of Section 2.

A treatment of the random variable B for the Wiener-Einstein case has
been given by Feller [10] in a statistical application, and the present section
solves a problem he posed on finding the distribution of R for other processes.

Again we presume the existence of a density for R, say ¢(z|r, t) =
0®(x | r, t)/dr only to expedite the analysis. It is not difficult to show that the
existence of a density for T implies that for R.

TuEOREM 7.1. Let X(t) salisty conditions A) and B) and let ¢(x | r, t) be the
density of R(x, t). Then for fu(x | \) as in (3.4) we have

1 & s (rl2)

(7.1) ¢(x l 7, N = — NETS z—(r/2; fv+(r/2).v—(r/2)(x I)\) dv.

We note that ®(z | r, A), being merely f $(x | u, \) du, is given immediately
0

since $ is expressed as a derivative.
The starting point of the proof is the formula

ol = [ [52r 0~ Fa )] @

-7 —6a 6b a=b4r
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which is established readily by an enumeration of cases. The existence of the
derivative (under the integral sign) follows from the existence of the density of
X(t) at a and b, for when 6 > 0

Fa(e [ £) — Fawsp(z | ) = Pria < X(t) < a 4+ 8, X(r) > 0,0 < 7 < ¢}.

On taking the Laplace transform of the preceding expression (which can be
done under the integration and differentiation operations) we obtain

z

A 1
ox|r,N) = N [aaab fas(z | )\)] . db

—T

and the conclusions to the theorem follow by noting the identity

9 h@N ] 9 @ — 2 s ).

da ab 6b6

As an application we consider the Wiener-Einstein process for which we have
shown ((5.1) and (5.2))

cosh VvV 2\ ( 2 —2'_ b)

cosh v/2x <a ; b>

and here (7.1) gives on performing the integration,

dlx|r,\) = — V)@azta h/

independent of x since the process is spatially homogeneous. This latter transform
is easy to invert, and we have

_20 [ 5 1 =274 + 1"\
eelnt) =5 {’"Z(J+l>2ep< )i

j=0 T2

fab(x l )\) =

\/2“-{ Z ( 1)1 12 ~(JZ z/26)

=i

these two expressions being related by Theta function identities, and the second
being given by Feller [10]. For the moments we get from (7.2) immediately
E(R") = cat""” where

2n/2 « o 2
cn=—T—/ dztanhpdp
P +1)”

so that, for example, E(R) = \/8¢/x, E(R*) = 4t log 2, etc.
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