THE DISTRIBUTION OF QUASI-RANGES IN SAMPLES
FROM A NORMAL POPULATION

By J. H. CApbwELL
Ordnance Board, Great Britain'

1. Summary. A method is developed for the evaluation of the probability
density function of the statistic:

Wr = Tp—y — Tr41

where x, , 22, - -+ , 2, are ordered values in a sample of n from a normal popula-
tion.

It is shown that, up to » = 17, wo is the most efficient statistic of this type
for the estimation of population standard deviation. Beyond this point w, is
optimum up to n = 31, where ws becomes better. Tables of moment constants
and percentage points are given for w, over the range 10 to 30.

Similar methods are used to determine the efficiencies of two estimates of the
form w, + Aw; .

The approximation used is compared with three other published approxima-
tions in the case of range (r = 0).

Godwin [5] and Nair [11] have discussed problems of this kind for sample
sizes up to 10, using exact values of the first two moments. Karl Pearson [12],
Mosteller [10] and Jones [9] have considered the large sample case. The methods
of the present paper go some way towards filling the gap between these ap-
proaches. Moreover, they are not restricted to consideration of mean and vari-
ance only.

2. Introduction. The use of range as a rapid means of estimating population
standard deviation is usually restricted to sample sizes below 20. There are
several reasons for this restriction. Beyond this point the efficiency of such an
estimate, when compared with one based on sample standard deviation, falls
off rapidly. For larger samples the ratio of mean sample range to population
standard deviation depends rather critically on the form of the tails of the parent
distribution. Thus estimates based upon a normal model may be misleading.
Finally the probability of the presence of a ‘“rogue’ observation will increase
with the sample size. Such a freak observation is likely to lead to an unusually
large value of range.

One method of overcoming these drawbacks consists in splitting the sample
into smaller groups and finding the average range of these groups. Such a process
is not unique and this may be a drawback in certain circumstances. In addition,
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604 J. H. CADWELL

unless the order in which values are recorded is known to be independent of these
values, a randomising process is necessary. This will rob the method of speed,
one of the main assets of range as an estimator of standard deviation.

In a recent paper Mosteller [10] drew attention to the possible use of w,,
calling such statistics quasi-ranges. He mentioned an earlier result of K. Pear-
son’s [12] concerning the use of inter-quantile distances as estimators in large
samples from a normal population. In this case an optimum efficiency of 65
per cent is attained when points at a proportion 0.07 of the sample size from
either end are used. For small samples, range is the most efficient estimator of
this kind. Evidently, as n increases, the optimum value of r will cease to be zero
at some point. Since w; does not depend on the values of the extreme observa-
tions, it is likely to be less affected by departures from normality or by the possi-
ble presence of an occasional “rogue’ observation. Thus it should be preferable
to range beyond a certain sample size.

Godwin [4], [5], in discussing a more general type of estimator, found the
first two moments of w, for values of n up to 10. His method depends on a series
of double quadratures and becomes very laborious as n increases. Below we find
an asymptotic series for the p.d.f. of w, . As sometimes happens (e.g. with Stir-
ling’s series) results of high accuracy are obtained for small as well as for large n.

3. Derivation of the asymptotic series. It is shown in [1] that a series expansion
of the appropris*e integrand leads to close approximations to moments of quan-
tiles in the norml case. Thus, for odd n, the median of a set of n values has a
variance close to:

x ,C+Mw—wm—n}
(r+2n — o (r+ 2n —2)2 |’

For n = 3 this is in error by 0.001, and as n increases the error rapidly sinks to
Z€ro.

A similar method can be applied to the p.d.f. of w, when the parent distribu-
tion is symmetrical. We denote the p.d.f. of the parent by ¢(z), and need the
functions:

T

¢w=4¢mm

G = (L) o /o, 4@ = (L) o / 13 - o)

The p.d.f. of w, will be given by the integral:

n!
n — 2r — 2)Irlr!

1 Jw) = [ 1+ 2@t - 2 + w)l

(@ 4+ w) — @) e@)e(z + w) de.



QUASI-RANGES 605

Since ¢(r) is symmetrical, this integrand will have its maximum value at
—3w, , and will fall rapidly to zero on either side of this point. This suggests
expanding the integrand in terms of: ¢ = z 4+ w,.

Except where otherwise specified, wherever a Greek function letter appears
the argument will be 4w, . Consequently this argument is omitted in the interests
of simplicity.

After taking logarithms of the appropriate series, and again expanding, we
find:

(2) ®(x + w,) — d(x) = 2@ exp {208 + ---}

@ B+o@ -2+ w)l =G —2)%exp (@ + ¢ + -}
= RICAN A r.

@ @@ + w) = exp{ & 4rs }

Thus, apart from a constant factor, the integrand can be written in the form:
N 2 7

{14+ A"+ B + -} exp — {<ﬁ> — L@ y) — i —2r — 2)0’}?.
@ ®

Using the form of Watson’s lemma given by Jeffreys [8], we see that term-
by-term integration of this series yields an asymptotic series for the p.d.f. The
first term of this series is:

~ Co'G — @) (22" |
{2 <£1)2 —2 (%) + 2@+ ) — (0 —2r — 2)9'}*

©

flw,)

The constant C is chosen to make the area under the approximate p.d.f. equal
to unity.
If we now consider the case where ¢(z) is the normal density, (4) becomes:

e(@e(x + w,) = ¢ exp — &
With this modification the asymptotic series becomes:

—2r —2)

(5) f(wr)~0¢2(2<1>)"‘2'“2(%—<I>)2’k{1—(n 2 [3(0’)2—0"']16‘—[----}

where ]—cl~2 =24+ 2r(y* +¢) — (n — 2r — 2)0.
The second term of the series in brackets is of order 1/n. The next term, of
order 1/n% is:

7@ — v =y — 6 + 9T

+(n—2r—2)

 Om _ O\2[a(a\? _ a2 18
5 (n—2r —2)%[3(6)° — 0121,

v 11 gt 71317.6 773§
[6 150" ¢' + 30(0")°1k +384
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While these expressions are rather involved, n and r enter into them quite
simply. Thus, once the basic combinations of the 6, ¢ and ¢ functions have been
evaluated, the time taken to evaluate f(w,) is very much less than would be
needed if the exact expression (1) were used.

4. Accuracy of the dominant term. A convenient measure of accuracy is pro-
vided by comparing the mean value of w, , found from the approximate p.d.f.,
with the exact value:

©  Bw)=20+0(, 1) [ - 2@l + 2@ o) dn
This integral is easily evaluated by quadrature; for r = 0 values are given to 5
decimal places by K. Pearson [13]. The accuracy of the higher moments, and
the use of further terms of the expansion, are considered in subsequent para-
graphs.

For fixed n, k* decreases as r increases, provided w, is greater than 1.8. For
values of w, below 1.8, the quantity:

(7) 3(0/)2 — "

is very small. Thus it is evident from (5), that an increase of r should lead to
greater accuracy in the dominant term. We find that, when n = 30, values are
as follows.

Exact value Error of dominant term

i
|
E (w,) 3.2312 I +40.0019

E (wo) 4.0855 +0.0095
E (w2) 2.7296 +0.0006

For fixed r, the effect of the second term will depend on the position of the mode
of the p.d.f. The expression (7) rises from zero at w, = 0 to a maximum value
near w, = 4.2, and then falls to zero again as w, increases.

For small n, all but the right tail of the distribution will lie in a region where
(7) is small. For large n, the mode of the distribution will be well beyond the
region where (7) has any appreciable effect.

Thus, as n increases, the effect of the error in the dominant term will first
increase and later fall to zero. Since the mean value of w. increases very slowly
with n, the position of greatest error will occur for a sample size of the order of
a hundred.

For E(w,) we find the results:

20530}605100

0.0086 | 0.0095 | 0.0107 ' 0.0114
0.229 | 0.232 10.232 | 0.227

Error.................0 0 :0.0058
T €ITor. . . 0 10.202
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Thus, while the error in the mean is still increasing slowly beyond n = 60, the
maximum percentage error occurs near 50.

For w; the mode will be smaller than for w, , for the same sample size, and
consequently the increasing error will be longer maintained. Errors in the mean
value are given below.

n l 5 l 10 0 | % 40 l 60
Error........| 0.00019 | 0.00083 | 0.00153 | 0.00185 | 0.00205 l 0.00227
% error. .. ... 0.0188 i 0.0414 0.0543 0.0573 0.0584 ‘ 0.0586

It seems likely that the maximum percentage error is little in excess of its value
at n = 60.

5. Application to range. We first compare the accuracy of the dominant term
with that of three other asymptotic expressions.

Gumbel [6] has found the asymptotic distribution of range in the general sym-
metric population. His result is:

(8) fR) = 2¢7"Ko(2e7")
where
R = ne(u){we — 2u}, du) =1— 1/n.

Elfving [3] derives an asymptotic expression for the normal case, it is:

(9) f&) = EKo(®),

where
£ = 2n{1 - <’£02—°)}

In formulae (8) and (9) K, represents a modified Bessel function of the second
kind. Using the method of steepest descent, Cox [2] derives the result:

b/ ot (2 wp) T
e (3) 2 (5)]
3 .
Wo
—9, (%0
[ ‘ <2>]
In the case of range, the dominant term of the series considered here is:

(n — DVx o' [28]"
20 — (n — 2)¢'}

(10) J (wo) ~

(11) Flwg) ~"

This is asymptotically identical with (10). However, as ¢’ is small for quite
moderate values of w, , » has to be very large for good agreement between (10)
and (11).
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Cox examines the errors of (8), (9) and (10) when n = 20. His results are
compared with those obtained from (11) in the following table.

Mean St. Devn. B1 B2
Exact value................... 3.7350 0.7287 0.1627 3.259
Errorof 8)................... +0.12 +0.15 +0.49 -+0.94
Errorof 9)................... -+0.03 +0.04 —0.09 —0.18
Errorof (10)............... ... +0.10 +0.05 +0.05 +0.16
Errorof (11).................. +0.0086 | +0.0025 | —0.0043 | —0.019

We now consider the effect of taking two terms of the series for n = 20, 60
and 100. For n = 20 the exact values are given by Hartley and Pearson [7], for
60 and 100 values-are given by K. Pearson [13]. Errors are as follows:

n Mean St. Devn. B ! B2

20 —0.0026 —0.0010 -+0.0009 +0.006

60 —0.0042 —0.002 +0.001 +0.02
100 —0.0050 —0.002 +0.003 +0.02

It will be seen that two terms of the series give a very good approximation to
the true distribution.

6. The first quasi-range. The following figures illustrate the effect of taking
into account successive terms of the series. They refer to the mean value of w;
when n = 30.

Exact value. ....... ... ... . . . 3.23120
Error of first term. ........ .. .. ... .. ... ..... +0.00185
Error of first two terms. .. ........ ... ... ... ... .. —0.00025
Error of first three terms. .. ............ ... ... ... .. .. . ... .. -0.00006

Error of first fourterms. .. ......... .. ... ... . ... . .. —0.00002

It appears that the use of three terms gives a high degree of accuracy, at least
for the mean value.

In order to examine the accuracy of higher moments and percentage points,
exact values of the p.d.f. were found by quadrature for n = 30. The behaviour
of the approximation, using three terms of the series, is shown by the following
figures. '

Exact Value Error
Variance. .................... 0.25879 -+0.00004
Bl 0.0865 -+0.0001
Boo oo 3.142 <0.0005
B%point.................... 4.107 +0.001
99.9%point.................. 5.021 +0.001
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Below the 95 per cent point errors in percentage points are always less than
0.001.

For n = 10, Godwin’s five place value for the variance agreed exactly with
that obtained when using three terms of the series.

7. Efficiency values. The efficiency is defined as:

100 var s / var w,
[E(w,)]?

where s is the unbiassed estimate of population standard deviation:

r (n - 1)
SN e
8§ = 7 2z — 7)°.
V2r <->

2
For range, values of efficiency were obtained from the tables of reference [13].
For w, and w., Godwin’s values were available up to sample size 10. Beyond
this, values were computed from the approximate expressions. Some values,
rounded to the nearest 0.5 per cent, are given below.

n l 0 | 2 ' 30 40 i 60
Efficiency of wo. .. ........... | 85.0 | 70.0 | 60.5 | 54.0 | 44.5
Efficiency of wy. ............. ! 67.0 73.0 70.0 66.0 | 59.5
Efficiency of wy. .. ... ... .. .. | 4.0 | 65.5 | 69.5 ’ 69.0 | 65.5

1001~

n \ | |
80-*—**————‘- PP e L -, —-I—-——~—
2| A T T w, |
S —
b4 |
5 | | | ]
4 | w
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P08 S R e A
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0 ! | ! l |

(o] 10 20 30 40 50 60 70

SAMPLE SIZE

F1a. 1. Efficiencies of the various estimators considered
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The general behaviour is illustrated by Fig. 1. It appears that, as far as efficiency
is concerned, range is best up to samples of 17. Then the first quasi-range is
optimum up to n = 31. It seems likely that w; becomes optimum round about
sample size 50. In any case, the difference between w, and w; will probably be
small over quite a wide range of sample sizes.

8. Table of values for first quasi-range. The p.d.f. was computed, using three
terms of the series, for even values of n from 10 to 20, and also for 25 and 30.
Values of moment constants and percentage points were found for these sample
sizes. Values for other sizes in the range 10 to 30 were then found by interpola-
tion. As a check, mean values for each sample size were evaluated using (6).

Throughout this work, as in all the earlier quadratures, ordinates were found
at intervals of 0.2 in w, . This spacing was close enough to ensure that the dif-
ference of odd and even ordinate sums was of the order of one part in a hundred
thousand. This proved a valuable check on the computation of p.d.f. values.
It was found to fail only for sample sizes below 10. In such cases there is no
longer a high enough degree of contact between the p.d.f. and the axis at the
origin to secure this balancing of odd and even sums.

TABLE I
Constants for first quasi-range
Moments | Percentage Points
n
Mean Var. i B2 0.1 1.0 2.5 ! 5.0 95.0 97.5 99.0 99.9

10 | 2.0027 | 0.3423 | 0.145 | 3.125 | 0.57 | 0.83 | 0.97 | 1.11 | 3.03 | 3.25 | 3.52 | 4.09
11| 2.1238 | 0.3362 | 0.131 | 3.119 | 0.67 | 0.95 | 1.09 | 1.23 | 3.14 | 3.36 | 3.62 | 4.18
12 | 2.2315 | 0.3300 | 0.120 | 3.117 | 0.77 | 1.05 | 1.21 | 1.35 | 3.23 | 3.45 | 3.70 | 4.27
13 | 2.3282 | 0.3240 | 0.112 | 3.117 | 0.87 | 1.15 | 1.31 | 1.45 | 3.32 | 3.53 | 3.78 | 4.34
14 | 2.4158 | 0.3183 | 0.106 | 3.118 | 0.96 | 1.25 | 1.40 | 1.54 | 3.39 | 3.60 | 3.86 | 4.41
15| 2.4959 | 0.3128 [ 0.102 | 3.119 | 1.04 { 1.33 | 1.49 | 1.63 | 3.46 | 3.67 | 3.92 | 4.47
16 | 2.5695 | 0.3076 | 0.098 | 3.120 | 1.12 | 1.41 | 1.57 | 1.71 | 3.53 | 3.74 | 3.98 | 4.52
17 | 2.6376 | 0.3028 | 0.096 | 3.122 | 1.19 | 1.49 | 1.64 | 1.78 | 3.59 | 3.79 | 4.04 | 4.57
18 | 2.7008 | 0.2982 | 0.094 | 3.124 | 1.26 | 1.56 | 1.71 | 1.85 | 3.64 | 3.85 | 4.09 | 4.62
19 | 2.7599 | 0.2938 | 0.092 | 3.125 | 1.32 | 1.62 | 1.78 | 1.92 | 3.70 | 3.90 | 4.14 | 4.66
20 | 2.8152 | 0.2898 | 0.091 | 3.126 | 1.39 | 1.68 | 1.84 | 1.98 | 3.74 | 3.94 | 4.18 | 4.71
21 | 2.8672 | 0.2859 | 0.090 | 3.128 | 1.44 | 1.74 | 1.90 | 2.04 | 3.79 | 3.99 | 4.23 | 4.75
22 | 2.9163 | 0.2823 | 0.089 | 3.130 | 1.50 | 1.80 | 1.95 | 2.09 | 3.83 | 4.03 | 4.27 | 4.78
23 | 2.9627 | 0.2788 | 0.088 | 3.132 | 1.55 | 1.85 | 2.00 | 2.14 | 3.87 | 4.07 | 4.30 | 4.82
24 | 3.0067 | 0.2754 | 0.088 | 3.134 | 1.60 { 1.90 | 2.05 ; 2.19 | 3.91 | 4.11 | 4.34 | 4.85
25 | 3.0486 | 0.2723 | 0.087 | 3.135 | 1.65 | 1.95 | 2.10 | 2.24 | 3.95 | 4.14 | 4.37 | 4.88
26 | 3.0885 | 0.2694 | 0.087 | 3.137 | 1.70 | 2.00 | 2.14 | 2.28 | 3.98 | 4.18 | 4.41 | 4.91
27 | 3.1265 | 0.2665 | 0.087 | 3.138 | 1.74 | 2.04 | 2.19 | 2.32 | 4.02 | 4.21 | 4.44 | 4.94
28 | 3.1629 | 0.2638 | 0.087 | 3.140 | 1.78 | 2.08 | 2.23 | 2.36 | 4.05 | 4.24 | 4.47 | 4.97
29 | 3.1978 | 0.2612 | 0.087 | 3.141 | 1.82 | 2.12 | 2.27 | 2.40 | 4.08 | 4.27 | 4.50 | 5.00
30 | 3.2312 | 0.2588 | 0.086 | 3.142 | 1.86 | 2.16 | 2.31 | 2.44 | 4.11 | 4.30 | 4.52 | 5.02
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All values were computed to one further place than that given in Table I.
Errors should not exceed one unit in the last place quoted, except for variance
from 20 to 30. Here the wider interval of interpolation may result in errors up
to 1.5 units in the last figure.

We can find constants ¢, A, » so that cw} has approximately a x* distribution
with » degrees of freedom. Errors do not vary greatly over the range n = 10
to n = 30. Thus we find for n = 30,

¢ = 16.231 N = 1.1409 v = 62.

In this case the maximum error in the probability integral deduced from that
of x* is 0.0004, occurring near the 20 per cent point; errors are smaller at the
tails. From the 5 per cent point to the 97.5 per cent point errors in percentage
points of w; , deduced from the corresponding values for %', are always less than
0.001. The error at the 0.1 per cent point is 0.008, while that at the 99.9 per
cent point is 0.005.

This type of transformation enables Bartlett’s test to be used as an approxi-
mate test of homogeneity of a set of values of w;, , each for the same sample size.
It has been found to give results of similar accuracy for range and average range.
It is hoped that a detailed study of this transformation will be completed and
published shortly.

9. Linear combinations of quasi-ranges. Godwin [5] determines the optimum
linear combination of w, , wy, ws, - , for the estimation of standard devia-
tion. Such an estimator uses all the possible quasi-ranges, and for n = 10 gives
an efficiency of 99.0 per cent.

For rapid estimation, attention must be restricted to a few values of w, .
Mosteller [10] considers certain unweighted sums of two values. His investiga-
tion is restricted to large samples, where the w, are replaced by inter-quantile
distances. Nair [11] considers the sum of the first k quasi-ranges for sample
sizes up to 10, while Jones [9] investigates it in the large sample case.

Using the methods of Section 3, we can derive approximations to the covariances
of pairs of w, values. Thus, for w, and w; we find that the quadruple integral for
E(wow;) is approximately equal to:

Kf wie' (A — ®)(20)" " k dw,

where .
K =2V2rnn — 1)(n — 2)(n — 3)
and
1 Q ’ 1,52 ;
I??=o—¢ — Ly — (n — 4)0.
Here, all Greek letters are functions of 3w, . When n = 10, comparison with

Godwin’s values [4] shows that the error in the covariance is 0.0028. The use of
another term of the series reduces this error to 0.0009 units.
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In deriving these errors, the exact value of K given above was not used. In-
stead, the integral was first evaluated with the factor w, omitted. This is an ap-
proximation to E(w), and K can be found to satisfy this condition exactly.
This device is analogous to the determination of C in (5) so as to make the area
under the p.d.f. equal to unity. As in the previous case it gives appreciably better
results than does the use of the theoretically correct constant.

For w; and w; we have:

(12)  Elww,) =L [a wep (3 — ) [y — Lh(w)1(28)"°k duws,.
where

1 W2

- — | —
(13) hwg) = —2 <‘/§

and

L _ e WY 22 () — )h(ws)
(14) =2 (n—6) V7 o7 :

All functions without an argument shown are to be taken with argument
iw, . Comparison with Godwin’s value shows that this expression yields
cov(w; ,w2) with an error of 0.0005 units, when n = 10.

The two estimators:

(a) W +ﬁ0_1ﬁﬁ_ wr + Aws
E(wo) + ME(wy) E(wy) + NE(w2)

were considered, the constant A being chosen to maximise efficiency. Results are
shown by the dotted curves in the figure. Values, expressed to the nearest 0.5
per cent, are given below.

and (b)

7 10 2 30 | 40 60
(a)
Efficiency............ 96.5 87.0 79.5 72.5 63.5
A e 0.85 1.47 1.93 2.30 2.95
(b)
Efficiency............ 69.0 79.5 78.5 76.0 71.0
A e 0.36 0.81 1.13 1.40 1.76

As is to be expected, the value of \ used is not at all critical. Thus, a convenient
integer can be used with little loss of efficiency. For instance, using the estimator
(a) with A = 2whenn = 40, resultsin a loss of 1.1 per cent.
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It is evident from the figure that the use of both w, and w; offers an appreciable
advantage for sample sizes from 10 to 30. The combination of w; and w; is not
so0 impressive. It seems likely that w, used with a higher order quasi-range might
be better from 30 to 60.

The p.d.f. of such estimates will be a trivariate integral. While the methods
used above allow this to be replaced approximately by a single integral, the
labour of evaluation for a set of values would still be considerable. However, for
some purposes, confidence limits based on a normal approximation will be satis-
factory.

Alternatively, the approximate evaluation of g; is possible. Thus, if the analogy
with wy and w; can be relied upon, an approximation based on a power of x*
should give a degree of accuracy sufficient for most purposes.

I should like to thank Mr. D. F. Mills, who carried out the computations
necessary for the tabled values of constants for first quasi-range.
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