LOCALLY OPTIMAL DESIGNS FOR ESTIMATING PARAMETERS

By HerMaN CHERNOFF

Stanford University

1. Summary. It is desired to estimate s parameters 6;, 62, ..., 6, . There is
available a set of experiments which may be performed. The probability dis-
tribution of the data obtained from any of these experiments may depend on
61, 0.,--+, 0, k = s. One is permitted to select a design consisting of n of
these experiments to be performed independently. The repetition of experiments
is permitted in the design. We shall show that, under mild conditions, locally
optimal designs for large » may be approximated by selecting a certain set of
r<k+&—-1)+ --- + (k — s + 1) of the experiments available and by
repeating each of these r experiments in certain specified proportions. Examples
are given illustrating how this result simplifies considerably the problem of
obtaining optimal designs. The criterion of optimality that is employed is one
that involves the use of Fisher’s information matrix. For the case where it is
desired to estimate one of the k parameters, this criterion corresponds to mini-
mizing the variance of the asymptotic distribution of the maximum likelihood
estimate of that parameter.

The result of this paper constitutes a generalization of a result of Elfving
[1]. As in Elfving’s paper, the results extend to the case where the cost depends
on the experiment and the amount of money to be allocated on experimentation
is determined instead of the sample size.

2. Introduction. Before formulating the problem precisely we shall consider
a simple special example which will illustrate many of the points involved.
Consider the regression problem

(1) y=v+dz+u -1 1

IIA
IIA

x

where u is an unobserved disturbance which is normally distributed with mean
0 and variance 1. The disturbances of successive observations are distributed
independently of each other. Suppose that we are permitted to select a set of
n values of x between —1 and 41 and to observe the corresponding values of
y. If our objective were to estimate 4, it is well known that the best procedure
consists of using £ = 41 for half of the observations and x = —1 for the other
half.

In this problem we may regard the observation of a y corresponding to a
given value of x as an experiment E, . The class of available experiments is the
set {E.: —1 < x £ 1}. The parameter in which we are interested is §, but the
distribution of the data depends on v also. In this case v is a nuisance parameter.
The optimal design consists of using each of the two experiments E; and E_,
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half the time (if » is even). It should be noted that if the set of experiments
available were decreased so that E, is available only for —1 < 2 < 1, no optimal
design could be found. This is essentially due to the fact that given any design,
a better one can be obtained by spreading out the values of x even more (i.e.,
by taking values of x closer to the end points —1 and +1).

A peculiarity of this particular problem is that no matter how many times a
particular experiment E, is repeated, no reasonable estimate of & can be deter-
mined. At least two distinct experiments are required. Another peculiarity of
this problem is that the variance of §, the maximum likelihood estimate of &
does not depend on the value of v and 8. In general, this latter property will
not hold and we shall be restricted to obtaining locally optimal designs, that is,
designs which are optimal if the parameters are known to be close to certain
specified values.

We may consider a variation of the above problem. Suppose that it is desired
to estimate v and that ¢ is the nuisance parameter. Then it is well known that
an optimal design consists in repeating the experiment E;, n times. An equally
optimal design may also be obtained by using any set of z’s so that £ = 0.

3. Information matrices and mixed experiments. The formulation of our
problem will involve the concepts of information matrices [2] and of randomized
or mixed experiments. For the sake of notational convenience and in order to
clear up some technicalities that arise, we shall discuss these concepts before
proceeding to the formulation.

R. A. Fisher defined the information matrix X () for an experiment involving
the parameter 8 = (01, 0>, ---, 6;) by

o’L . .
Bl =m0l i=120
where L 1is the logarithm of the likelthood function. It should be noted that X (6)
ordinarily depends on 6. It is easily seen and well known that

oL oL

and hence that X (0) is a nonnegative definite symmetric matrix.

Another well known property of information matrices is that of additivity.
That is, if E,, E., ---, E. are experiments yielding information matrices
X1(0), X2(6), -, X.(8), the combined experiment or design which consists
in carrying out each of these experiments independently yields the information
matrix X;(0) + X.(0) + --- + X,.(9)

The experiment which consists in carrying out one of the available experi-
ments, this one to be determined by a random device, is called a randomsized
or mized experiment. Hence if p1, p., -+, p. are positive numbers adding up
to one, the experiment which consists in carrying out E; with probability p; is
mixed. It is easily seen that this experiment has information matrix p,X;(6) +
P2X2(8) + -+ + p.X.(0).

) X0 = -

(3) X =
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Let an experiment E with positive definite information matrix X (6) be carried
out m times and let § = (6;, 6,, -- -, 6) be the resulting maximum likelihood
estimate of § = (6;, 62, ---, 6;). Under mild conditions [3], the covariance
matrix of the asymptotic (as m — ) distribution of v/m(é — 6) is given by

4) X)) = [ =70 | j=1,2 -,k

at all points of continuity of X(6). This property suggests the usefulness of
information matrices in comparing designs.

Unfortunately, it is possible for an information matrix to be singular and
hence to fail to have an inverse. To allow for this situation, we extend the notion
of inverse to the class of nonnegative definite symmetric matrices. Let X be
nonnegative definite symmetric and let Y be any other symmetric matriz so that
X 4 \Y is positive definite for positive N small enough. Then, let

(5) X' =||27]| = lim (X + )7\
N0+

In Appendix A it will be shown that this new definition is consistent with the
usual definition and is statistically meaningful. Also, if z'" and 2% are finite,
then 2% is finite and z*, 27 and z*’ are independent of the particular ¥ selected.
It should be noted that X is a continuous function of X on the set of positive
definite symmetric matrices but that elements of X~ may fail to be continuous
for X singular.

4. Formulation. In this section we shall formulate our problem and then in-
dicate the reasons behind this formulation. Using the special example previ-
ously mentioned, we shall examine conditions which we shall impose to obtain
the desired results.

There is a set {E} of experiments available. The distribution of the data
from one of these experiments depends on 6 = (61, 62, - - - , 6;). The information
matrix X (6) may be characterized by the elements on and above the main
diagonal. These elements arranged in some order may be considered as com-
ponents of a vector in k(k 4+ 1)/2 dimensional space. This vector may be identi-
fied with the matrix. Since we are interested in locally optimal designs, that is,
designs that are optimal when 6 is known to be close to some given value, say
09 = (6, 65, - - -, 6), we confine our attention to X (6).

Let Ry be the set of vectors corresponding to the X(8V) for the experiments of
{E}. Let R be the convex hull of Ry, that.is, a typical clement of R is the convex
linear combination 1 X1 + pXo + -+ + p X, where X1, Xo, -+, X, are
elements of Ry and p1, P2, *+ + , Pa are positive numbers adding up to 1.

From the previous section, it follows that R represents the set of information
matrices of the class of mixed experiments.

1 The author is indebted to Max A. Woodbury and the referee who independently pointed
out a close relationship existing between this definition of inverse and the concept of the
pseudo inverse of a matrix.
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We shall be interested in showing that under certain conditions, an element X
of R which minimaizes

(6) vs(X)=x“+x22_|_ e 2™ s <k
can be represented as a convex linear combination of
) rsk+Gk-D+ -+ Kk —s+1)

elements X1, Xs, -+, X, of Ry .

It is evident that X corresponds to a mixed experiment which is “optimal”
in the sense that if § were based on = repetitions of this experiment, the sum
of the variances in the asymptotic, (as n — =), distribution of /(6 — 61),
/by — ), -+, V/n(b, — 6,), would be a minimum.

Certain questions naturally arise concerning the usefulness of this criterion.
First, it may be asked whether this criterion is relevant if one desires to confine
oneself to pure experiments, that is, elements of {E}. Here we note that as n
— o, X may be approximated by (mX; + n X, + -+ + n.X,)/n where n;,
ng, - -+ , N, are positive integers adding up to n. The latter expression represents
1/n times the information matrix corresponding to the design where E; is carried
out n; times. The answer to the last question would be yes if it were shown that
v5(X) is continuous at X = X on the convex set generated by X, X, -,
X.,.

One may also ask why our criterion should involve information matrices.
Such a criterion has a certain aesthetic appeal. Furthermore, we shall discuss
in Appendix B how the main result yields a justification of this criterion.

Finally, one may seriously inquire whether a “good” design must minimize
the sum of the asymptotic variances. In fact, we shall see in Appendix C that
very often when one is interested in s parameters, a sound criterion for a “good”
design involves minimizing {r(4V) where 4 is a nonnegative definite symmetric
matrix of rank less than or equal to s and V is the covariance matrix of the
asymptotic distribution of /n(6 — 6). By a linear transformation of 6 this
criterion may be transformed to that of minimizing the sum of no more than
s asymptotic variances.

Since certain conditions must be imposed to obtain our desired result, we
shall explain these conditions by referring to the example considered in Section
2. In that example the experiment E, yields a likelihood function with logarithm
given by

L= —%log2r — %y — v — éx).
Let 6, = & and 6, = v. The corresponding information matrix is given by
'z

-
|

z 1]

For this example, R; is the set of all points in three dimensional space whose
coordinates are (z°, z, 1), —1 < z < 1. This set represents a segment of a para-
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bola lying in a plane of three dimensional space. The convex set R generated
by R, is the set bounded by R; and the line segment connecting the end points
of R;. The optimal design consisting in using X; and X_;, each half the time,
corresponds to the mid-point of the above-mentioned line segment, that is,
the point (1, 0, 1).

We mentioned previously that if x is restricted to —1 < z < 1, no optimal
nth order design exists. Note that in this case R has been changed by deleting
the boundary line segment on which the optimizing point (1, 0, 1) lies. Although
we can get arbitrarily close to this point when —1 < z < 1, we cannot reach
it. In general, to prevent this minor difficulty we shall impose the condition
that R be closed. Then R will contain all of its boundary points.

A second condition that we shall impose is that R be bounded. That is, no
element of X, can be made arbitrarily large by selecting E. properly. This
condition is satisfied in our example, for there no element can exceed 1 in ab-
solute value. If, however, the example were modified to permit all real values
of x, the element of the first row and first column of X, would be unbounded.
Note in this modified example, that if the parameter v were known, & could be
estimated with arbitrarily small variance from one experiment by taking x
large enough. This interpretation of the effect of unbounded R applies to the
general case, too. If some element of X is unbounded, the fact that X is non-
negative definite implies that some element of the main diagonal of X is un-
bounded. If the 7th element of the main diagonal of X is unbounded, 6; can be
estimated with arbitrarily small asymptotic variance if all the other parameters
are known.

6. Main results. In this section we state our main results. The proofs will
first be given for s = 1 and then extended to s > 1.

TureoreM 1. If R s closed and bounded there is an element X of R which mini-
mizes v,(X) = " + 2% + .-+ + 2 and which is a convex linear combination
of rsk+ Gk -1+ -+ (k — s+ 1) elements X,, Xo, -, X, of Ry.
Furthermore X1, Xz, -+, X, may be chosen so that v,(X) is a continuous function
at X = X with respect to the topology of the convex set generated by X,, Xo, -+,
X, .

We treat the case s = 1 where we let

8) 2(X) = n(X) = 2™
In outline, our proof for s = 1 consists in obtaining an expression for
§(X, A) =2(X + A) — 2(X)

which will be used to show the existence of an X & R which minimizes z(X)
and such that X lies on a supporting hyperplane of R. It will also be evident
that 2(X) is constant on a sub-hyperplane. The dimension of this sub-hyper-
plane leads to the existence of X with the desired properties. The complexity
of the details of the proof arise mainly from difficulties in the case that X is
singular since z(X) is not continuous at singular X.
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Lemma 1. If X and X + A are nonnegative definite symmetric matrices and
2(X) 5= o, then

) (X, A) = 2(X + A) — 2(X) = —e(X, A) + 9(X, A)
where
(10) G(X’ A) = lim e)\(X) A),
A0
(11) aX,a) = [(X + AD7'AX 4+ 2Dy,
(12) W(X’ A) = lim nk(Xy A)’
A0
(13) n(X, 8) = [(X + ADTAX + M + A)7AX + D7y

and (X, A) is a linear function in A and 7(X, A) = 0.
Proor. Since the matrices (X + AI) and (X + A 4 AI) are positive definite
forA > 0

(14) 3(X, 4) = }g& (X + A+ ) — 2(X + AD),

(15) X+M+A)7" =X+ = =X +AD)7AX + D!
+ (X +ADTAX + A 4 ATAX + D)7

Since 2(X) # o it follows (see Appendix A, property 1) that limy_o (X
4 A)* exists and is finite for each ¢. Let us denote this limit by X" = X*.
Hence

k

(16) X, 8) = lim a(X,8) = 2 X"A; X7

A0t =1
It follows that as A — o+, m(X, A) converges (possibly to + «). Since the
matrix, of which m(X, A) is the element of the first row and first column, is
nonnegative definite it follows that 4(X, A) = 0.

Lemma 2. If X and X + A are nonnegative definite symmeiric matrices and
2(X) = oo, then lima_o2(X 4+ A) = «. (We write A — 0 if each element of A
approaches zero. Note that A converges to zero subject to the condition that
X + A is nonnegative definite and symmetric.)

Proor. If A and B are symmetric matrices we use the notation A < B or
B> A if p’Ap £ p'Bp for every vector p. If A and B are positive definite and
A < B, it is easily seen that B~ < A~ by diagonalizing B and A. Also,

2(X + A) = x’i’ﬁ (X 4+ A+ D7y

Let d be the largest characteristic value of A. Then
X+A4+MN) <X +04+D), X+A+N)T'>X+0+adD
X 4+ 4) 2 (X + 40"
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As A — 0, d — 0. Furthermore 2(X) = . Hence lima_o (X 4+ dI)"' = «, and
our lemma follows.

LemMmA 3. If R s closed and bounded, 2(X) attains its minimum on R.

Proor. Let w = infx.z 2(X). Because R is bounded, w > 0. The case w = o
is trivial and hence we assume 0 < w < . Since R is closed and bounded there
is a sequence {X°} such that X ¢ R, 2(X*?) — w and {X®} has a limit point
XPeR. Let A® = X — X©, It suffices to show that 2(X®) < w. By Lemma
2, 2(X?) # . Hence

- Z(X(o) + A(i)) _ Z(X(o)) — —G(X(O), A(i)) + n(X(O)’ A(i)).
Since e is linear in A,

lim (X, A7) = 0.
But 7(X®, A”) = 0. Letting 7 — «, we obtain w — 2(X”) = 0.

Hereafter we shall assume that R is closed and bounded. Then let p be the lowest
rank associated with those elements of R which minimize 2(X). Now we assume
that X© minimizes 2(X) on R, 2(X”) 5 » and X© has rank p. We shall now
reduce the set under consideration from R to R n H; where H; is a hyperplane
containing X and H; has dimension p(p + 1)/2. In the event that X is
nonsingular, no reduction from R has been effected. We shall not consider the
trivial case X = 0 for then w = oo,

We construct H; as follows. Corresponding to X, there is an orthogonal
matrix P = || p;; || such that

7 X© = P'EP
where
E: 0
(18) E = < ! )
0 0

and E; is a diagonal p X p matrix where all the elements on the main diagonal
are positive. We define H, as the set of X for which

;0
(19) P(X — X)P' = < >
0 0

where Dy 1s a symmetric p X p matrix. It is evident that H; is a p(p + 1)/2 dimen-
sional hyperplane containing X®. We note that the nonnull set R n H, is the
convex hull of B; n H; and is also closed and bounded.

Lemma 4. It XP e Rn Hy, X® has rank p, 2(X®) # o, and X® + Ae H,,
then 7(X®, vA) approaches zero at least quadratically as v — 0 and z(X) is con-
tinuous at X = X (in the topology of Hy).

Proor. Since X ¢ R n Hy and X" has rank p,

PXVP = <Fr O)
0o 0/
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where F; is a positive definite symmetric matrix. If X® + A ¢ H;,

PAP’=< 0 0
0 0

where D; is symmetric. Let pr be the vector consisting of the first p elements
of the first column of P. If F; and F; + vD; are nonnegative definite we have,

20) m(X®, vA) = pr(Fr 4+ N)'(wDy)(Fr + N + vD))"'(vD;)(Fr + N) pr.

But F; is positive definite and for » small enough F; + »D; is also positive
definite. Therefore,

(21) W(X(l), vA) = p;FI_l(VDI)(FI + VDI)—I(VDI)FI_lph
and
lim n(X, »A)/v* = p; F7'D; F7'D;Fr' pr < .

y—0

Similarly one may obtain

(22) «(X®, vA) = prFr' (vD)Fr'p:.
The continuity of 2(X) at X = X® follows immediately from equations (21)
and (22).

LeMMA 5. There is a sub-hyperplane Hy of Hy which is a supporting hyperplane
of R n Hy at X©. H, has dimension (p(p + 1)) — 1.
Proor. Suppose X = X + AeR n H;. By convexity

X9 + yAeRn H, for0 < v < 1.

If «X©®, A) > 0, it follows from Lemma 4 and the linearity of e that 2(X©
+ »A) — 2(X®) < 0 for small enough positive ». This contradicts the fact
that X© minimizes 2(X) on R. Hence

(X9, X - X" =0 for X eRn H;.
The sub-hyperplane H; of H; defined by the restriction
(23) (X9 X — XV = piE7’DiEr'pr = 0

is a supporting hyperplane of R n Hy at X©. The fact that equation (23) actually
constitutes a restriction on X depends on' the fact that p; # 0, and this in turn
is easily established from z2(X®) s o, which implies that the last & — p elements
of the first column of P are all zero.

LEMMa 6. There is a sub-hyperplane Hy of Hy so that 2(X) = 2(X®) for X e R n
H; . The dimension of Hy minus that of H; is no more than p — 1. _

Proor. For X e Hy, «(X®, X — X©) = 0. From equation (21) it follows that

if E; + D, is nonsingular, the restriction

(24) piET'D; = 0
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implies n(X”, A) = 0 and hence 2(X” + A) = 2(X®). This implication holds
even if E; 4+ D, is singular and nonnegative definite. For then we may apply
equation (20) with F; replaced by E; and v = 1. We note that subject to re-
striction (24) p;(E; + AI)™'D; = O()\). Furthermore (E; + M + D;)™* < (1/\)1
whence m(X®, A) = OQ\) and 2(X® + A) = 2(X©).

Equation (24) constitutes a set of at most p linearly independent restrictions
on X = X® 4 A. However, since the restriction (X, A) = 0 may be written
p1ET'DE7'pr = 0 it follows that on H,, the restriction (24) constitutes a set
of at most p — 1 linearly independent restrictions. Let H; be the sub-hyperplane
of H; on which p;E;'D; = 0. Lemma 6 follows.

LemMA 7. There is an element X of R which minimizes 2(X) and which is a con-
vex combination of a set of r < p elements of Rin H, .

Proor. The set R n Hj is closed, convex and bounded. There exists at least
one element X of R n H; which is not a convex combination of any two distinet
elements of R n H;. By Lemma 6, 2(X) = 2(X©), that is, X minimizes z(X)
on R. The matrix X is an element of H, which supports R n H; . Hence X is a
convex combination of elements of R; n H, . Let r be the least number of elements
of Ry n H, which are required to yield X as a convex combination. Then X is
an interior point of R n Hy where H, is an r — 1 dimensional sub-hyperplane of
H, . Since X was selected so that X is not an interior point of any line segment
of Rn H;, Hyn H; must have dimension 0 and hencer — 1 £ p — 1.

LemmA 8. Theorem 1 is valid for s = 1.

ProoF. Lemma shows the existence of X and the continuity property is given
by Lemma 4.

Now that Theorem 1 has been established for s = 1, we shall extend the proof
for s > 1. In that case we change our notation slightly. We let

(25) 2X) = 0,(X) =2 + 2% + - 4+ 2™

(26) 8(X,A) = 2(X + A) — 2(X)

(27) aX,a) = «"(X,A) + &7(X,8) + -+ + &(X, A)
(28) «(X,4) = lim o(X, 4)

(29) m(X,a) = iV (X, A) + (X, A) + - + (X, A)

(30) 7(X, 4) = Alilolrl+ n(X, A)
where &”(X, A) and 75?(X, A) are obtained from the zth diagonal terms of the
matrices appearing in equations (11) and (13), respectively. Then Lemmas 1,

2, 3, and 4 may be established as in the case for s 4 1. Equations (20), (21), and
(22) are slightly modified. To illustrate, equation (20) becomes

31) m(X?Y, a) = ; " (Fy + \) (D) (Fr + M + vD)™*

. (VDI) (FI -+ )\I)—l pf)
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where p!” is the vector whose components are the first p elements of the ¢th
column of P. It will be useful to note later that the condition 2(X®) % o implies
that the last k¥ — p elements of the first s columns of P are all zeros. In fact,
i, p?, -, pf¥ are then unit orthogonal vectors.

Lemma 5 follows as before with the restriction defining H, replaced by
(32) (X, X — XO) = 3 pi” " Er'D Er pi” = 0.
=1

In Lemma 6, the wording must be modified so that the dimension of H; minus
that of H;isno morethanp + (o — 1) + --- 4+ (o0 — s + 1) — 1. The change
is due to the fact that restriction (24) is now replaced by

(33) PET'D; = 0

where P; is the (p X s) matrix of rank s consisting of the first p rows and s columns
of P. It is possible to rearrange the rows and columns of D; (maintaining sym-
metry) so that equation (33) may be expressed by

Dy Dy
(34) (Qu Q12) < > =0
Dy Dy,

where Q; is nonsingular, Qu, Qis, Dy, D2 = Dsy and Dss are of order s X s,
sX (p—8),sX s, sX (p—s)and (p — s) X (p — s), respectively, and

Dy Dy
<D21 D22>
is the result of rearranging the rows and columns of D; . But then
Dy = —Q1—11Q12D22

Dy = —Ql_llleDm = —Ql—llQmDél .

Hence, after the restriction (33), D is determined by Dy and has only (p — s)
(0 — s+ 1)/2 linearly independent elements. Hence, equation (33) imposes

plo+1) (o—9s)lp—s+1) _ s —s4+1)
2 2 N 2

=p+tb-D+--+b—-s+1)

independent linear restrictions on the symmetric matrix D. But as before one
of these restrictions is lost on H,, for (33) implies ¢(X®, A) = 0. Lemma 7,
with p replaced by p + (o — 1) + -+ + (0 — s + 1) follows as befpre. Theorem
1 is once more an immediate consequence of Lemmas 4 and 7.

6. Remarks. In many cases, the cost of experimentation depends on the
experiment. Then the usual design problem is to maximize information, given
a certain amount of money to spend on experimentation. Our results of Section
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5 are easily seen to apply in this case, too. Here we identify with each experi-
ment a matrix

(35) Y(6) = X(0)/c

where ¢ is the cost of performing the experiment. The matrix Y (6) represents in-
formation per unit cost. The matrix which we associate with the mixed experi-
ment when E; is carried out with probability p;,7 = 1,2, ---, n, is

Z p: X:(6) Z ¢:p: Yi(0)
(36) ' Y() = = == .

E piC: E CiPi

=1 =1

It is evident that a reasonable criterion for a good mixed experiment is that
v,[Y (0)] be minimized.

In [1], Elfving obtained our result (Theorem 1) for s = 1 and s = k in the
case of linear regression. Elfving also indicated an elegant geometrical method
of obtaining the optimal design. The methods used by Elfving depend only on
the assumption that for any nonrandomized experiment, X (6) may be repre-
sented in the form

@37 X(0) = l[;(0) | = || z:(6)25(6) |.

Hence, these methods may be applied in many examples which are not regres-
sion problems.

7. Examples. In this section we shall discuss some examples in order to show
how the results of Section 5 may be used to reduce considerably the amount of
work required to obtain optimal designs of experiments. The results of Elfving
[1] make it unnecessary for us to consider the important and interesting examples
from linear regression theory.

ExampLE 1. Suppose that

(38) pe=¢e™ 60>0,d=0,

represents the probability that an insect will survive a dose of d units of a certain
insecticide. It is desired to select n dose levels to try on = insects to estimate 6
in an optimal fashion.

Here the information matrix corresponding to a particular d is given by

(39) X, = d¢"/ (1 — &™), d>0
and
(40) X;=0 d = 0.

The conditions of Theorem 1 are satisfied and hence it follows that a locally
opitmal design consists of repeating one dose level n times. Maximizing X, we find
that this dose level satisfies
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2¢7 4+ 6d = 2

(40) PPy
0

For this locally optimal dose level, the probability of survival pq is very close to

.2. An interesting by-product is that for the general design the maximum likeli-

hood estimates are not too simple to obtain or study. For the optimal design

the estimation problem is that of estimating the probability associated with a

binomial distribution.’

ExamrLre 2. Let A and B represent two characteristics that members of a
population may or may not have, for example, the habit of smoking and heart dis-
ease. Let A and B represent the complementary characteristics. It is desired to
estimate the degree of dependence of the two characteristics A and B. Five experi-
ments may be performed. These correspond to examining individuals either:
(i) at random; (ii) with characteristic A; (iii) with characteristic 4; (iv) with
characteristic B; or (v) with characteristic B. The parameters involved are
Pa,Pi=1—D4,p8,p5 =1— ps,and 0 = pss — paps Where p with a sub-
script indicates the proportion of the population with the characteristics of the
subscript. There are three independent parameters.

In the case where ps and pg are known, it has been shown by Blackwell [4]
that to test for independence an optimal design involves repeating one experi-
ment n times. This experiment is the one which corresponds to the smallest of
the four probabilities p4, pi, ps, and pz . Here, Theorem 1 may be applied
to yield the same result if it is desired to estimate 8 when 6 is assumed to be close
to zero.

Suppose, now, that our problem is modified so that ps is only approximately
known. Here, Theorem 1 applies with & = 2, s = 1, and tells us that we should
use at most two of the experiments. Furthermore, since selecting an individual
at random is equivalent to a mixture of two of the other experiments we may
confine our attention only to pairs of the other four experiments. Let us now
evaluate the information matrix X, corresponding to examining an individual
with characteristic A, this information matrix to be evaluated at § = 0. In this
experiment the probability of observing a smoker is pz + 6/p4 . If the individual
observed has characteristic B

[’} oL 1
L=log<p3+—>, = = )
Pa el [’}
(pB + _> P
Pa
and
oL _ 1
61)3 [/} :
DB + Pa

2 The author wishes to express his thanks to Fred Andrews for his assistance on this
example.
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If the individual observed has characteristic B,

0 dL -1
B=tog (1=~ 1), A C—
B Da Da
and
sL_ -1
1 — -
Ps Pa
Hence
1 1 -
2 A4 _
— P
(41) X, = L PP 1 |y P
Pa PApPs P5
™ 1 Pi PiPa
Similarly
Da
— -p
(42) X;=—2 | pz “,
P4 PIPs P
—Pa DPabi
1 B2
(43) X8=m—_ Ds
A B
“PEPRPEI G
and
1 L2
(44) 2= Pa Pipsps i
A B
A4 B O 0

From the remarks of the previous section, it follows that Elfving’s results [1]
may be applied. The geometrical figure that is developed shows immediately
that the optimal design consists of using either B, or B or A and A each half the
time, according as to which of the numbers

1/2_'3 VE& L
P’ 5" 2V p.pi

is greatest. This last result can also be obtained directly without computational
difficulty.

8. Appendices.
ArrEnDIX A. Extension of the inverse to nonnegative definite symmetric
matrices.
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Here we extend the notion of the inverse of a matrix to nonnegative definite
symmetric matrices and show how this extension has statistical significance.
Suppose that X is nonnegative definite and symmetric. Let ¥ be a symmetric
matrix so that X -4 AY is positive definite for positive A sufficiently small. Then
we define the inverse of X relative to Y by

(45) Xy = lim (X +21)7
A0
The usefulness of this definition arises mainly from the following property.
PropERTY 1. The diagonal elements of X3' are independent of Y. Furthermore,
of the ith and jth diagonal elements of X3 are finite, the (i, 7) element of X3" is finite
and independent of Y. If the ith diagonal element of X3' is finite, all the elements of

the ith row of X5 are finite.
Proor. Corresponding to X there is an orthogonal matrix P such that

Eu 0
(46) P'XP =E = < " )
0 0

where Ey is a diagonal p X p matrix whose diagonal elements e;, e, -, e,
are positive. We define F by

Fll Fl2
47 PYP=F = .
F21 F22
Then Fy, is positive definite and
(X +A\Y)™" = P(E + \F)"'P

ES + 00 —[ET + OO)IFy Fo
=p 1 1 1 -1 -1 P,'
—°F2—2 F2l[ “11 + O(A)] X [F22 - AF".’.l [Ell + AF‘ll] FIQ]

Let pa and p.; represent the first p and the remaining k¥ — p elements of the sth
column of P. Then
(X + V)" = puEipn — puFu FnEn'psi — pa B FuFrpi

48 1 7’ !
(48) + X PaFapia + pi2F2_21F21E1_11F12F2—21pj2 + o).

Suppose that limy_e (X + AY)* is finite. Then p;» = 0 and

s £ 2'
(49) lim (X 4+ \V)* = phEnipa = 2 2%
Ao+ h=1 €

which is independent of Y. Also
(50) Alilgl (X + )\Y)” = p,il El_llpji - p,ilEl—llFuF‘z—;pﬂ
-0+
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which is finite (though it depends on ¥). Suppose that (X 4+ \Y)* and (X + AY)"
are finite. Then p» = 0, p;2 = 0, and

P
(51) lim (X +AY)Y = ph Fripy = 3 BB
A—04- =1 €p
which is independent of Y.

Let us now assume that the probability distribution of the data of an experi-
ment depends on ¢ = (¢1, @2, ** , va) and that the information matrix with
respect to ¢ is positive definite. Let us assume that the above distribution is
independent of ¥ = (Y1, ¥2, ---, ¥s). Suppose now, that the parameters in
which we are interested are 6 = (6,,6,, -+, 6,) and 9 = (n1, n2, - - - , 75) where
a + b = ¢ 4+ d and there is a one to one relationship between (¢, ¥) and (8, ).
In fact, suppose that

(53) 0 = gilp)
(54) 7 = 9o, ¥)

where the Jacobian of the transformation is not zero and where for each com-
ponent of 5 the partial derivative with respect to some component of ¢ does not
vanish. We also suppose that the likelihood may be expressed in terms of (6, »),
that is,

(55) L = u(p) = w(b, ).
We are interested in the following information matrices:
(56) U = E{uyu,)
wowe  Wow, We W
7) W=E<f’ "”) =<” "">
Wy Wo Wy Wy Wo W

where u, is a row vector whose 7th component is du/d¢; . We shall also use the
notation ¢, to denote an @ X ¢ matrix whose (¢, j) element is d¢;/80; . We as-
sume that U is positive definite and U™ represents a covariance matrix _,, .
For our extension of the notion of the inverse of a matrix to be suitable, it should
yield for us the following property.

PropERTY 2. The matriz W™ may be decomposed as follows:

W
(58) W= = <Wno Wnﬂ)
where W is uniquely defined and is given by
(59) W = b, Zwe; = Z”

and where the diagonal elements of W™ are infinite.

Proor:
U O
W = A’ A
‘\0 O
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‘4 - <¢0 ¢ﬂ> B <6¢ 0 >_1
V) Mo My
is nonsingular. Furthermore
00 ! 0
W + A’ Al =4~ oo A
0 I 0 I/\
b, ZW 0:0 b, ZW ’7;

!’
’ ’ : MmNy
Ne Zw 0, my ZW Mo + )‘1]1’()].’1+ B

where

WA'(g g) A=

Property 1, together with the fact that not all components of 7, vanish, yields
our desired results.

ArrENDIX B. Justification for the use of information matrices. We sketch here a
brief justification for the use of information matrices in our formulation. This
justification presupposes that we are interested in the variances of the asymptotic
distribution of the estimate based on our design. Rubin has shown [5] that under
mild conditions these variances are greater than or equal to the diagonal ele-
ments of the inverse of the information matrix. On the other hand, if the design
involves repeating a fixed number of these experiments in certain proportions,
one (again under mild conditions) obtains equality. Since the “optimal” design
using the information criterion involves repeating a fixed number of experi-
ments in certain proportions, the sum of the variances of the asymptotic dis-
tributions of the estimates with this ‘“optimal” design is actually equal to the
minimum v, which is a lower bound for the sum of the variances of the asymptotic
distributions of the estimates for all designs.

AprPENDIX C. The relevance of sums of variances. If one is interested in the pa-

rameters 6, , 6z, - - - , 6, , it may be assumed that for a given estimate; , 2, - -+ , &,
there is a loss represented by a function
(60) g(t,e)=g(t1,tz,---,t3,01,02,---,08)

which as a function of the ¢; is a minimum at ¢; = ;. If we assume that ¢ is
sufficiently well-behaved and that the sample is large enough so that the ¢; are
close to 6; with large probability

0,0 = 90,0 + > 1€ ¢ _ 03— 6) + 06 — o)’

i=1 0t;0¢;
The “value” of our statistic is measured by how small E{g({, 6)} is. For large
samples (size n) we have, under mild conditions,

%,5=

EW@®}=M&®+% lmmﬁ+069
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where || o;; || is the covariance matrix of the asymptotic distribution of ¢ and

2
a;; = gtg‘gf’ 6) . A reasonable criterion of a good statistic ¢ should then be that it
i 05
minimizes
(61) E Aij 045
1,7=1
We now note that since g is minimized at ¢ = 6, the matrix A = || a;; || should

be nonnegative definite. If A has rank p, it is possible to reduce the above ex-
pression to E?=1cr,-,- by a linear transformation on 6. Ordinarily one would ex-
pect p = s if one is interested in s parameters.
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