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Summary. A stochastic model designed for analyzing data with changing
probabilities is presented. On each of a series of trials one of two alternatives
occurs and the probabilities of occurrence are changed from time to time by
events. Corresponding to each class of events is an operator which represents a
linear transformation on the probabilities of the two alternatives. Cases of
fixed event probabilities and of changing event probabilities are considered.
Recurrence formulas for moments of the resulting distributions of probabilities
are provided. These formulas are often tedious to apply, but for the first and
second moments several bounds are provided; these bounds are relatively easy
to compute.

The problem of estimating the parameters of the model is discussed. No general
solution is obtained but simplifying assumptions lead to interesting special cases
for which detailed procedures of parameter estimation are presented. One such
special case arises when there are two event operators which commute, implying
that the operators have equal limit points or that one operator is the identity
operator. The method of maximum likelihood is applied to this case. Another
special case, which arises when the slope parameters of the two operators are
equal, is discussed in Section 8.

Applications of the model and estimation procedures to certain kinds of data
on animal and human learning are described. The examples given are experiments
on verbal learning, the avoidance training of dogs, the reward training of rats in
a simple T-maze, and the behavior of human subjects in a two-choice situation.

1. Basic concepts and definitions. During the past three years, the authors
have been developing a mathematical model for describing a variety of experi-
ments on animal and human learning [2], [3]. This model is closely related to the
one developed by Estes [5] and to the more recent work of Miller and MecGill
[9]. These models have led quite naturally into a study of a class of stochastic
processes, which may be viewed as Markov chains with an infinite number of
states. In applying the model to the analysis of experimental data, a number of
problems in statistical estimation have arisen. In this paper, therefore, we present
a summary of the main mathematical results obtained and a discussion of some
estimation procedures we have found useful.
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A learning process, as the term is used here, involves systematic changes in
behavior; one type of behavior may become more frequent and another type
of behavior may become less so. We shall describe this learning process in a situ-
ation where a choice of a number of given alternatives occurs periodically. Each
occasion on which there is an opportunity for making a choice will be called a
trial. Typically, one observes that a particular alternative occurs more and more
frequently—this we call learning—until the system stabilizes so that no more
average changes in behavior occur—this we call the completion of learning. In
later sections we discuss applications of our model to problems in learning, but
we will describe the basic structure of the model in somewhat more general
terms.

We consider a set of mutuallyl excusive and exhaustive alternatives, 4;,
Az, -+, A.. On each trial one and only one of these alternatives will occur.
On each trial we define a set of r probabilities, p1 , p2, - - - , p-, corresponding to
the r alternatives. The probability p; is then the probability that the <th al-
ternative will occur on the trial in question. We assume that all the available
information about what alternative occurs on that trial is given by the set of r
probabilities. The alternatives which occur on trials previous to trial n, for ex-
ample, do not influence the outcome of trial n except insofar as they may have
determined the probabilities for that trial. On each trial the probabilities must
sum to unity since we have taken the r alternatives to be mutually exclusive and
exhaustive.

The set of probabilities p; are altered from time to time by certain events,
E,,E,, -, E;.Corresponding to each event there is a mathematical operator
T; (j=1,2,---,t) which operates on the set of r probabilities whenever event
E; occurs. We next give particular representations of these operators.

2. The event operators. It is explicitly assumed that the operators which
correspond to the ¢ events are linear. Thus we may represent the set of r prob-
abilities by a column vector and each operator 7; by an r X r matrix. In the
remainder of this paper we will discuss only the case of two alternatives 4; and
A, and so we need only a single probability variable, p, the probability associ-
ated with A,, because the probabilities of the two alternatives always sum to
unity. Thus we may dispense with the matrix machinery and write for the upper
element of the transformed probability vector,

(1) Qipzaf_l':aipy j=112)"',t

where the a; and «; are parameters which are restricted only by the requirement
that the probabilities must always be in the closed interval from zero to unity.
This means that 0 < a; = 1 and —a; = «; = 1 — a; . The operators Q; are not
(homogeneous) linear operators, though derived from linear matrix operators.

These operators may be applied to an operand p more than once. When Q;
is applied twice we obtain

2 Qp = a; + a;(Q;p) = a;(1 + «;) + lp.
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When Q; is applied to p a total of n times, it may easily be shown that

3) Qip =N — (\j — plaoj,
where
4) N = a;/(1 — aj).

When the magnitude of «; is less than unity, the term in «; of equation (3)
approaches zero as n gets large, and so in this case, A; is the asymptotic value of
the operation Q;p.

The ¢ operators Q; may be applied to p in various orders, corresponding to the
orders of occurrence of the ¢ events. If we know in advance the particular sequence
of events, it is a simple matter to compute the successive values of probability.
Our main interest, however, is in problems in which the precise sequence of events
is unknown. For any sequence of the ¢ events and for any initial value of prob-
ability, it may be shown that the probability will ultimately lie between two
limits; this we have called the trapping theorem. Corresponding to the ¢ oper-
ators will be a set of ¢ limits, A;, given by equations (4). The trapping theorem
states that the asymptotic value of probability from any sequence will lie in the
interval including min (A;) to max (A;), as the least and largest cluster points,
respectively, provided only that 0 = «; < 1 for all j. Our proof of this theorem is
elementary but rather lengthy and will not be given here. The point is that if the
starting value of p is between the limits, the sequence of p’s will forever remain
there. If the starting value of p is outside the limits, the sequence will ultimately
be trapped inside the interval or else tend to one of the limits monotonically.

3. Fixed event probabilities. In this section we will describe the process when
we do not know the precise sequence of events but know only the probabilities
«; that when an event occurs it will be event E; . The set of ¢ event probabilities
7; are constant and sum to unity. After n event occurrences there will be at
most " possible sequences and hence at most ¢” possible values of p. The prob-
abilities of occurrences of these sequences will depend upon the =;, of course.
We are interested in the properties of the distribution of values of p for all n.
We may order the ¢" possible values of p and label them h = 1, 2, --- , t". We
denote the Ath value after n events by ps,. and the probability that this value
will obtain by P;.. . The mean of the distribution after n events will be denoted
by V1,. and it is defined by

n
(5) Vl,n = ’; ph.nPh,n; (n = O; 1) o ')’

Now after the (n 4+ 1)st event each of the ¢" values of p will split into ¢ new
values of p. In particular, the hth value will split into ¢ new values Q;ps,. , with
corresponding weights m;P;, ., . Thus, the mean will be given by

tn ¢
(6) Vl,n+1 = Z Z WjPh,n Qj DPhyn .

hel j=1
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Using equations (1) and (5) and the fact that the sum of the weights P; , over
all h is unity, it follows that

) Vinpr = a + @V,
where the average or actuarial values of the parameters are given by
¢
®) a= 2 ma
=1
and .
12
9) & = Zl w0,
=

Equation (7) is a well known linear difference equation and has the solution

(10) Vl,'n = a i [ a - Vl,O:I a”-

1 -& 1— &
The correspondence between equation (10) and equation (3) is clear if @¢/(1 —&)
is regarded as X. (The expected operator, discussed in the next section, will yield

the correct value of Vi ,41 from V; ,.) Higher raw moments of the distribution
may be obtained in a similar way. The kth raw moment after n events is

tﬂ
1) Vi = 2 Pan(pun)".
After the (n 4+ 1)st event the kth raw moment is
in 12
(12) Vlc,n+1 = }; Zl TjPh.ﬂ(Qiph,n>k-
s e

After inserting the expressions for @ ;ps,» from equations (1) into expression (12)
and expanding the resulting expressions by the binomial theorem, we obtain

¢ k
(13) Vi = Z T Z <f> a'§_' a;Vin,

=1 im0

where the (f) are binomial coefficients, and where V. = 1 for all n. Note that

the kth raw moment after n + 1 events is given in terms of all the raw moments
up through the kth after n events. With the expressions (13) we may compute as
many moments of the distributions as we choose.

One may also compute the moments of the distribution of p,, from a moment
generating function ¢,(8) defined by

tn
(14) ¢n(e) = Z eoph'nPh,n-
h=1

It is easy to show that

15) Gnpr(6) = gwe"“"m(eaj)-
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4. Identification of alternatives and events. In the preceding sections we have
intentionally avoided imposing any direct connection between the events and the
occurrences of alternatives from trial to trial. In many problems of practical
interest, the events which alter the probabilities immediately follow occurrences
of an alternative in a predetermined manner. Hence, in this section we will
identify the events with the alternatives; the event probabilities are then equal
to the values of p and so are no longer constant. Since we are considering only
the case of two alternatives, we will have but two events.

After n event occurrences, that is, after n trials, there will be 2" possible
values of p. The mean of these is still defined by equation (5), but the mean on
the next trial is

an

(16) Vl,n+1 = E {ph,nPh,n(leh,n) + (1 - ph,n)Ph,n(Q2ph,n)}-

h=1

Using the operations defined by equations (1) and the definitions of the raw
moments, equations (5) and (11), we have after simplifications

(17) Vl,n+1 = @y + (al — a + aZ)Vl,n + (al - a2)V2.n .

We observe at once that the mean on the (n 4 1)st trial depends upon the second
raw moment, V., , for the preceding trial. Analogous to equation (13) we have
for the recurrence formula for the higher moments

k .
k —i d —i —i 4
(18) Vk,n+1 = g (7,) {(a’{ oy — (1,,; az)V,'.H,n + aé a2 Vi,,.}.

It is straightforward to write the recursion relation for the moment generating
function ¢,(6) of p,. The derivation is equivalent to that for Vi ... We get

fay 0as

¢ $n(Bar) — &

(431 as

(19) bni1(6) = € ¢ (6as) + ¢n(bo),
where the primes on the ¢’s refer to derivatives with respect to 6. Thus far we
have found this relation more tantalizing than useful.

We see that the kth moment on the (n + 1)st trial depends on the (k 4+ 1)st
moment on the nth trial. This fact makes computations exceedingly difficult.
As a result we have developed some approximations and bounds which are much
easier to compute.

The first approximation is an obvious one. We have called it the expected
operator approrimation. An expected operator, Q, is defined by

(20) Vl,rr+l = Q Vl,n = Vl,anVl,'n + (1 - Vl,n)QQVI.n .
Using the definitions of equations (1) we would obtain the approximation
(21) V1,ﬂ+1 = ay + ((11 — a + aZ)Vl.n + (Oll - 042)V%,n . '

If we compare this approximate result with equation (17) we see that V3, has
replaced V., in the exact equation. This means that the expected operator
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approximation behaves as if the variance of the distribution were zero. This
behavior is clearly wrong since we know that the density is not concentrated at a
point except possibly on the zero-th trial. However, as will be shown below, the
expected operator will lead to a bound on the mean, Vi, .

The first set of bounds on the mean which we present are obtained from bounds
on the second raw moment, Vs, . The lower bound on the second raw moment
follows from the fact that the variance is never negative:

(22) VZ,n = V%,n + 03; g V?,n-

The upper limit on Vs, is a bit more trouble to obtain. Consider first a distri-
bution g(z) on the interval 0 < z < 1, having mean Uj,, and second raw moment
U.,» . We know at once that

(23) U2,n é Ul.n .

We now transform this distribution to the interval y» < 2 < w, by letting

(24) p= T H2
M1 — M2
and find that
(25) Von = (u 4+ w2)Vin — maps.

We may take u; = A and p2 = A2, provided that A; < A;, and obtain the desired
upper bound on V,,, . These bounds on the second moment, inequalities (22)
and (25), may now be used in our recurrence relation (17) to obtain upper and
lower bounds on the means. We shall carry this out only for the asymptotic
distribution, for which we let Vi, = Viapa = Viand Va0 = Vo na = Va. (Harris
has demonstrated [8] that the distribution of p, approaches a limiting distribu-
tion independent of poasn — © when 0 < A, A < land 0 <ay, @ < 1.) If we
then introduce the abbreviations

(26) A=a1—~a2+a2——1, B=a1-—a2,
equation (17) can be written as:
(27) AV1 + BVz + Qg = 0.

We next insert the lower bound on V; from (22) into equation (27) and obtain
for B > 0,

(28) BVi+ AVi'+ a; £ 0.

When B < 0, the direction of the inequality in (28) is reversed. We denote the
quadratic expression in (28) by ¢(V1) and note that ¢(0) = a. which is positive.
Further, from definitions (26) we see that ¢(1) = oy + a; — 1, which from re-
strictions on the parameters discussed in Section 2 is a negative quantity. Thus,
g(V1) is positive at zero and negative at unity and so has but one rvo' between
zero and unity. If this root is called ¥, we have Vi = YforB> Ca,a V, £ Y
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for B < 0. The bound Y is obtained from the expected operator approximation
discussed above.

The upper bound on V,, given by inequality (25), with u; = A and w2 = A2,
may also be inserted in equation (27). For B > 0 we have

(29) [A + ()\1 + >\2)B]V1 ; B)\l)\z — Qg .
From the definitions (26) it may be shown that the coefficient of V; on the left
side of (29) is always negative or zero and so we have
Vl é B)&l )\2 — Q2 .
A+ M+ M\)B

When B < 0, the directions of the inequalities in (29) and (30) are reversed.

An improved pair of bounds on the means V,, may be obtained from upper and
lower bounds on the third raw moments V3, . We consider again a distribution
g(2) on the interval 0 < z < 1. Using the Schwarz inequality

31) <fn2 dz) : (f g dz) > (fnsdz>2,

and letting #* = 2g(z) and £ = 2°%g(z), one can readily show that
(32) Usn 2 Usn/Usn,

where Uy, is the kth raw moment of the distribution g(z) on the nth trial.
After transforming this distribution to the interval A, < 2 =< \; by equation
(24) we obtain

(30)

Fon = R Vin)*
Vl.n - )\2 )

The upper bound on V;, may be found in the same manner. We let
=00 —2) ¢k and £ = (1 — 2)°g (2) in the Schwarz inequality and then
transform to the interval \» < x < \; to obtain

_ (VZ,n - )\l Ifl.n)2

x1 - Vl,n

Inequalities (33) and (34) may now be used in the recurrence relations (17)
and (18) to obtain bounds on Vi, . Equation (18) for k = 2is

(35) V2,n+1 = ag + (2(12(12 + al2 ""'/ ag)Vl,n
+ (aé + 20100 — 2aza2)V2,n + (a‘i - ag)V:i,n .

The second moment V, , may be eliminated from this expression and equation
(17). Further, equation (17) may be used to eliminate the second moment from
inequalities (33) and (34). In this way one can write down a recurrence formula
in the means alone for the two desired bounds. The reader will be spared the
sight of the final result.

Numerical computations of the two sets of bounds on V., discussed above

(33) V3,n g >\2 V?,n +

(34) Vin = M Vo
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PROBABILITY (p)

10 5
TRIALS (n)

Fig. 1

Bounds on the probability distribution means, Vin , versus trials with the parameter values,
a1 =03, a; = 0.6, as = 0.01, az = 0.9. Curve A is the expected operator bound which is in this
case an upper bound. Curves B and C are the upper and lower bounds, respectively, obtained
from mazimizing and minimizing the third moment about the mean. Curve D is the lower bound
obtained by mazimizing the variance. The small circles represent the mean probabilities of 84
Monte Carlo runs made with the above parameter values.

TABLE I
Bounds on the asymptotic mean, V., , for seven numerical examples. The limits
A1 and A, are the asymptotes obtained by applying one operator only. The bounds
on V., were obtained by maximizing and minimizing the second raw moment,
Vo, and the third raw moment, Vs

Parameter Values Limits Bounds on Vi,

a as ay s A2 M From V, From V; )
.300 .010 .6 .9 .10 .75 .500-.682 | .655—.676
.300 .001 .6 .9 .01 .75 .112-.668 | .418-.658
.300 .0001 .6 .9 .001 .75 .013-.667 | .093-.654
.396 .001 .6 .9 .01 .99 .394-.987 | .967—-.986
.396 .003 .6 7 .01 .99 .184-.961 | .723-.878
.360 .03 .6 7 .10 .90 .557-.718 | .637—-.657
300 0 .6 .9 0 .75 0-.667 0-.656

have been carried out for 25 trials with assumed values of the parameters.
In Fig. 1 we show the results. Also in Table I we show the results of several
such computations of bounds on the asymptotic mean.
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In addition to the computations of bounds, we have used the Monte Carlo
method of making approximate calculations. This involves using a random
number table for making decisions about which operator, Q; or Q. to apply to the
probability. The means of 84 such runs for 25 trials are also shown in Fig. 1.

b. The estimation problem. Most mathematical models involve one or more
unknown parameters; these parameters may be related to experimental variables
but data from experiments must provide information about the values of the
parameters. The model described in Section 4 has a total of five parameters when
two alternatives and two events are considered: an initial probability, po,
and the parameters a; , a1, a2, and a. contained in the definitions of the oper-
ators ¢ and @, . When the model is applied to a particular experimental problem,
one must estimate these five parameters from the data. In this and following
sections we will discuss some of these estimation problems. We shall restrict our
attention to two alternatives and two events, and to the case when the events are
identified with the alternatives as in Section 4.

There is a crucial question as to how many parameters the model can tolerate
in the face of particular kinds of data. It appears to us that five parameters are
too many for the kinds of data we have been studying. The obvious approach is to
avoid using the model in full generality but to make special assumptions for
specific applications, that is, to let some of the parameters be zero or unity or to
set up relations between certain parameters from considerations such as sym-
metry. In making such special assumptions in our applications to learning experi-
ments, we have been guided by current psychological theories of learning such as
reinforcement theory and association theory. However, we are interested in
workable methods for estimating parameters in the general case. Our experience

o date has led us to believe that the estimation problem is a very untidy one if

here are more than two parameters involved. Therefore, in the sections which
tollow we will discuss only special cases where three of the five parameters are
feliminated or are assumed to be known.

6. Estimation procedures when the operators commute. The estimation
problem is much simplified when the two operators, @; and Q. , commute. From
equation (1), it is easily shown that @, and @ commute if and only if

(36) al(l — a2) = ag(l - al).

This condition is fulfilled when one or both of the two operators is the identity
operator, that is, if @; = 0 and a; = 1, orif @ = 0 and @, = 1, or both. Otherwise
the operators commute only if the trapping theorem limits, A; and X. , defined by
equation (4) are equal to one another. By setting \; = a,/(1 — ) = X2 =
az/(1 — ay) = A, the two operators become

Qp M1 — a1) 4 aip,
Q:p = M1 — ) + anp.

@37
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The cases for which @ or Qs is the identity operator, or both, may be considered
as special cases of equations (37), since one may set @; = 1 or a; = 1 or both.
Hence, the most general operations for which Q1Q: = @QxQ; are described by
equations (37).

We now make one further restriction and then develop a scheme for estimating
the remaining parameters. We take A = 1 to obtain
(38) Qp =1— a1+ arp,

) Qp =1 — az + aup.

We wish to estimate i, az, and p,, the initial value of p, from actual data.
Now on trial n there will have been some number & of previous occurrences of
A; and so the probability ¢, of an 4s occurrence on trial 7 is

(39) Gnr = 1 — QiQi " py.
From equations (38) we may easily show that
(40) Gni = i g,

where ¢o = 1 — py is the initial probability of an A4, occurrence. In applications
to learning data, two further sets of restrictions are of interest. First, if a; = 1,
we have

(41) Qnix = a’fQO ’ (2 = 1).
Second, if we consider only the data for which & = 0, we have
(42) Gno = azqo .

Both sets of restrictions yield equations of the form

(43) . Q@ = quO ,

and so we will be interested in the estimation problems which arise from equa-
tions of this type. In general terms, g, is the probability of an A, occurrence for
the specified value of ».

The data will be represented by random variables z; which are considered
to be binomial observations (0 or 1). The index 7 is used to indicate the 7th
observation for the specified value of ». If A; occurs on the 7th observation for
the given value of », then z;, = 1, while if 4, occurs then z;, = 0. The total
number of binomial observations available in the data for a particular value
of » may not be the same for all values of » and so we denote that number by
N, . We further define , to be the number of times A; occurs during the N,
observations, that is,

Ny
(44) Z, = Z Ziy «
7=1

The expected value of z;, is of course 1 — g, , that is, g, is the probability that
Ly = 0.
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The discussion above might be compared with a special bioassay model in
which doses are given at levels Dy, Dy, ---, D; (perhaps equally spaced in the
logarithm), with a model for proportion living at dose D, to be go’. We want
to estimate ¢y and «. In the bioassay case the number of animals at a dose is
N, , usually fixed in advance unless some sequential approach is used. In the
stochastic model presented here, the NV, are random variables.

6a. Maximum likelihood estimates of « and p,. In this section we obtain some
maximum likelihood estimates of the parameters o and p,. We have not in-
vestigated the general question of the efficiency of maximum likelihood pro-
cedures when applied to stochastic processes. Though such investigations
are beyond the scope of this paper, they clearly need to be made. We will proceed
in the standard manner, setting aside these more general considerations.

We wish to write down an expression for the likelihood of obtaining an ob-
served set of data. First, the likelihood P, of obtaining x, occurrences of A,
and N, — z, occurrences of A, in a given order for a particular value of » is

(45) P, = (1 - QV)xy(qv)Nyﬂxy-
The likelihood, P, of obtaining the entire set of data, for» = 0,1, -+ -, Q, is then
(46) P = HOP = H 1 = g)™(g)" ™.

We insert in this expression the value of ¢, from equation (43) and take the
logarithm to obtain

Q
47) log P = EO {z,log 1 — a’q) + (N, — x,) log (a’qo) }.
We wish to obtain the simultaneous maximum likelihood estimates of « and
¢ and so we maximize log P with respect to those two parameters. Setting equal
to zero the partial derivatives of log P with respect to o and ¢ leads to the
equations

Q AVA‘

Q

(48) 2. (N,,—xu)—zl q -
=0 v=0 - q
Q AV A

(49) >N, — @) = }:v 2,
=0 1 il "qO

where & and §, are the maximum likelihood estimates of « and ¢ , respectively.
These equations, then, must be solved for & and §, , but only numerical methods
are available in general. However, in certain applications to learning data
we have found convenient short cuts. We will discuss two of these.

In some applications it is possible to choose @ such that z, for » = 0, 1, - -
is some constant R independent of ». The factor z, may then be taken out of
the sums on the right sides of equations (48) and (49), leaving the functions

AV A

Q
(50) F(e, 50,0 = 2 28

w0 1 — &Go
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and

Y AV a

(51) GG o, @) = 2w 0

= 1 — &Go
We have tabulated these functions for ranges of &, §,, and 2, but these tables
are too lengthy to be included here. The values of the functions F and G are
computed from the data with the formulas

Q
1 Q

(563) G(&, §o, @) == 2_»(N, — R),
R =0

and then the tables are used to obtain the corresponding values of & and do .

The second short cut we have found useful was developed for data in which
¢ is known to be unity, or for which one is willing to assume ¢ = 1. Equation
(49) with o = 1 may then be solved for &, that is, we have

Q Q

(54) SN, —m) = 2v -,

v=0 v=0 1 - a

The left side of this equation can be computed directly from the data but the
right side depends on both the z, from the data and the estimate &. However,
we have computed tables of the quantities »a"/(1 — &”) versus » for fifty values
of & = .50[.01].99, thereby greatly facilitating computations of the sum on the
right side of equation (54) for a given set of 2, and a range of values of & This
procedure is especially workable when we have a good preliminary value of the
correct & and hence know the appropriate range of values to use. For most data
we have studied, & is near unity and so we can expand & in a power series about
unity and retain only the linear term, namely, &" =~ 1 — »(1 — &). Using this
approximation in equation (54) and simplifying yields the simple formula

(55) b1 —-"2

which may be used to estimate a directly from the data without the use of
tables, or at least to obtain a preliminary value of &.

The asymptotic variances and covariances of the estimates & and ¢, may be
obtained by analogy with the procedure used in simpler problems. We illustrate
only for the case when ¢ is known and only « is being estimated. We take the
second partial derivative with respect to a of log P of equation (47) and obtain

2 2y

3’ logP R _ (v — g’ + qa }
(56) - E — {(Nv xv) + (1 — ayQO)Z Tyl

do? —0 &
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We need to take the expected value of this second derivative. From the definition
of z,, equation (44), we see that E(z,) = (1 — ¢,)E(N,) = (1 — &'@)ENN,).
Thus, from (56) we have

27 Q2 2
(57) -E <M) =222 D .

do? = 1 — o’qo

The asymptotic variance is the reciprocal of this quantity, but in order to
compute it we need to evaluate the expected value of N, and this cannot be
done until the problem is more completely specified. In the general formulation
of the estimation problem which followed equation (43), we merely defined N,
as the number of binomial observations available for a particular value of »,
but we left the distribution of N, unspecified. However, for the case of one
identity operator which led to equation (41), the index » corresponds to k, the
number of previous occurrences of A;, and so N, — 1 is the number of 4, oc-
currences between the kth and (k + 1)st A, occurrences. Hence N, has a negative
binomial distribution and expected value

L
1—¢ 1—aoq’

where R is the number of independent sequences in the data. When this expres-
sion is used in equation (57) the asymptotic variance may be estimated. For
the case of commuting operators and data for which & = 0, equation (42) is
appropriate and » corresponds to trial number n. If there are R independent
sequences, then N, is the number of those sequences on trial n for which k¥ = 0.
It is readily shown that for this case

(59) E(N,) = Rag™ V¢ .

Again, the asymptotic variance may be estimated when this expression is used
in equation (57). For some cases it may be difficult to evaluate E(N,). We
presume that little violence will be done to the estimate of the variance by
replacing E(N,) with the observed N, , providing the N, are not too small.

6b. The value of » when A, first occurs. It is instructive to consider a quantity
h, defined to be the value of » when alternative A4, first occurs. The probability
of an A, occurrence is 1 — ¢, and ¢, is given by equation (43)
(43) ¢ = a'q.
The density function for A is

J(B) = go(ago)(@’o)(eqo) - - - (" 'qo)(1 — a'o)

(60)
= "R — o), h=12---.

The latter form of writing equation (60) is also correct for A = 0. In words, f(h)
is the probability that A; will first occur when » = h. This distribution might
be regarded as a more complicated version of the negative binomial, the com-
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plication being that the probabilities depend on a variable » as expressed by
equation (43). The expected value of A is

E(h) = E hf(h) = Z ha** Vg0 (1 — a'qo)
(61)
= Z hah(h—l)/‘z h z hah(h+l)/2qh+!

This result may be simplified if we let y = h 4 1 in the last sum, that is,
(62) E(h) Z hah(h—l)ﬂ h E yau(u-U/?qy + Z av(v—l)/2 v

The first two sums on the right side of equation (62) cancel and so we have
(63) E(G) = ;_; P

For known values of a and ¢, the expected value, E(h), may be computed. If
the maximum likelihood estimates & and ¢, are used in equation (63) for «
and ¢, respectively, an estimate of E(h) is obtained. From certain kinds of
data, a set of values of h will be observed and the mean of these sample values
can be compared with the estimated E(h).

The variance of h may be obtained in a similar way. The result is

(64) o(h) = 2 v; Yo E(h) — (BT

By replacing « and g, with their maximum likelihood estimates, o*(h) may
be estimated from equation (64) and the result compared to the variance of
an observed set of h’s. Conversely, a table of values of E(h) and ¢*(k) for
0<a<1land 0 < g =< 1 may be constructed and « and g, estimated from
the observed set of values of A (method of moments).

When g, = 1, equation (63) reduces to

(65) EM) = f:l Pl et

This series has to do with theta functions. According to Whittaker and Watson
[12] in their chapter on theta functions, this series was discussed by Jakob
Bernoulli, Ars Conjectandr (1713), p. 55. Bromwich [1] lists in his table of con-
tents ‘‘theta-series” (p. xii) and discusses our series and some related infinite
products in some examples (pp. 101, 116, 117).

6c. An unbiased estimate of ;. We next consider the problem of estimating
a; of equation (40) when o3 and g are known. We will utilize only that portion
of the data for which £ = 1 and so we have probabilities

(66) qn = axa: _IQO,
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and observations ., forn = 1,2, -+ ,and 7 = 1,2, --+ , N,1. We let
Np, 1

(67) Tn,1 = Z Tin «
=1

Thus, an unbiased estimate of ¢, is 1 — %..1/Na1, and for each value of n we
obtain an unbiased estimate &y, of ¢y :

1 - Zn,1
(68) - Nn.l

Aln = n—1
a2 Qo

We next wish to combine these estimates by taking a weighted mean, a1,
over those values of n for which N, ; is not zero, that is, we let

Z Wnal,n
(69) = e

S W.

We choose the weight W, to be inversely proportional to the variance of the
estimate a3, . (If the estimates &, are independent, this procedure minimizes
the variance of &; .) The unbiased estimate, 1 — x,1/N,1 of ¢. has variance

qn(l - (Zn) - ala;_lm)(l - a1a2n—IQO)
Arn,l Nn,l )

It follows then from equation (68) that the variance of i, is

(70)

1) o) = Bl = ol )
™ Nn.l a;_IQO
and so the weight W, may be taken to be
Nn la;“l
Wy = ——— .
(72) 4 1 — anai™qo

The only difficulty in computing the weights from this result is that the expres-
sion contains «; , the parameter being estimated. However, an iteration scheme
may be used to compute & ; we begin with an unweighted mean of the &, and
compute the weights, use these to obtain & from equation (69), use this value
of a; to recompute the weights, etc. However, we may replace oy by a; in equa-
tion (72) and substitute the expression for the W, into equation (69) and ob-
tain, after simplifications,

(73) S S Naa.

- n—1 =
n ]- - 10 qO n

The right side of this equation is obtained at once from the data; the sum on
the left may be computed as a function of &, for the given values of 2,1, s
and ¢, and the correct value of & obtained by successive approximations.
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It will be noted that the sum is a monotonic increasing function of & for
0=u=1,0fEx=s10=¢ =1

The variance of the estimate & is obtained immediately from equation (66)
and the relation

Z Wi 02(&1 n)
<Z W.)

(74) (&) =
The l'esult is

N 1a2
75) o (a) = a/z: T = .
( ' ' - alaz QO QOZWn

This result may be used to estimate ¢’(a) by replacing a; on the right side by
its estimate &; .

The procedure just described for obtaining an unbiased estimate of «; from
the subset of data for which & = 1 may be generalized to obtaining unbiased
estimates of o4 for any value of k. Analogous to equation (73) we obtain the
relation

- al n
where N, is the number of observations for the specified values of n and %,
and z,. 1s the number of those observations which yield alternative A;. This
equation may be solved numerically for ot and by taking the %th root of this
estimate of o4 we obtain an estimate of a; ; for & > 1 these estimates are biased,
of course, but they may be useful in obtaining an improved estimate of a; from
certain kinds of data.

6d. Monte Carlo checks on the estimates. As a check on the estimation
procedures just described, 30 Monte Carlo runs of 22 trials each were made as
described in Section 4. The operators of equations (38) were used with «; = 0.70,
az = 0.95, and py = 0. The parameter e was estimated by obtaining a numerical
solution to equation (49) with ¢ = 1; » was taken to be trial number n and
only that portion of the data on each run up through the first A; occurrence
was used. The result obtained was & = 0.9509 and the estimate of the standard
deviation of & obtained from equation (58) was 0.008. The approximate value
obtained from equation (55) was 0.956. Next, the procedure described in Section
6¢ to estimate o; for the subset of data for which £ = 1 gave & = 0.758 and
o(&1) = 0.08. The estimates obtained compare favorably with the true values,
a; = 0.70 and @2 = 0.95, used in making the Monte Carlo computations.

6e. A related problem of estimating a binomial parameter. A problem related
to the estimation problem discussed in Section 6a, but not a part of the general
stochastic model, may be of some interest. The problem arises when we have a
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choice about the kind of information we can receive from binomial sampling.
In a single binomial trial, event A or event A occurs. The probability of event
A on a single trial is « and we wish to estimate « on the basis of information
received. Suppose we have a choice: we can know the outcomes of N single
binomial trials, or else we can know the outcome for each of N blocks of » trials
in the forms ‘‘all trials in the block were 4’s,” or “not all trials in the block were
A’s.” The probability that all trials in the block are A’s is ¢, = «”. The question
for the statistician is what value of » will give an optimum estimate of . Dorfman
mentions a similar problem concerning Wassermann tests [4]. Blood samples
from several people could be pooled and the Wassermann test on the pool would
be positive or negative. A negative report on the pool implies a negative report
on all blood samples in the pool, while a positive report merely implies that
one or more blood samples in the pool are positive. If we are to make a fixed
number (N) of Wassermann tests, and if costs of increasing the size » of the pool
are very little, what value of » should be chosen to get the best estimate of a?
Dorfman was interested in identifying the positive individuals; we are interested
in the estimation problem. The problem is not necessarily restricted to integral
values of ». For example, let « be the probability that a unit surface area of an
industrial material such as sheet metal has no defects. We plan to inspect a
sample area from each of N sheets of material, but we have a choice about the
size of the area to be inspected. The report of the inspection is either that no
defect was found or that some defect was found. We may be quite wise to use
such an inspection procedure because actual counts of number of defects in an
area can be quite untrustworthy while the reports “no defects” or “some de-
fects’” are comparatively reliable. Here the question is what size area should be
inspected to give the best estimate of «, a measure of the quality of the product.

It turns out that R. A. Fisher [7] has already solved this question. He calls
it the dilution problem. In our notation the maximum likelihood estimate
of o is

77 &= (y/N)'",

where y is the number of blocks which have all A’s (e.g., negative blood tests
or no defects). We see from equation (57) with E(N,) = N that the asymptotic
variance is

1 — &

Na?'

(78) (&) =

We wish to choose » such that ¢°(4) has the smallest possible value for given
a and N. It turns out that the minimizing value of » is

_ 1.594
—log, o’

(79)

which agrees, of course, with Fisher’s result. This means that if we have any
good preliminary notions of the value of « we can improve the method of estima-
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tion of @, compared to the ordinary binomial method, by choosing a value of
v based on the preliminary value of «. If « is near unity, the use of blocks of
size v yields an effective binomial sample of size vV,

7. Applications to learning data. We have found the estimation procedures
described above to be useful in analyzing various kinds of learning data. We
present two examples.

The first illustration we will describe only briefly. It is closely related to the
work of Miller and McGill [9]. The experiments analyzed by those authors
were of the following sort. A person was presented with a series of R monosyllabic
words and was then instructed to repeat all he could recall. This procedure was
repeated for many trials, the order of the words being randomized on each trial.
For lists of words not too long, Miller and MecGill postulated that recall of a
word increased the probability of recall on the next trial according to an operator
defined by the first of equations (38); it was further postulated that nonrecall
of a word left the recall probability unchanged, that is, @ = 1 in equations
(38). The probabilities of nonrecall, ¢, , after » previous recalls, are then given
by equation (43). The maximum likelihood procedures given in Section 6a are
thus appropriate for estimating @« = o; and ¢ .

The second example, to be described in more detail, is data obtained by
Solomon and Wynne [10] from experiments on the avoidance training of dogs.
A dog is placed in a jumping stand and may jump over a barrier to avoid an
intense electric shock. The shock is turned on 10 seconds after a signal which
defines the start of a trial, and so on each trial the dog either avoids shock or
escapes shock. We identify avoidance with alternative 4; and nonavoidance
(escape) with alternative A, . The record of 30 dogs for 20 trials each is given
in Table II; avoidance is denoted by a ““1” and nonavoidance by a “0.” From
these raw data we obtained the numbers N, and z,; where n refers to trial
number (n = 0, 1, ---), and % is the number of previous avoidances (¢ = 0,
1, ---, n). Thus, N, is the number of dogs on trial n which avoided precisely
k times previous to trial n, and z, is the number of those dogs which avoid on
trial n. In Table III we give these quantities, derived from the raw data of
Table II, for £ = 0, 1, 2, 3.

We assume that the operators of equations (38) are appropriate for this
experiment, that is, that both avoidance (A4;) and nonavoidance (4.) increase
the probability p of avoidance and tend to make it unity. The data strongly
suggest that po , the initial probability of avoidance, is very near zero and so we
assume po = 0(gp = 1). Thus, from equation (40), the probabilities ¢ of non-
avoidance on trial n after k previous avoidances are

(80) Qe = ad™®,
We wish to estimate the parameters a; and as from the data.

First we consider the data up to and including the first avoidance of each
dog (k = 0) and apply the maximum likelihood procedures given in Section 6a.



LEARNING MODEL 577

The index » becomes trial number n, z, becomes z,,, and N, becomes N, .
Equation (55) gives a; = 0.93, and a numerical solution of equation (54) gives
& = 0.923. With the aid of equations (57) and (59) we estimate the standard
deviation of &; to be ¢(&:) = 0.014. From the analysis given in Section 6b we
next compute the mean and variance of 2 which is here interpreted to be the

TABLE II

Data on 30 dogs obtained by Solomon and Wynne [10]. The entry ““1”’ indicates a dog avoided
and the entry ‘0’ indicates it did not avoid

Trial

Dog

0| 1|23 45|67 |89 1011121314 15|16/ 17]18] 19
13 ojoj1rjo;1j0j1yrjrj1f1frjrj{rjrf{1|1j1]1r:1
16 0/0i0(0j0j0]|0O|1(0|0O|O0]|O0OjO]O 1 1]1|1!l1]1
17 0{0|0j0|O0Oj1|1{0(1f1|0]O0O]j1]1!0(1]0(1/1]|1
18 oj1jrfojojrj1jrjy1jof1jo0j1|{ofj1jy1j1|1j1]1
21 0{0(0j0j0jO|OjO (1 |1l1{1|1|1f1i1|1|1]1!l1
27 0jo0jo0jojojojrjyry1f1jojoj{1fof1i1{1i1i1/1
29 oj0jofojoj1jo0jofojojojol1f1|{1j1]1|1|1]1
30 0{0j0f(0|jo0|O0jO|1f1|O|O}1|1|1|1j1|1]1!1]1
32 0jojofojoj1joj1foj1|1joj1jojojol1|1l1]1
33 oj(ojofojrjojoj1jf1jojrjojrj1j{1ryrj1j1l1l1
34 0j0j0f0j0j0|O0|O|Oj|O|1 1|1 |1|1|1|O0]1|1]1
36 0jo0jofojoy1j1jrjy1j1rjo0jo0j1f1j1|rj{1{1i1]|1
37 ojojoj1yrjoj1yo0fojr|1j1|rj1|{1f{1|{1f1rj1]1
41 0j0j0j0f1|j0|1|1f0|1{1j1j1f1j1|1j1f{1]1]1
42 0jojo0j1joj1jrjof1yrjrjrj1|1jrjrf{1l1l1i1
43 0/0j0{0|0|O0O|O0|1 (1|11 j1|j1|{1|1|1|{1|1f1]1
45 oj1ioj1jo0|o0{0f{1foj1|1j{1j1loj1|1|1]1}1]1
47 0j0/0j0|1j0j1j{0|1]j1|1}{1l1j1{1rl1|1|1]1]|1
48 0;1|{0f0j0jO0f1|0fO0{O0O|1 ;1|11 |1j1|1]|1]1]1
46 0/0j0j0j1j1foj1joj1jrjoj1|Oo|1{1|1|1|1]1
49 oO!ojof1j1{1f{1|1rjof1iry1ji1frf{1j1l1i{1]|1]1
50 Ojo0j1rjoj1jo0f1j1j1f1y1ry1y1|1f{1{1j0jlo0f|1i1
52 0jo0!0fojojofOf1|1 {1}t j1i1|{1}{1f1|1j1|1}1
54 0{0j]0|{0|0{0|0|O|1|1]|1]0|1]0]0|0|1]1]0]|1
57 0jojojojojoj1foj1j1j1y1foj1jo0l1 ;1111
59 0Orojrjojry1rj1joj1jrjoj1i1j1iy1j1|1|1/1;1
67 o(ojojoj1jo|r|1j1y1fry1jrj1j1frj1{ri1]1
66 0trojof1fo{1{o|1j1 ;101401 {11 {1l1j1!1
69 0/0/0|0|1/1j0]|0]1]1 P1:0:110:1|0(1 | 0111
71 00,00 11 |1{1|1|1jO0l110;1{1|1]|1 SIS B |

trial on which the first avoidance occurs. Using @, = 0.92 and ¢, = 1 in equa-
tions (63) and (64) gives E(h) = 4.39 and o(h) = 2.28. From the raw data of
Table II one gets a mean value of & = 4.50 and a standard deviation of 2.25.
The close agreement between the computed expectation and the observed
mean of h must be mainly accidental for the standard deviation of the estimate

Ris o(R) = 2.3/4/30 = 0.42.
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Next we consider that subset of the data for which the number of previous
avoidances is precisely one (¢ = 1). The estimation procedures described in
Section 6¢ are directly applicable. A numerical solution of equation (73) yields

= 0.732 and from equation (75) we obtain ¢(&;) = 0.095. Another estimate
of a; was obtained from the data for £ = 2 and equation (76); the result was

= (.801. Still another estimate, from the data for ¥ = 3, was @& = 0.705.
An unweighted mean of the three estimates is about 0.75. The three estimates

TABLE III

Values of N, the number of dogs on trial n with precisely k previous avoidances,
and x.;, the number of those dogs which avoid on trial n, taken from the data
given in Table 11

n Nouo 20 Nua Znt Na2 tms | Nus %n3
0 30 0 0 — 0 — 0 —
1 30 3 0 —_ 0 — 0 —
2 27 3 3 1 0 — 0 —
3 24 4 5 1 1 0 0 —_
4 20 7 8 5 2 0 0 —
5 13 4 10 5 7 3 0 —
6 9 2 9 6 9 5 3 3
7 7 4 5 3 10 6 5 3
8 3 2 6 4 7 5 8 4
9 1 0 4 2 6 4 9 8
10 1 1 2 0 4 3 5 5
11 0 — 3 1 1 1 3 2
12 0 —_ 2 1 1 1 2 2
13 0 — 1 0 1 1 1 1
14 0 — 1 1 0 — 1 1
15 0 — 0 —_ 1 1 0 —
16 0 — 0 — 0 — 1 1
17 0 — 0 —_ 0 — 0 —_

of oy are well within one sigma of the mean 0.75, and so this may be taken as
some small evidence of the appropriateness of the model.

An inference which may be made from the above analysis of the Solomon-
Wynne data is the following. A trial on which nonavoidance occurs reduces the
probability of nonavoidance by a factor 0.92, while a trial on which avoidance
occurs reduces the probability of nonavoidance by a factor 0.75. Thus an avoid-
ance is worth about 3.5 nonavoidances in teaching the dog to avoid. Such a
conclusion may be of theoretical interest to psychologists.

8. The equal « case. In this section we will consider another special case, one
in which the mathematical analysis of the model is especially simple. We let
a; = ay = «. The two operators become
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I

(81) Qp=a+ap=M1-—0a)+ ap
sz = a; + ap = )\2(1 b a) + ap.

In equation (17) the term in the second moment drops out and we have left a
simple linear difference equation in the means alone. The solution is

(82) Vl,n = Vl.w - (Vl,m - Vl,(})(al — az + Ol)n,
where
(83) Vi, o A

T I @m—tmta I-—NmEN

where A; and X, are the limits defined by equation (4). The expected operator
Q, discussed in Section 4, now gives the correct means as may be seen by com-
paring equations (17) and (21). Since the means from trial to trial are obtained
by repeated application of this single operator, the changes in the mean are
described by a simple two-state Markov chain with constant transition proba-
bilities, a; and (1 — a — ay).

In equation {18) for the higher raw moments, the terms in Vk41.» also vanish,
and so the higher moments may be computed readily from that formula. The
equation for the second raw moment becomes

84) Vep= a + Qaay + af — a§)V1,,. -+ (oz2 + 2010 — 2a:0) V3, .

After equation (82) is inserted, a difference equation in the second raw moments
is obtained. The solution turns out to be

2 -1 —1 —1
_ [1 2] _ n agB 1 — Cm _ g" —_ Cn >:|
g —-C

g :‘Ef + Pgon,

(85)
+ pB

where
B=2m+a—d=(1-aM - N1 - a)+ 2],
(86) C = o+ 2ma — 200 = afa + 2 — M)A — )],
g=a—@ta=1-(1-al—\+1).

As unsightly as this solution may appear, it is an exact expression for V.,
as a function of » and the parameters. Such an exact closed expression is not at
present available for the general two-operator model except when oy = a; = «a.

Four parameters remain to be estimated: po, a:, a2, and «. It may be noted
from equations (82) and (83) that at most three of these could be estimated
from the means; these means depend only upon Vi = p, a; and (a; — a» + «a).
One might expect, however, that the variance of the data from trial to trial
along with equation (85) could be used to estimate the fourth parameter. We



580 ROBERT R. BUSH AND FREDERICY MOSTELLER

shall indicate how this procedure might be feasible by making further restric-
tions.

8a. Equal o case, upper limit unity, lower limit zero. We now require that
as = 0anda; = 1 — o in addition to requiring that o; = @2 = . These further
restrictions imply that the limits defined by equation (4) are \; = 1 and A, = 0.
The two operators become

Qp=1—a+ap
(ep = ap.

We have found this case.useful for analyzing T-maze data on rats with identical
and equally frequent rewards on the two sides of the maze (Stanley, [11]).
Equation (82) then becomes

(87)

(88) Via = Do, n=0,1,2 -
The recurrence relation (84) for the second raw moment becomes

(89) Vani = (1 — a)’po + a(2 = @)V

The solution of this linear difference equation is

(90) Vo = po — po(1 — po)B”

where

(91) B=al—a)=1-(1 —a)l

This result may be obtained from equation (85) with as = O and a; = 1 — «.
The variance of the probability distribution on trial n is

(92) on = Vaou— po = po(l — po)(1 — B7).

From this result we see that the variance is zero for n = 0 and approaches the
binomial variance, po(1 — po), as n gets large providing | 8| < 1. It can be
shown that the distribution approaches a distribution with density po at unity
and density (1 — po) at zero.

From equation (88) we see that the observed means from trial to trial may be
used to estimate p, , but that the means provide no information about the param-
eter a. Equation (92), on the other hand, shows that the variances, o5, of the
distributions of probabilities depend upon 8 and hence upon «. As a result, one
might expect to obtain an estimate of o from these variances. Such a procedure
would lead to a simple double estimation problem as will now be indicated.

On trial n, a distribution of probabilities p;, exists. If one has data on K
subjects, these data correspond to a sample of K probabilities p; from the
population of all possible values of p;, on trial n. If one knew the values of these
K probabilities, then one could readily estimate the population mean and
variance from the sample mean and variance. But the K probabilities, p:, , are
not known, of course. Each p;, becomes the mean of a binomial distribution of
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random variables z;, . If the ¢th subject chooses 4, on trial n, then z;, = 1,
while if he chooses A4; on trial n, then z: = 0. The set of z;,’s provides the only
information we have about the K probabilities p:, . The problem is clear—
we must use the z;, to estimate the p;, and then use these estimates to estimate
the properties of the distribution of all possible p:,’s on the nth trial.

8b. Estimation of po. From equation (88) we see that the mean of the d
tribution of all possible probabilities p;, is py on every trial for the case bei
considered, namely, oy = a2, Ay = 1, and \s = 0. For a sample of K subjec
we have a sample of K probabilities p:» , having a mean 5, . This sample meat
Dn , provides an estimate of Vi, = po. The sample mean, 5, , is estimated i
turn by the proportion &, of subjects choosing 4; on trial n:

1 K
(93) =% Z__‘{ Tin.
Thus an estimate of py is

(94) (Po)n = Tn .

Such an estimate of p, is obtained from the data on each trial and so one can
combine these estimates to obtain an improved estimate of p,. We have not
worked out an optimum way of combining the trial estimates, but one estimate
of po is obtained from a simple average of the individual trial estimates:

1 N ~ 1 N K
(95) 7’°=N+1nz=o‘”"=K(N+1)f§o;“”'"'

In other words, we estimate p, by the proportion of choices of 4; in the entire
set of data.

8c. Estimation of o.” Although we do not have an entirely satisfactory method
of estimating «, we provide one method and invite (as in all these problems)
suggestions for improving the estimation process.

We will break the data up into two subsets S; and 8, such that all sequences
in S; begin with an occurrence of 4; and all those in S, begin with an occurrence
of A;. Thus, iy = 1forze S;and 2 = 0forz & S;. On trial n = 1, sequences
in S; will have probability @ps = 1 — a + apy and sequences in S. will have
probability @sp, = ap, . Therefore we may consider all sequences in S; to have
an initial probability Qip, and all those in S; to have an initial probability
Qspo . According to equation (88), then, the means V., will equal these initial
probabilities on all future trials. Hence, we can estimate Qip, by the proportion
Py of A; occurrences in S; for trials n = 1, 2, --- , and similarly can estimate
Q:po by the proportion P, of A; occurrences in S, for trials n = 1,2, --- . We
then observe that

2 This subsection was revised and considerably simplified in accordance with a suggestion
by a referee.
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(96) leo - szo =1-oa.
Accordingly we can estimate a by
97) a=1— (P — Py.

This estimate is very easy to obtain from a set of data, but it clearly does not
utilize all the information in the data. More efficient procedures are undoubtedly
available.

8d. Estimation of « when limits are not zero and unity. Finally we propose
one procedure for estimating « from data when the limits are 0 < A; < 1 and
0 < A\; < 1. The means, V;,,, from trial to trial are given by equation (82),
which we write in the form

(98) Vin = Vl,oo - (Vl,.,a — Vl.o)g”

where V;, , and ¢ are defined by equations (83) and (86), namely
A2

99 = —

(99) Vie = I

(100) g=1—-(010—-a)0 =N\ + A2).

Now the mean V,, on trial n may be estimated by the proportion P, of A,
occurrences on trial n, that is

1 K
(101) P, =% ; Tin
where K is the number of available sequences in the data. We then may sum
these proportions P, over all trialsn = 0, 1, --- , N — 1, to obtain
N—1 1 N—-1 K
(102) P=2 P.=22 2 Tu.
70 K= i3a

This quantity P is simply the total number of 4; occurrences in the data divided
by K, the number of sequences. Since P, estimates V;,,, we must sum V,, of
equation (98) over trials. We call this sum Sy :

N—1 N—1
Sy = Z—:o Vin = Z—:o {Vl,x, - (Vl,‘,° - Vl,o)g"}

(103)
1—-4"
1—g°

=NVi,— (Vi, — Vi)

The quantity P of equation (102) estimates Sx , and so we thus can solve for ¢
in terms of Vi, , Vi, and N. When we know in advance the values of A1, Az,
and V1, , we may estimate «. In particular when g~ < 1 we have as the estimate
of o,

Viw — Vie

(104) CEl - TN F Ve = P)
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We have found this estimation scheme useful for analyzing data on human
subjects in a two-choice situation.

8e. Applications to learning experiments. In this section we will apply the
model of Section 8 and the estimation procedure given in Section 8d to three
sets of data on behavior in a choice situation. The first set of data was obtained
by Stanley from seven rats in a T-maze experiment [11]. On each trial the
rat could turn either left or right in the maze, and for the portion of Stanley’s
data being considered here, the rat always found food on one side (alternative
4:) and never found food on the other side (alternative A.). The second set of
data was obtained by the authors with the assistance of Miss J. M. Jarrett from
five Harvard undergraduates operating a machine called the ‘“two-armed
bandit” (work unpublished). On each trial the subject pushed one of two buttons;
one choice was always followed by a penny reward and the other side never
led to reward. The third set of data was obtained by R. R. Bush, R. L. Dayvis,
and G. L. Thompson on six high school students in Santa Monica, California
(work unpublished). In this experiment, the subjects were presented with two
ordinary playing cards, face down, on each trial, and they were told to turn
over one of the two cards; if the card turned over was a heart or diamond they
received a reward of a nickel. All cards in one position were reward cards, and
all cards in the other position were nonreward cards.

In all three experiments we identify the choice which leads to reward with
alternative A; and the other choice with alternative A, . We assume that the
operators of equation (81) are appropriate, and we take \; = A = 1, that is,
we assume that either choice tends to make the probability p of A; equal to
unity. From equation (83) we see that Vy,, = 1 and we assume that Vi, = 0.5.
Thus equation (104) becomes

(105) a=1-

IR

N —-P

where P is defined by equation (102) and is the mean number of choices 4; up
through trial N. Thus, N — P is the mean number of errors (choices of 4,) made
by the K subjects in each experiment. The results of the three experiments are
summarized in Table IV.

9. Discussion. The stochastic processes described in this paper are closely
related to Markov chains [6]. In fact, the process we defined can be considered
to be a Markov chain if correctly viewed. A Markov chain is characterized by
the property of “path independence.” The system can exist in a number of states
and if it is in the 7th state, the transition probabilities to all other states are
independent of how the system arrived in the ith state. Now if we identify
the alternatives in our model with the states of the system, the process is clearly
non-Markovian; the transition probabilities change as required by the operators
of equations (1). The process defined by our model is a Markov chain, however,
if we identify the states of the system with the values of p. Of course, an infinite
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number of states are then possible. If the system is in state p then the transition
probabilities to ¢ other states are given by equations (1) and the probabilities
of transition to all other states are zero. In spite of this observation, we have
made little use of the theory of Markov chains with an infinite number of states.

A special case which we have not handled satisfactorily is that for which
X2 = 0 and \; = 1, that is, for which a2 = 0 and a@; = 1 — a; . In this case the
bounds on the means described in Section 4 are of little use since they demand
only that the asymptotic mean lie between zero and unity. It is easily shown
that all the asymptotic raw moments are equal, provided that a stable asymptotic
distribution exists at all. This would mean that the density tends to be con-
centrated at zero and unity. The proportion which would be concentrated at
unity is Vi,, . We have shown that V,, would depend upon p, as well as upon
a; and oy, but we have not obtained a closed expression for Vi, as a function

TABLE IV

Data and computations for three experiments on two-choice situations. The rat
data are from Stanley’s T-maze experiment [11]. The two groups of Harvard students
were studied by Bush, Mosteller, and Jarrett using the “Two-armed bandit’’;
the group marked “pay” could either lose or break even on each irial, while the
group marked “free’’ could either break even or win. The data on high school students
were oblained by Bush, Davis, and Thompson in Santa Monica, California.

| IVAar: t .
Rats l' Harvard Students Hlsgtlllldi‘;ht‘;‘ﬂ
’ Pay ! Free
Number subjects................. 7 ' 5 ; 5 6
Number trials. ... ................ 40 | 75 |75 24
Mean errors. . . ..ooove e, 11.1 6.2 | 14.1 3.5
Estimate &...................... 0.955 0.919 . 0.965 0.857

of these quantities, Likewise, we have not satisfactorily handled the estimation
problem for this case even though this case seems to be of practical interest in
some learning problems.

More generally, the outstanding problems seem to be the need for better
expressions for the moments, or at least improved bounds for these moments,
and more efficient estimation procedures in the cases we have discussed, and
estimation procedures for the less special cases we have not discussed. The
estimation procedures would no doubt depend on the particular type of data
available; the values of some parameters may be known from symmetry con-
siderations or from other experiments. Furthermore, some kinds of data provide
more than one binomial observation per subject per trial, while others provide
only one such observation. These considerations complicate the issues, so that
a model whose parameters cannot be easily estimated for one type of experi-
ment may be satisfactory in another type.
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