ON THE REDUCED MOMENT PROBLEM
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1. Summary. For a special class of cumulative distribution functions which
are solutions of a given reduced moment problem (cf. paragraph 3, pages 27
and 28, of [4]), the well known expression for the least upper bound of the
absolute difference between any two solutions of the same reduced moment
problem is improved upon by the introduction of a constant nonnegative
multiplier which is smaller than unity in the case of the special class of solutions.
Useful properties of the determinantal form of the classical expression for the
least upper bound are derived. The numerical value of the constant multiplier
is computed in the case of a well known class of cumulative distribution functions.

In addition, a simple method is given for constructing, over a finite range, an
infinite set of continuous and differentiable cumulative distribution functions
which are solutions of the same reduced moment problem when one such solution
is known. The new expression for the least upper bound, when applied to
members of the constructed class of continuous solutions, may be helpful in
deriving general, but crude, inequalities among orthogonal polynomials over a
Jfinite interval.

2. Introduction. Let ®(x) be a cumulative distribution function (cdf) (by
this we mean a nonnegative, nondecreasing function, which need however not
be normalized) defined on the interval ¢ < x =< b, where either or both of a
and b may be infinite. If either (or both) of a and b is (are) finite, we may speak
of the range as being infinite provided we define

0 for z<a
(1) ®(z) = {

w for z = b.

We assume further that
(i) ®(x) has at least » 4+ 1 points of increase in the interval [a, b].
(ii) The moments of ®(z), defined by the Stieltjes integrals

pr = fa b z" dd(z)

- : & do(z)

exist forr = 0,1,2, -+ , 2n.
Let ¥(z) be another cdf defined for ¢’ = # < b’ and having all the properties
of ®(x) mentioned above (with obvious modifications.) If the corresponding
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moments of &(x) and ¥(z), forr = 0, 1, - -+ , 2n, are equal respectively, then
we have the inequality :

@ | 8@ — ¥@) | S {Qu@)@@) — Quu@)Qu(®)}” = pal),

say, where Q,(z), (r = 0, 1,2, --- , n), is a polynomial of exact degree r given
by the denominator of the rth convergent of the continued fraction associated

with the integral [ [do(x)/(x — ¢)] or f [@¥(x)/(x — t)] and possessing
the following three properties:

(3) [ _ @ @)Qu(@) dp(2) = Lo Q(x)Q.(x) dy(x) = { or %3

¢ for r=s

where ¢, is a positive constant,
and Qr+1(2)Q:(z) — Qr11(x)Qr(z) > O,
(4) Qr(x) = (a,:c + 3r)Qr—-l(x) - Qr-2(x)1 r =12 3» R ()

where o, and B, are determinable coefficients independent of xz and where
Q) =0,Qx) =land oy = 1/ .

Inequality (2) is easily deducible from the well known Tchebycheff inequalities
[1]. A proof of (2), based on a method due to Stieltjes [8], is given by Uspensky
in appendix II of [10].

The function p.(zx) appearing on the right-hand side of (2) has also been
expressed in forms (a) and (b) below [4] (cf. [4], pp. 42-44 and p. 72 for deriva-
tion and equivalence of forms (a) and (b)).

(a)
(5) pa(@) = {2 wr(2)} ™
where w.(z), (r = 0, 1,2, -+ n), is the orthonormal polynomial of exact degree

r associated with d®(z) or d¥(x), that is, with the moment sequence {u.},
=0,1,2 -, 2n.

(b)
(6) « pn(2) = —As/Da(z),
where
Mo M1 cct Mn
™ A, = ujl #:2 u,:.+1 = | miti [ij=01,2,0.n

Mn Moyl ° " M2
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and
0 1 =z z"
1 )
Mo M1 Man 0 z I
8 Duz) =% m B2 e fap| =
co . . i
. . T Mitj 6,§=0,1,2,+

zr Mn Mgl M2n
The equivalence of (2) and (5) may be established by the properties (3) and

(4) of @,(z) and the well known properties of the orthonormal set w,(x) (cf.
pp. 41-42 of [9], in particular, equations 3.2.1 and 3.2.4).

3. Some properties of the determinants A, and D,(z). Two properties of
A, and D,(z), believed to be new, are derived in this section. These properties,
especially useful in the numerical evaluation of the two determinants, are given

as two theorems.
THEOREM 1. The determinant A, is an arithmetical tnvariant under a trans-

formation of the origin of moments, that s, if
w@ = [ @ - i)

then
An = | piri | = | piri(@) | ij=012,00cm
for any arbitrary real number, al

Proor. We apply to the determinant A, in (7) the following two difference

operations.
(a) For each element g ; in the (¢ + 1)st row of A, substitute

©) MM=[}%—WwW=§ew@ﬁm%p

Obviously such a substitution leaves A, unchanged in value as it merely adds
to the (k + 1)st row a linear sum of multiples of the preceding rows.

If this difference operation is applied first to the (n 4 1)st row, then to the
nth row and so on, the determinant A, will retain the same value. Thus we

have

(10) An = | pivs | = [ 7i45(a) |5,50.0,000m -

1J. Geronimus, in his paper, “On some persymmetric determinants formed by the
polynomials of M. Appell,” J. London Math. Soc., Vol. 6 (1951) pp. 55-59, obtained indirectly
and as by-products of a solution to an extremal problem results equivalent to Theorems 1
and 2 given in the present paper. Geronimus assumes an absolutely continuous cumulative
distribution function but his proofs apply equally well to the general case treated above.
The author is indebted to Dr. H. P. Mulholland of the University of Birmingham who in
a letter to the author, dated 25 October 1953, outlined the relevant results of Geronimus.



116 SALEM H. KHAMIS

(b) For each element »;.x(a) in the (k 4+ 1)st column of (10) substitute
k
(1 tuala) = 35 (=17 (H) i@

and apply this substitution first to the (n + 1)st column, then to the nth column,
and so on. The resulting determinant is again equal to A, as each column is
replaced by a linear sum of multiples of the preceding columns.

The element £;,;(a) in the resulting determinant is, in virtue of 9), (10)
and (11) equal to u;y;(a). Hence,

(12) An = | piyi(@) |i,5=01.2,..c0m

as required.
TuEOREM 2. The determinant D,(x) may also be expressed in the form
= | Bii(®) [s,5=1.25,....n . That is, the following relation holds identically for all z,

0 1 x oo x”’
1 wo m - pa(x) pa@) o paa(®)
(13) | m p o op :1 _ pe@)  wa(®) e page(e)
x.ﬂ [.L. I .+1 e “; ”1;+1(x) ﬂn+2(x) M uz,.(x)

where p; = p(0) fors =0,1,2, -+ 2n.

Proor. Applying two differencing operations to the left-hand side of (13)
similar to the differencing operations used in the proof of Theorem 1, replacing
a by x throughout (with obvious modifications due to the difference between
the orders of the determinants D,(z) and A.(z)) relation (13) may be easily
established.

In view of Theorems 1 and 2 one obtains a new expression for p,(z) given by

(14) Pa(®) = | iyi(@) |i7m0,1.20000im/ | Biti(Z) |i,im1,280000m }

where a is any real number and where again
w@ = [ = z)doo).

The inequality
(15) ‘= |2(z) — ¥(2) | = pu(@)

where p.(z) is given by any of the expressions specified above, gives a gauge
of the error involved in approximating to an unknown cdf by another known
cdf whose moments, up to order 2n, are equal to the corresponding moments
of the unknown function. However, the gauge given by (15) is usually much
larger than the actual error as is well known in practical problems of this type.
We shall show below that under certain conditions inequality (15) can be im-
proved upon.
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4. Improvements upon inequality (16). Let ®(z) and ¥(x) be defined as in
Section 2. We need only consider the case when ®(z) and ¥(x) are not identically
equal, as the special case is trivial. Consider the two functions

(16) B(z) — () + A¥(z)
and
17) A¥(x)

where 4 is a positive constant chosen so that (16) is a cdf with at least n + 1
points of increase. As both ®(x) and ¥(x) are never decreasing functions, A
need not exceed unity. Thus we may write the condition

(18) 0<A=1

Since ®(x) and ¥(x) have identical moments up to order 2n, the functions
(16) and (17) have also identical moments up to order 2n. Therefore, the func-
tions

(19) [6(z) — (1 — A)¥(2)]/A = ®i(x), say
and '
(20) V()

have equal moments up to order 2n, which in turn are identical with the corre-
sponding moments of ®(z). Further, the functions (19) and (20) are nonnega-
tive, never-decreasing, and have at least n 4+ 1 points of increase each. There-
fore, by (15), we have

[®1(x) — ¥(z)| < pnlx)
which reduces to
1) [®(x) — ¥(z)| = Apa(x)

where p,(z) is given by any of the expressions (2), (5), (6) and (14) of Section 2.
Similarly, by considering the functions

5 W@ — 30 + B

and ®(z) we obtain the inequality
(22) [B(z) — ¥(z)| < Bpa(x)

where 0 < B =1

When A and B are each equal to unity, inequalities (21) and (22) will be
, identical with (15). However, when it is possible to choose either or both of A
and B less than unity, then we have an improvement upon inequality (15) (see
Section 5 below). When both of A and B may be chosen less than unity, the
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inequality involving the smaller of the two constants naturally would lead to a
better improvement.

When the functions ®(x) and ¥(x) are assumed to be continuous and differ-
entiable for all z in the ranges [a, b] and [a’, b’] respectively, (at a, a’ and b, b’
continuity and differentiability omdy on the right and on the left respectively
are assumed) (in which case each of the functions ¢(x) and ¥(x) possess an
infinite number of points of increase), one may obtain the smallest positive
number that could be assigned to the constant A as follows.

Since A must be chosen so that ®;(x) becomes a nonnegative, never-decreasing
function with at least n + 1 points of increase, we must choose A so that

fl@) = ®'(@) — ¥ (z) + A¥(z) 2 0

for all , and such that f(x) has at least n + 1 points of increase. The minimum
value of A which makes f(z) a nonnegative, and never-decreasing function is

(23) Ao = 1 + Lub.(—&(z)] ¥'(z))

where the least upper bound is taken over min (a, a’) < z < max (b, ¥’) provided
—&'(z)| ¥'(z) is bounded above.

If we choose A = Ao + ¢ where ¢ is an arbitrary positive number, then f(z)
will have more than n + 1 points of increase. Hence

| ®(z) — ¥(@)| = (Ao + €)on(@)
and since e is arbitrary, we have,
(24) | ®(x) — ¥(2)| = Aopn(2)

where A is given by (23), provided —®&’(z)| ¥'(x) is bounded above. That f(x)

has an infinite number of points of increase when 0 < 4 = 4, =< 1 is, in fact,

obvious because ®(x) and ¥(z) are distinct continuous and differentiable cumula-

tive distribution functions possessing equal moments up to order 2» [10].
Similarly we may choose the minimum value of B given by

(25) By=1+ 121-2;(—‘1”(96)/@(%))

provided —¥'(z)/®’(x) is bounded above.
Therefore, we may write instead of (15) the inequality

(26) _ | #(x) — ¥(z)| = min (4o, Bo)ea(2))

where A4, and B, are given by (23) and (25).
The above results may be summarized by the following theorem.”
TueoREM 3. If ®(x),a £ = < b and ¥(z), ' < = < b are two nonidentical
continuous and differentiable cumulative distribution functions whose correspond-
ing moments up to order 2n exist and are equal and if at least one of the ratios

.2 Theorem 3 and its proof were first given, in a slightly modified form, in an appendix
to a Ph.D. thesis submitted by the author to the University of London in May, 1950.
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—&'(2)/¥'(x) and —¥'(x)/®'(x) ts bounded above for ¢ < x =< d, where
¢ = min (@, a') and d = max (b, V'), then
| ®(x) — ¥(2)| = Cpalx)
where

0<C=1+ min {lc.;;ks);i(—@' () /¥ (z)), 10.151;1;.(—\1/’ (x)/® (x))}

and where

pn(®) = | piviliimon.2,cm/| it i (@i imr,20m

and u, and p.(t) are the rth moments about the origin and t respectively.
A second theorem, which leads to an improvement of inequality (26) when
each of Ao and B, exists and is less than unity, may be stated as follows.
THEOREM 4. If ®(x) and ¥(x) satisfy the conditions of Theorem 3, and if both
of A and B, of equations (23) and (25) exist, then

@7) | 2(x) — ¥(z)| £ Kpa(2)
where
(28) 0 < K = AoBo/(Ao + Bo _ AoBo) é min (Ao y Bo) é 1.

Proor oF THEOREM 4. The two functions
®i(z) = {B(x) — ¥(2) + AT (2)}/Ao
and
¥i(z) = {¥(2) — ®(z) + Bd(x)}/Bo
satisfy all the conditions for the application of inequality (15) and possess the
same moments up to order 2n as the original functions ®(z) and ¥(x). Hence
| @1() — ¥a(z)| = (4o + Bo — AoBo)| ®(x) — ¥(z)|/(AeBy) = pa().
Since 0 < 4o = 1and 0 < By =< 1, then (4o + By — AoBy)/AoB, > 0 and
therefore
| #(x) — ¥(z)| = {AoBo/(Ao + By — AoBo)} pu(x) = Kpu(x)

as required.

If either 4, or By is equal to unity, inequality (28) reduces to inequality (26).
However, if each of Ay and B, is less than unity, inequality (28) is an improve-
ment upon inequality (26) since, in this case,

0<K-= AoBo/(Ao + By, — AoBo) < min (Ao , Bo).

Examples are given in the following two sections which show the existence
of classes of cdf’s for which inequality (27) is an improvement upon inequality
(15). At most (even when the least upper bound of the ratio —®'(z)/¥’(z) and
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that of its reciprocal do not exist) the maximum value that both A, and B, can
take is unity.

5. An application of inequality (27). As an illustration of a case when all the
constants 4, , By and K exist and, each is less than unity let us apply inequality
(27) to the class of cumulative distribution functions given on page 106 of [2].
In particular consider any two cdf’s of this class defined by

®(z) = ]0 ke (1 + & sin (8¢ tan A1) dt
and
¥(z) = fo ke *™(1 + & sin (3¢ tan Ar)) df,

where 0 S 2 < 0; k> 0;0a>0;0<A< L;8=¢gtan Arjand —1 < & <
€1 < 1.

The two cdf’s ®(x) and ¥(zx) are distinct and have equal moments of all orders
irrespective of the distinct values of ¢ and e in the open interval (—1, 1).
Applying inequality (27) one obtains the inequality

| | () — ¥(2)| £ K/3 70 w}(2)

with 4, = (61 — 62)/(1 “+ 61), By, = (61 — 62)/(1 - ez), and K = %(61 - 62),
and where w,(x) is the orthonormal polynomial of degree r associated with the
given distribution functions. The series D ., w:(x) converges as n — « be-
cause the two distributions are distinet. Obviously inequality (27) applies in
this case and gives improved limits for | ®(x) — ¥(z)|, in comparison with in-
equality (15). In this case both 4, and By, and therefore K, exist. Other appli-
cations are given in the following section.

6. Class of cumulative distribution functions possessing moments equal up
to a specified order to those of a given cdf. We consider the case of a cdf which
is continuous and differentiable and has a finite range. The extension to a cdf
with a finite number of points of increase is simple. However, I have not suc-
ceeded yet in extending the following results to the case of a cdf with an infinite

range.

Let F(z) = f f(t) dt be any continuous and differentiable cdf with mo-
ments p,,r = 0,1,---,and ¢ < 2 < b, where both a and b are finite. Let
p.(x), r = 0, 1, -+, be the set of orthogonal polynomial over the range [a, ]

associated with f(x) as a weight function. Then we have the following theorem.
TrEOREM 5. For all € such that |e| < 1, the class of cumulative distribution

Sfunctions

(29) Fn(x, €) = f f(t)(+ epﬂ+i(t)/Ln+i) dt’ a é x é b

where

. L, = lub. | p.(z)] and 1=1,2,---,
asz<b

possess the same moments up to order n, provided the required moments exist.
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The proof is obvious since | €pn+i(x) |/La+: < 1 and because of the orthogonality
property of the polynomials p,(x). Over an infinite range the polynomials p,(x)
are not bounded and therefore the theorem does not hold.

It is to be noted above that F.{x, 0) = F(x) and therefore the set F,(z, ¢)
possesses the same moments as F(z) up to order n. Thus given any cdf over a
finite interval which possesses moments up to order 2n -+ 7 with 72 = 1, one
may construct by Theorem 5 an infinite number of cumulative distribution
functions which possess the same moments up to order » as the given cdf. The
existence of the moments up to order 2n + 1 implies the existence of the asso-
ciated orthogonal polynomial p,41(z).

The class of cumulative distribution functions F,(z, €) provides a suitable
set for illustrating the improvement obtained by introducing the constant K
in inequality (27). As an illustration consider the two functions Fy,(x, 0) and
Fau(x, 1) where ¢, % 0. Applying inequality (27) to these two functions one
gets Ao = |a |/ + |a), Bo = |a|,and K = |a|/2,
and therefore

(30) | Fan(x, &1) — Fau(x, 0)| < | &1 |/(22-70 wr(x))

where

@) = X0 / [ p)f) do:

This represents a reduction in the bound for the absolute difference which is
at least equal to half the bound given by inequality (15).

Incidentally inequality (30), upon substitution from (29) reduces to a general
inequality among the orthogonal polynomials for all sets of orthogonal poly-
nomials over a finite interval, say [a, b]. In this particular case the inequality
is given by
~/4; (Pon1(®) /Lons)f®) dt | < 5= . .

2 i)

r=0

(1)

Applying inequalities (27) to other pairs of the class F.(x, €) one can obtain
other general inequalities among orthogonal polynomials. Of course, because
of the generality of the class Fs,(x, €), these may be expected to be rather crude,
in the sense that the right-hand side of (31) is in special cases (e.g. Legendre
polynomials) much larger than the left-hand side in (31) (cf. [9], chapter 7,
p. 154).

In the particular case when p.(z),is the Legendre polynomial of order r de-
fined over the interval [—1, 1] by

1 2/@r +1) ifr=3s
[ papia) do = ,
1 0 if » # s,



122 SALEM H. KHAMIS

inequality (31) becomes
| Prnse(z) — pon(@)| S (4n + 3)/ 270 @r + 1)pi(a),

which is not as strong an inequality as those known in the case of Legendre
polynomials.

Theorem 5 is particularly of inferest in respect of the prevailing practice of
fitting a Pearsonian . cdf to an unknown cdf when the ranges of the Pearsonian
cdf is finite. If the fitted cdf is denoted by F(z) and if say the first four mo-
ments have been fitted, then any member of the class Fy i(x, ¢), with |e| < 1,
it = 1,2, ---, has the same first four moments as the unknown cdf. There
is no indication, however, that the fitted Pearson cdf gives a better approxima-
tion than other members of the class Fs,i(x, ¢). In other words, for a finite
range, Theorem 5 leads to a method of fitting which is more general than that
provided by the usual methods. It may be possible in particular cases to choose
a value of e which gives a better fit than F(z).

The class F,(x, ¢) of Theorem 5 may be extended further into the class
Fo(,e1, €, -+, em) With |e1| + || + - + | en| = 1 where

Paa e = [[(1+ 5 @oui/Lnd) 10 @

provided the required number of moments, necessary for the existence of
Drim(2) exist.

Finally, Theorem 5 proves the existence of an infinite class of continuous
cumulative distribution functions which are solutions of a given reduced mo-
ment problem over a finite range provided that there is at least one continuous
cdf which is a solution to the given moment problem.

REFERENCES

[1] P. L. CHEBYCHEFF, “Sur les valeurs limites des intégrales,” Journal de Mathématiques,
(2), Vol. 19, (1874).
[2] M. G. KeNpaLL, The Advanced Theory of Statistics, Vol. 1, 2nd ed., revised, Charles
Griffin & Co., Ltd., London, 1945.
[8]1 A. Markorr, “Démonstration de certaines inégalites de M. Chébycheff,” Math.
Ann., Vol. 24, (1884), pp. 172-180.
[4] J. A. SeoHAT AND J. D. TAMARKIN, The Problem of Moments, Mathematical Surveys,
No. 1, American Mathematical Society, New York, 1943, reprinted 1950.
[5] T. J. Steruries, “Quelques recherches sur la théorie des quadratures dites
mécaniques,’”” Annales Scientifiques de 1’Ecole Normale Supérieure, (3), Vol. 1,
(1884).
[6] T. J. STieELTIES, “Recherches sur les fractions continues,”’ Annales de la Faculté des
Sciences de Toulouse, Vol. 8, (1894).
[7] T. J. SteILTsEs, “Recherches sur les fractions continues,” Annales de la Faculté des
Sciences de Toulouse, Vol. 9 (1895).
[8] T. J. StieLTIES, Ocuvres Complétes de Thoas Jan Stieltjes, Vol. 2, published by les
Soins de la Societe Mathematique d’Amsterdam, Groningen, 1918.
[91 G. Szrc6, Orthogonal Polynomials, American Mathematical Society Colloquium
publications, Vol. 23, 1939.
[10] J. V. Useensky, Introduction to Mathematical Probability, McGraw-Hill Book Co.,
1937.



