THE ESTIMATION OF BIOLOGICAL POPULATIONS!:?
By Dovucras G. CHAPMAN
University.of Washington

Summary. A number of statistical models, underlying the methods used in
the estimation of the sizes and other parameters of animal populations, are set
up. The relevant estimation equations are given, with their variances and co-
variances. For the most part the theory is designed for large populations. In
setting up the models, consideration has been given to the desideratum of hav-
ing them conform as closely as possible to the actual practices of animal sampling.
To what extent the models do agree with reality is one of the many open ques-
tions which are noted in this paper.

1. Introduction. The use of sampling methods in the enumeration of popula-
tions has become widely known and widely accepted only within the past genera-
tion. Yet it is easily perceived that total enumeration methods fail for all but
the simplest of populations. Particularly is this true of biological populations
which may be mobile in space, transient in time and difficult of access. The
changes in space (immigration and emigration) and in time (recruitment and
mortality) must often be evaluated to determine the total population size and
in any case these changes are usually of interest in their own right.

In this survey, only those methods are considered for which it is possible to
set up a reasonable statistical model and for which it is possible to assess the
sampling errors. Attention is limited to methods that lead to absolute rather
than relative estimates. Little work has been done to set up statistical models,
as a basis of relative estimates, though for an important exception, attention is
called to a paper of Neyman [22]. To give unity to this survey, only those methods
that have been used in the study of macroscopic mobile populations are discussed.

Fixed sample methods have been used for the most part in the enumeration of
other biological populations. However, even the enumeration of sessile popula-
tions can give rise to new statistical problems; many of these are noted in an
important study of statistical problems in ecology, that recently has been initi-
ated by Skellam [28]. A further reference in this field is to a paper by Hoel [13].

2. Tag-and-sample estimates: direct random sampling. When the population
structure is undefined and unknown, it is not possible to select a fixed sample,
as is the case say in ecology or in sampling human populations. The origin of the
idea of using an associated variable of known distribution to build up a sample
count into a total population is difficult to trace. Certainly Laplace [17] was
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2 DOUGLAS G. CHAPMAN

among the first to study the method carefully. He suggested determining the
population of France from the known number of births in all parishes and from
the fact that the ratio of births to total population could be determined for some
parishes. Petersen [23], a Danish biologist, first developed the procedure of
marking fish to assist in studying their movements, migration, etc. He later came
to realize that the marked fish could play the same role for his populations as
the births did for Laplace—though evidently he was unaware of Laplace’s work.

When a mathematical model is set up to formalize this intuitive approach, it
is unusual to assume random sampling (i.e., sampling such that the properties
“being tagged” and “being sampled” are independent). It is much easier to make
this assumption than to verify it. It is also standard to assume that the numbers
tagged and the numbers sampled are parameters at the disposal of the experi-
menter. A completely adequate model must take into account the birth rate
with possible lag effects, a changing death rate, as well as emigration and immigra-
tion over the period during which repeated tagging and sampling take place. It
is apparent that the number of unknown parameters is large and that such a
model must be indeed complex. Some simplifying assumptions are desirable.

The following model is not the most general possible; it does, however, cover
many of the situations that have been studied and it leads to simple estimation
procedures. It applies specifically to large populations and it is further assumed
that either there are no new recruits to the population (through birth or immigra-
tion) or that new recruits are distinguishable and may be eliminated from the
samples.

Model I

N, = total population size at time zero,
Unknown <P = probability that an animal alive at time ¢ survives and re-
parameters mains in the population at time ¢ + 1.

t; = number of animals tagged at the ith tagging, taking place
Known at time a;(4 = 1,2,3 --- m),
parameters |n; = number of animals sampled in the jth sample taken at time
bi(j=1,2,3---71).

number of animals originally tagged at the 7th tagging and
recovered in the jth sample,

Random < 7;; = number of animals originally tagged at the sth tagging

variables : available for recovery at the time of the jth sample,

N; = population size at the time of the jth sample.

.

p
Tij

\

f() = the smallest value of j such that animals tagged at the ith
tagging have a positive probability of being recovered
in the jth sample.

The event of survival is assumed to be independent from animal to animal.

For large N, it may be assumed that given 7;;, N;, (which are not observable
r.v.) z;; has a conditional Poisson distribution with expectation (nr:;)N ;. It
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then follows that, for large N, , and either ¢; or n; large, z;; has approximately a
Poisson distribution with
t; n, P
Ny,
More precisely this holds as a limiting result as N, and the ¢; or n; — « while

all t;n;/N, remain finite.
For, defining

(1) &(zy) =

L N,-t.-P_“‘x.-,- _ N,' t‘.P”i"“ix“
yt.‘l Tij NO No Pb i Tij 1)

it is seen that

TiZj0iivii] tini P=35/Ng (055 __
&le ] =TI1T[e @ — 1].

Since, as t; — ©, and Ny — o, p lim N; = NoP’ and p lim 7,; = £;P*"™* the
stated result immediately follows from a theorem of Mann and Wald ([31]
Theorem 5 and Corollary 2, pp. 223, 224).

Furthermore since ¢; and #; enter symmetrically (the sampling may be regarded
as the “tagging’” and reciprocally) it follows that the same limit distribution
holds when N, , n; — «, with ¢;n;/N, remaining finite.

With this approximation it is straightforward to set up the maximum likeli-
hood equations for Ny and P, namely,

m 7

2 > timi P
(2) NO = =1 jum=jf(4)
x..
(3) x(Z Z a; t;njpma") = (E E a;a:,'j) <Z Z t,-n;P‘“‘)
i=1 j=y (1) i=1 jf-f(i) i=1 je=f (%)

where z.. = 2.1, EL/(-’) z;; . Equation (3) is a polynomial in P that can be
solved by the usual methods. i
The inverse of the asymptotic variance-covariance matrix of N and P is

m r m T

—3 —a —2 — 1

N X X tin P, 2 Z a;tin; P~
(4) i=1 j=f(i) i=1 j=f(3)
g m T m r

Nt R 3 atnm P, NS 3 attn P

0 Ly Ly Gilif ) 0 L L GiliTy

tel Jusf (1) 1=1 j=f (1)

It is convenient to display the parameters (¢;, ;) and the observations (x;;)
of such a census in a triangular array—the so-called “trellis diagram” used by
Dowdeswell, Fisher and Ford [10], but much more thoroughly studied by Leslie
and Chitty [19] and by Leslie [18]. Model I departs primarily from that proposed
by Leslie and Chitty in ignoring multiple recaptures. Leslie and Chitty show this
represents a loss of information; for large N, , however, the expected number of
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multiple recaptures is very small. In fact if this is not so, it suggests that the
stochastic variation of 7;; and N; may no longer be negligible. Moreover the
multiple recaptures are often those most suspect from the point of view of ran-
domness of the sample.

Leslie and Chitty, in common with other investigators, assumed that mortality
and emigration are strictly deterministic. Thus they are able to write down the
expected values of the various classes of tag recoveries as polynomials in P, and
to assume a multinomial distribution for these tag recoveries. The maximum
likelihood equations can then be formulated, though the solution of the equations
can, in general, be accomplished only by iterative methods. They have studied a
large number of problems in this manner and reference should be made to their
papers for models appropriate to situations not considered here. A model based
on the Poisson distribution can also be set up for most of these situations, which
will be valid for large N, , even though space and time variations are stochastic
variables, and which will often lead to simpler estimation equations. A complete
treatment, considering this stochastic variation, has not been given for the case
of small or moderate sized populations.

The formulae given above easily specialize to Jackson’s ‘“negative” census
[14], (one in which several taggings are followed by a single sample, at which
time only, are tag recoveries noted). Bailey [1] has given the maximum likelihood
estimates and their asymptotic variance-covariance matrices for Jackson’s
various census schemes assuming deterministic birth and death rates. Jackson
also set up a ‘“‘positive’’ census scheme, which he used to estimate the rate of
recruitment.

By defining a parameter B as the probability that an individual alive at time
t adds a new individual to the population by time ¢ 4+ 1, and assuming that this
event is independent of the event of survival, the model outlined above may be
extended and the restrictions of no recruitment may be removed. The {z;;}
still have a Poisson distribution to the same approximation as before and the
maximum likelihood equations for Ny, P and B are easily written down. The
two equations involving P and B are polynomials jointly in P and B. However,
it seems hardly realistic to assume that the recruitment rate is proportional to
the population size or that it is independent of survival. Another approach is
noted later.

Another specialization of formulae (1) to (4) is to put P = 1 that is, assume
mortality can be neglected. This situation is familiar to fishery biologists as a
Schnabel type census, named for the person who published a mathematical
theory of estimates based on such a multiple census [27]. More precisely, as
noted by the author in [6], for large N, ,

m 7

PIED IR

(6) _ i1 jeap (i)
R = z.. + 1

isaa,pproximately unbiased with standard deviation given by
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@ Tho _ /i ii un, -
0 1/22%1+01_-_1_:-%9__ ,

=1 juag (i)
Also confidence limits for the Poisson parameter will yield confidence limits for
N, in this case—see, for example, T4].

In the usual Schnabel census, tagging is carried on simultaneously with the
sampling process. More precisely, after each sample is examined the untagged
individuals are tagged and then all are returned to the population. If this is
strictly followed, t; = n; — Z;;i s;; and hence the #; are random variables.
For large N, , the random variation of the ¢; may be neglected. In fact it has
usually been disregarded in any case.

It is apparent that there may have to be some restriction on m and r to make
the results given above meaningful. In particular if m = r = 1, no estimation
of the parameters N, and P is possible, but estimation of N, is possible if a; = 0.
This is the simple Petersen situation—a single tagging followed by a single
sample. The formulae in this case are seen not to depend, for large N, , on mor-
tality assumptions. The variance of No=(+1) ¢+ 1)/ + 1), the almost
unbiased estimate of N, , is given by

2 __ aAr2 No - N, No
(8) aﬁo—No[H—l_O(n_t):'_l—_P_'

That this is a function of P, the survival factor, may be disregarded for most
practical purposes.

3. Tag-and-sample methods: inverse sampling. A modification of the sam-
pling procedure outlined above has been developed by Bailey [1], Goodman [12]
and the author [6]. If the number of tags to be recovered, rather than the sample
size, is predetermined, estimates are obtained which are somewhat simpler and
slightly more efficient. The most interesting of these results is that due to Good-
man, who considered a multiple sample type of census for a situation where there
is no recruitment and P = 1 (such a population will hereafter be referred to as
closed). His procedure is sequential in that the decision to stop sampling is a
consequence of the observations.

Model 11

Unknown N = lation i
parameter. o = population size.
fn,- = the predetermined sequence of samples,

T; = the number of tagged individuals in the population at the
time the 7th sample is taken (7';, the cumulative total is
to be distinguished from ¢; , the number of tags put out
in the 7th tagging.) 0 = 1,2,3 --- .),

z = the predetermined number of tagged members to be recovered
before the sampling experiment stops.

Known
parameters
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= the number of samples taken before the x tagged individuals

Random
. are recovered,
variables ,
n= 2

i=17; .
Sampling is assumed to be random with respect to tagged and untagged in-
dividuals. Then for large N,

Pr(r samples are required to obtain x tagged members)

= D Prlz — j tags are recovered in first » — 1 samples]
j=1

-Pr[j tags are recovered in the rth sample]

r—1 z—3
S oZin (; ""> N
=2,€ ‘e

=1 (x —N! il
r z r—1 z
= e—zfsl"" [(1-21 N) - <5=1 M) ]
x!

where we have written \; for #,T;/N. Making the change of variable

u=2ia\, Au = 2),,

ry z—1
_ —upp | (W, 1 Au
(10) Pr(a < u <b) = ga e [<2> =D 3 -+ o(Au)].
Let No — « in such a way that \; = 0 while _i=1 A; > 0. Using Duhamel’s
lemma it can be shown that

1 Y _up e
lim P _ / u/2, z—1
(11) N:Eo r(a < u < b) 1) J. e ““u" du,
that is, w = 2N~ D iy n;T; has a limiting x* distribution with 2z degrees of
freedom. It follows that the (asymptotic) minimum variance unbiased estimate
of Ny is

(12) T = ; L N

0= -———x— [ 5'0 = —;.

The proof given above differs from that of Goodman: he considered the Schna-
bel type of ¢ensus where tagging and sampling are performed in the same opera-
tion, that is, all untagged individuals are tagged before the sample is returned to
the population. What he showed, namely that n°/N has, asymptotically, a X
distribution with 2z d.f., is equivalent to the above result. In this case it is
simple to find the average sample size, that is &(n), (for large No). For these
results and other exact sample results reference is made to Goodman’s paper

cited, [12].
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The simplicity of ¢x, may make it particularly useful in designing the sample
census. Up to the moment, however, the several inverse sampling schemes pro-
posed have not been tried out. How to choose the sequence {n;} in an optimum
manner remains an open question. Nor has any attempt been made to set up a
theory of inverse sampling for other than closed populations.

4. Tag-and-sample estimates: regression approach. The assumptions under-
lying Model I may fail for a variety of reasons—imperfect sampling, clustering
of the populations, variation over the populations and over time, of the mortality
(or emigration) rate, etc, In view of the considerable superimposed variability
that may thus exist, in addition to strictly multinomial (or Poisson) variation,
it is pertinent to ask whether a linear regression model might not be more ap-
propriate.

N

Model 111. The same notation as Model I is needed. However, the restriction
that there be no recruitment may be removed. Hence it is more reasonable to
regard N1, Na, - -+ N, as unknown parameters to be estimated. Furthermore
the definition of P can be extended as follows: P = the average probability
that an individual alive at time ¢ survives and remains within the population to
time ¢ + 1.

If the sampling is such that

(13) &(xij | 745) = %’V—:}-’
it follows that

) — tianb iTe
(14) 8(330) = T'

The regression approach might be based upon the assumption that

(15) 8[111 a;t':t—’—l:l = (a.- - b,) In P + In Nj,
and that In (z:; + 1) has a constant variance (approximately).

The factor (z,; + 1) is suggested by the fact that the reciprocal of a binomial
or Poisson r.v. plus one is an (almost) unbiased estimate of the reciprocal of the
parameter. Moreover such a device avoids the difficulties of occasional zeros—
care must be exercised if the zeros are numerous or in sequence, for the assump-
tion above may then be clearly invalid. The logarithmic transformation is sug-
gested by the product nature of equation (14). However, it is also true that the
variance of the logarithm of a variable that is distributed according to the Pois-
son law is constant up to terms of order A\~'. Furthermore, the logarithmic
transformation has been extensively used in analysing data obtained from pelagic
hauls or catches (cf. e.g. Winsor and Clark [32]).

Best linear unbiased estimates of In P and In N ; are found by the least squares
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method (under these assumptions). From these, estimates of P and N, are ob-
tainable which have optimum asymptotic properties though not necessarily
optimum small sample properties. Interval estimates may also be obtained by
postulating approximate normality of the In (z;; + 1). Such interval estimates
may be much more realistic than®those based on Model I, if there is in fact
superimposed variability due to the causes indicated or to other causes.

Model III represents in a sense an omnibus model. It has the advantage that
an estimate of the extraneous variation can be made from the observations. On
the other hand, it is imprecise and heuristic rather than rigorous. If the hetero-
geneities noted can be carefully assayed, if not controlled, it may be possible to
set up a model which has this advantage and is at the same time more exact.

This type of approach would give some flexibility to the assumptions underly-
ing Jackson’s positive census (where a single tagging is followed by a sequence of
samples) or more generally to the “trellis diagram” census scheme where re-
cruitment is to be taken into account by a single parameter. Redefining B as
the average probability that an individual within the population at time ¢ adds
a new recruit to the population at time ¢ + 1, similar assumptions as those
above lead to

t,-n,-P"f—""
No(P + B)bi°

Hence estimates of P, B and N, could be derived from the least squares esti-
mates of In P, In (P + B) and In N, from the equation:

(16) 8(xi) =

17) 8<ln;tL_1:Li> = (a; — b)) n P+ In Ny + b; In (P + B).
(]

6. Dichotomy methods. A method of estimating population size that has been
used in wildlife research and which may be useful in other fields, is based on the
change of sex ratio caused by a selective kill. The sex ratio is determined before
and after the kill by sampling methods. Several references to field applications
of the method are listed by Scattergood [25] in a general survey of methods of
population estimation.

The estimation procedure may be based upon any dichotomy within the popu-
lation, or even on external factors: all that is required is a sampling process
followed by a selective removal of individuals from the population, and subse-
quently a further sampling process. Closed populations only will be considered.

Model IV

Unknown N: = population at time ¢; ( = 1, 2) made up of two classes
Xand Y,

parameters X, Y: = size of classes X, Y at times ¢; .

Known n; = size of random samples taken at time ¢, ,
parameters |1, = X1 — Xo5r, = Yi— Ya;r=r, 471, .
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Random z; = number of elements of class X in sample n; ,
variables y: = number of elements of class Y in sample n; , ( = 1, 2).

Assuming sampling with replacement

= ()

Since it is assumed that X, , N, are expressible in terms of X; and N; and known
parameters, estimates of X; and N; are easily found. The moment estimates

(19) Xl — xl(nz Ty — XgT)
N2 X1 — M1 T2

r —
N = m(nars — 227)

(20)
Ny X1 — N1 T2

are also maximum likelihood estimates.
Formulae for the inverse of the asymptotic variance-covariance matrix are
as follows:

nl + e _ n1 _ Ne
(21) XY, X,Y, N.Y: N.Y,
—mo_ e X m X
N.Y:, N.Y, N:Y, NiY,
s0 that
ﬁmn+m&n
(22) ox, (asymptotic) = nz(Pl - P2):h
where P; = %—: , (1=1,2).

These formulae may be used to determine the optimum theoretical allocation
of sampling between the before and after samples. It is also interesting to use
them to compare the effort required for this type of census with that required for
tag sample methods. A numerical study shows that the tag sample method has
the advantage—assuming that the tags are sampled by the removal process.
However, the evaluation is incomplete without some means of determining the
relative costs of sampling and tagging. Moreover, it is reasonable to suppose
that the assumptions underlying the dichotomy method are more likely to be
fulfilled than in the tag-sample method—questions of tag mortality and differ-
ential recapture rates do not arise in the former process.

In some situations it may be possible to sample two populations, for example,
a sport fish and a scrap fish. The sports fishery then serves as the selective
removal factor in a very favorable situation since r, will be zero. In this case X
is the parameter that it is of interest to estimate.
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The method may also be applied where the removal is done by the sampler.
In this case it is more realistic to assume that a succession of samples are taken.
Again it is straightforward to set up the model for this situation and to derive
the maximum likelihood equationg for X and N. This naturally suggests a
sequential estimation procedure where the decision to stop is determined by the
sample results.

If there is dilution or elimination, the procedure is obviously vitiated. As yet
no work has been done to extend the method to estimate these factors. Esti-
mates of mortality for example might be based on a trichotomy or on an inter-
mediate sampling during the removal process. The several sample scheme (se-
quential or not) would lend itself to this more complicated situation.

6. Methods based on the notion of effort. That the amount of effort expended
in obtaining a given sample of a population is proportional to the population
density has long been the basis of relative population estimates. Leslie and
Davis [20] and independently DeLury [7] showed how absolute estimates could
be determined from this information, when the successive samples are removed
from the population—as for example occurs in the catch of a fishery. Except for
this catch, the population is assumed closed. A model similar to DeLury’s is
as follows:

Model V
o = initial population size,
:)J;;k allli:::rs k = average probability that an individual is captured by one unit

of effort in any time interval.

gﬁ:ﬁ tor {K ¢ = total catch up to but not including the ¢th interval,

Random . = catch per unit of effort during the ¢th interval (¢ =
variable 1,2, --- m).

If the units of effort are independent it follows that &§(C;) = k(N, — K.).
With the further assumption that ¢%, is approximateiy constant (which is reason-
able for large N, unless the cumulative catch represents a large segment of the
population by the end of the experiment), least squares estimates of k¥ and N,
may be found. In particular

¢S (k. - Ry
(23) No =K — —mt:I——-.
3 K.~ B)

If the further assumption of approximate normality of the C, is made, con-
fidence intervals for N are

(24) KE—v%<N<K-m
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where v1 v: are the roots of the equation,

FIECUE, ~ BF ~ ¢5(K, — B) — 20 [S(K, ~ RYI[ECAK, — By
: +(e-D)E® - Ry =0

where ¢ = ti_a2 (m — 2). s., , and s3, is the residual variance of the ¢, about the
regression line.

The confidence intervals are obtained by the Fieller technique [29]. From a
general study of this method by Junge [30], it may be inferred that when the
coefficient of 4* is positive, the equation has only real distinct roots. Letting v,
be the smaller of the two roots, a closed confidence interval is obtained for N, .
If v, > K — K41, the lower confidence limit yields less information than the
fact that the initial population N, must exceed K...1 , the total catch.

If the coefficient of 4” is negative, the roots of equation (25) may be real or
imaginary. In the former case the confidence interval for N, is of the form
(Kms1 N1) (N2 ®); in the latter case the trivial confidence interval (Kn41, ©)
is obtained. In general the probability of either of these situations occurring is
extremely small. There is also a small, though still nonzero probability that in
the case where the coefficient of 4* is positive, both v; and v, exceed K — Kny1 ,
so that the confidence interval for N, is degenerate. In practice, however, the
occurrence of these cases will suggest a careful re-examination of the situation
to determine whether Model V is indeed the appropriate model.

DeLury has also considered the possibility of weighting the least squares
estimates, though he suggests that such a procedure may be meaningless if the
sampling is not random. This is very likely the case in utilizing commercial or
sports catch records or in sampling schooling populations for example. For a
further discussion of these points and of the method in general, reference is
made to [7] and [8].

For the case where the effort is constant, Moran [21] has set down a model
based on the assumption of random sampling. The model may easily be extended
to the case where the effort varies from period to period. A somewhat more
interesting extension is based on a combination of tag and sample and catch
per unit of effort methods. The case of a closed population is still considered.

(25)

Model VI

N, = initial population size,
k = probability that a unit of effort captures one member of the
population.

Unknown
parameters L

K; = cumulative number removed from population up to but not

Known including the 7th sample,

: ‘ ¢; = number of units of effort expended on the sth sample,

parameters t; = the number of tagged individuals remaining in the population
at the time the sth sample is taken.
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n; = size of the 7th sample or catch, which is then removed from
the population,
z; = number of tagged 1nd1v1duals in the 7th sample Z=12.--7).

Random
variables

It is assumed that n; has a Poisson dlstrlbutlon and that given n; , z; also has a
Poisson distribution. With the usual proviso that the units of effort are inde-
pendent,

(26) &m:) = k(No — Kie;
and ‘

n: t,'
27) &(@i | n:) = o — K.
Hence

Pr(ny, ng, -+ m,; 1, T2, - )

(28) — - [ —(N—K{)ke ; [(NO - Ki)kei]ni —(nits) [ (Ng—K;) < " t" >z‘ 1 :I
- H € n;! € No — K; zl ]

teml

The maximum likelihood equations for k‘and N, are

r
Zni

(29) b=———=
Zl 91(N Kl)
£ — )2 - -— | 7 ¢
tml (N Kz) =1 N Kz Z e;(N _ K.)

i==l

The inverse of the variance-covariance matrix of & and Ny , expressed in terms
of the K; is:

[k 21 ei(No — K5) il €
(31) - - :
[ 2 e B + ¥ KJ

i=1 =1

7. Further problems. Each of the models set up and others that have been
considered involves one or more assumptions which it is difficult or impossible
to verify directly. For example, underlying the tag-and-sample models there is
the assumption that tagged members of the population behave similarly to the
untagged members, at least in respect to recapture. A primary assumption of
the methods based on effort is that catchability is constant.

Some empirical studies have been made to verify the estimates of populations
by sampling methods. In some experiments conducted on fresh-water lakes the
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whole population has been poisoned out (a procedure that can hardly be recom-
mended as an enumeration procedure except where the elimination of the existent
populations has been the primary aim). The agreement has been satisfactory
for some species but not for all-—for example cf. Carlander [3]. It should be re-
marked that sampling methods have often been necessary in connection with
the estimates determined from the dead recoveries.

Such methods of verification have at best limited application. It is necessary
to design sampling experiment specifically for this purpose. In this connection
it is suggested that combinations of the various methods outlined may be useful.
This has been proposed by DeLury, [9]; his discussion of the underlying as-
sumptions of sample census methods is particularly pertinent.

Such combinations, of which Model VI is an example, may also yield more
information than the application of a single method. Of course if the sampling
is being done by a succession of commercial catching, Model VI is the appropriate
one rather than Model I—though the heterogeneities introduced by such com-
mercial catch sampling may suggest a regression model, that is, an extension of
Model III.

In Model I the numbers tagged and sampled were regarded as parameters;
in actual fact they may also be random variables. For example the sample may
be a commercial catch which includes elements from populations other than the
one to be estimated. Subsamples are taken from the commercial catch in order
to estimate the number from the population under study, that is, n. The use of
7t in place of n is suggested. This complicates the interval estimation problem
and while a crude. determination of a confidence interval for N, is possible by a
step procedure, (a confidence interval for n is first obtained) this patently wastes
information. The several variations of this situation that may arise suggest the
necessity of a study of confidence intervals in connection with compound distri-
butions.

Referring again to Model I, it may be recognized from the outset that hetero-
geneity exists within the sampling procedure. If it is possible to subdivide the
tagging and sampling into periods (by time or area, for example), within each
of which random sampling may be assumed, then it is possible to obtain con-
sistent estimates, though the interval estimation problem is unsolved. This
situation was first considered by Schaeffer [26].

An obvious extension of Model V is to assume that the probability of capture,
rather than being constant over the population, is itself a random variable. The
distribution of the probability of capture may perhaps be related to the ex-
pected catch in any time interval. Additional information is available if different
methods of capture are being used simultaneously—in fact in this case the
restriction that the population is closed may be relaxed and an estimation pro-
cedure set up for the population size at each time interval.

As has been inferred, the interval estimation problem remains unsolved for
- many of the models, except for the large sample results. Correspondingly, the
sample theory of tests in connection with such models has been given almost no
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attention. Some simple applications of the x* test have been given by Leslie
[18] and by the author [5]. As more intricate experiments are designed and more
careful control plans undertaken it will be necessary to consider tests for re-
cruitment and mortality rates, for example.

The complexities of estimating the birth, death, emigration and immigration
rates indicate that it will be necessary to set up special experiments to adequately
determine these factors. Some of the experiments set up by Jackson [15], where
marking and recovery were carried on in a series of adjacent areas, were designed
for this purpose. Random walk theory has been applied in one special situation
by Gilmour, Waterhouse and McIntyre [11]. The study of birth and death proc-
esses, and of processes associated with random as well as migratory movement,
is necessarily associated with the population estimation problem and the latter
will be completely solved only when the problems associated with these stochastic
processes are resolved.
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