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As the level of significance increases, the power efficiency of the rank sum test
increases slightly whereas the power efficiencies of the median and maximum
deviation tests decrease.

TasreE II. When tests for samples of size 5 are randomized to the single
level of significance o = .025, it is easy to compare the tests and note that the
rank sum test has greater power than the median and maximum deviation
tests. Particularly for near alternatives, the maximum deviation test has greater
power than the median test.

Tasue ITI. The local power efficiencies for the rank sum test are very high.
For all cases computed they are greater than 3/w, the limiting local power
efficiency for large samples.
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A REMARK ON THE JOINT DISTRIBUTION OF CUMULATIVE SUMS

By HerBERT ROBBINS

University of North Carolina and Columbia University

Let Xi, k =1, -+, n, be any finite number n of independent random vari-
ables with respective distribution functions Fy(z) = Pr[X; = z]. Let T =
X1 + --+ + X, be the successive cumulative sums of the X, with individual
distribution functions Gi(t) = Pr[T: = {] and joint distribution function
Gy, -, t,) = Pr[Ty £ 4, -+, Tw < t,]. Since the T are not in general
stochastically independent, the function G(#, -, ¢,) will not in general be
equal to the product of the n functions Gi(t), but we shall show that the ¢n-

equality
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always holds. This is intuitively more or less obvious, but the proof is not en-
tirely trivial.

Lemma 1 (Tchebycheff'). Let X be a random variable and let u(z) and v(z)
be any two nonincreasing functions of x for which Eu(X) and Ev(X) are finite;
then

(@) Eu(X)(X)] =z Euw(X)-Ev(X).

LemmMa 2. Using the notation of the first paragraph, let A, B denote any partition
of the set of integers 1, - - - , n into two disjoint subsets; then

Pr[T: < trforallk =1, .-+, n]
= Pr[T: < . forall k ¢ A]-Pr[Tx =< tx for all k ¢ B].

@)
Proor. Induction on n. The theorem is trivially true for n = 1, since one
of the sets A, B must be empty. If it is true for n — 1, then for any fixed < 4,

PriTy £ tuforallk =1, -, n| Xy =2a] =Pr[Xo+ -+ + X,
<t —azforallk =2, ---,n]
>PrXo+ -+ XSt —aforallked — {1}]-Pr(Xe 4+ - - + X,
St —aforallke B — {1}]
= Pr[T: £ trforallk e A — {1} | X1 = z]-Pr[T%

S fforallke B — {1} | X, = 1]

(4)

= Pr[T, S tpforallk e A | X1 = z]-Pr[T%

Stforallke B| X, = z].

The inequality between the first and last members of (4) remains valid even for
x > #,, since then the first member and one of the two factors of the last mem-
ber is 0. Thus, setting

u(x) = Pr[Ty < e forallk e A | X, = x],
v(x) = Pr[T% = tforallk e B| X, = z],

I

(5)

grating from — « to « with respect to the distribution function F(x) of X,
we obtain

we have for all z Pr[T, < fpforallk =1, --- ,n|X: = 2] = u(®)-v(x). Inte-

-]

©) PriT, < tforallk =1, ,n] = f w(@)o(@) dFy(@).

18ee Hardy, Littlewood, and Pélya, Inequalities, Cambridge (1934), p. 43; also M.
Biernacki, “Sur une inégalité entre les intégrales due & Tchebycheff,” Annales Univ.
Mariae Curie-Sklodowska, Lublin, Sect. A, Vol. 5 (1951), pp. 23-29.
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It is clear from the definitions (5) that both w(z) and »(x) are bounded and
nonincreasing functions of z, and hence by (6) and (2)

Prlty < Ty forallk =1, ---,n] = f ) u(x) dFy(z)- [° v(z) dFy(x)

= Pr[T: < & for all k e A]-Pr[T: < & for all k ¢ B],

which proves (3).
THEOREM. If Ay, ---, A, form a partition of the set of integers 1, ---, n
into any number r of disjoint subsets, then

PriTy < tiforall kb = 1,+-- ,n] = IIlPr[Tk < Gforallke Ay
e

In particular, setting r = n, 4; = {j},j = 1, ---, n, (1) holds.
Proor. Induction on r, using Lemma 2.
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1. The Integral of a Symmetric Unimodal Function over a Symmetric Convex
Set and Some Probability Inequalities. T. W. ANDERSON, Columbia Uni-
versity and Stanford University.

The integral over an interval of fixed length of a symmetric unimodal function is max-
imized if the interval is centered at the origin;in fact, the value of the integral is a
nonincreasing function of the distance of the midpoint of the interval from the
origin. A generalization of this result to n-space is the following: Theorem 1. Let E be a
convex set in m-space, symmetric about the origin. Let f(x) = 0 be a function such that f(x) =
f(=2), {z | f(x) = u} is convex for every u(0 £ u £ »), and fgf(x) dz < o (in the Les-
besgue sense). Then f s f(x + ky) dz = f ef(x + y) dx for 0 = k = 1. A direct consequence
is that the distribution of X + Y is more spread out than the distribution of X. T'heorem
2. Let X be a random vector with density f(x) satisfying the conditions of Theorem 1; let Y
be an independent random vector; and let E be a convex set, symmetric about the origin. Then
Pr{X+kYeE} ZPr{X+ YekE}for0=k = 1. Inequalities are derived for distribu-
tions of functions of random variables such as ZX? and max 1<i<a | Xs | and correspond-
ing functionals of stochastic processes. Another application is to show that certain tests
of location parameters are unbiased. (Work supported by the Office of Naval Research.)

2. The Spectral Method of Hypothesis Testing Concerning Continuous Gaus-
sian Stationary Random Processes. R. C. Davis, Hughes Tool Company.

Present rigorous methods of hypothesis testing concerning Gaussian stationary random
functions depending upon a continuous parameter—in which a process is observed only
during a finite time interval of duration T—have been based upon an analysis carried out
in the time domain. In order to determine the sample decision function by this method
for testing even a simple hypothesis against a single alternative, it is necessary to solve



