610 W. J. DIXON

Exampre 1. The power function for « = 0.05, m = 2 and n = 8 would be
obtained from (19) with @ = 1. From [3], (1, 4, 0.95) = 0.52713; substituting
gives the power function as

P(\| 1, 4; 0.05)

(21) ,
=1 — ¢ *™™(0.95000 + 0.34381 A -+ 0.03961 \* + 0.00136 1°).

ExampLe 2. Suppose that two-figure accuracy is desired in calculating the
power function for &« = 0.05, m = 8 and n = 30. The unabridged form of (10)
with & = 4 and b = 15 would entail evaluating 15 terms. From (15),

R(\ |4, 15, 8; 0.05) < 0.003.

Thus using the first eight terms of (10) would certainly secure the necessary
aceuracy.

REFERENCES

[1] P. C. Tang, ‘“The power function of the analysis of variance test with tables and il-
lustrations of their use,” Statistical Research Memoirs, Vol. 2 (1938), p. 143.

[2] KarL PEARsoN, Tables of the Incomplete Beta Function, Cambridge University Press,
1934.

[3] CarueriNeE M. THOMPSON, ‘“Tables of percentage points of the incomplete beta-func-
tion,”’ Biometrika, Vol. 32 (1941), pp. 151-153.

[4] KarL PEarsoN, Tables of the Incomplete T-Function, His Majesty’s Stationery Office,
London, 1922,

D —————

POWER UNDER NORMALITY OF SEVERAL NONPARAMETRIC TESTS
By W. J. DixoN

Unaiversity of Oregon!

1. Summary. Presented are tabulations of the power and power efficiency
of four nonparametric tests (rank-sum, maximum deviation, median, and total
number of runs) for the difference in means of two samples drawn from normal
populations with equal variance. The cases considered are for equal sample
sizes of three, four and five observations and alternatives § = | u1 — w2 |/o.

2. Introduction. One method of comparison of various nonparametric tests
is a study of their performance under the assumption of normality. An ad-
vantage of this method is the wide use of the normal assumption. Disadvantages
are the limitation to a particular type of distribution and the extensive computa-
tion necessary.

The computation of power under normality is simplest for small samples and
small levels of significance. This fact has guided the present study, but it is
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TABLE 1
Power and power efficiency for two samples of equal size, Ny = N; = N, from normal popula-
tions with equal variances o2 and means p1 and ps , for each of four tests against the alternative
6= |p —npl/o.

W = rank sum D = maximum absolute deviation
M = median R = total number of runs
N5 | s o
'i‘(;st l o W,D,M,R w T D M o
R N R D o
o 1 1/10 1/35 1/126 2/126 4/126 10/126 26/126
"

Pow. | Eff. | Pow. | Eff. | Pow. | Eff. | Pow. | Efi. | Pow. | Eff. | Pow. | Eff. | Pow. | Eff.

0 | .100 .975 .020 | .965 .008 | .057 .016| .962 .032 | .965 .080 206
.25 .111 | .98 | .035 | .96 | .011 | .96
50 .143 | .98 | .055 | .96 | .021 | .95 | .040| .97 | .072 | .97 | .144 | .87 | .207, .78
75| .195 | .98 | .000 | .96 | .041 | .95

1.00 © .264 | .98 | .141 | .96 | .074 | .95 | .128/ .06 | .210 | .97 | .328 | .87 | .515 .77

1.25 . .347 | .97 | .209 | .95 | .124 | .94
1.50 + .438 ' .97 | .293 | .95 | .192 | .94 | .301) .96 | .431 | .96 | .576 | .86 | .744| .76

1.75 | 532 .07 | .388 | .95 | .278 | .03

2.00 | 624 .97 | .489 | .94 | .377 | .93 | .530 .95 | .674 | .95 | .794 | .86 | .899 .76
2.50 | 71| .96 | 682 | .93 | 587 | .92 | .44 .94 | 858 | .04 | .025 | .85 | .070, .75
3.00 | 890 | .96 | .830 | .93 | .768 | .91 | .880 .93 | .953 | .04 | .080 | .85 004 .74
350 | 952 95| 923 .92 .890 | .00 961 .92 | 088 | .03 | .006 .84 |
400 982 .95 970 .91 .956| .89 | .98 .92 .98 | .02 090 .83
450 994 | .95 | .990 | .90 | .985 | .83 | .998 .91 | .0006| .01 | .9999| .83 |

5.00 .998 | .94 | .997 | .90 | .995 | .88 ! 1 | ] |

hoped that the considerable differences evident in these small sample cases
along with what is known about asymptotic results, will be of help to the statis-
tician using nonparametric tests.

In addition to reporting the actual power for various alternatives, comparison
has been made with the t-test by use of a power efficiency function (Table I).
This function Pz(8) is defined as the ratio of the sample size of ¢-test which
results in equal power for a given alternative, 8, to the sample size of the non-
parametric test under consideration. Fractional sample sizes for the t-test are
found by interpolation on sample size to obtain a power equal to that of the
nonparametric test. This function has already been used [1] for the sign test.
Powers of the ¢-test used for this comparison were computed as by Nicholson [3].

Since the power efficiency of a nonparametric test will, in general, also de-
pend upon the level of significance, comparisons of different tests are made
difficult by the fact that the levels of significance which naturally occur for
each test are not the same. To make the comparison simpler, power efficiency
is also given (Table II) for the tests randomized to a single level of significance,
a = .025. For example, the rank sum test has natural levels & = .0159 and
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TABLE II
Power and power efficiency of three tests, each randomized to level of significance
a = .025,f07‘N1 = Ny=25

Test Rank sum Max. abs. dev. Median

8 Power | Eff. Power Eff, Power Eff.
0 .025 .964 .025 .025

.5 .058 .96 .051 .81 .045 .70
1.0 173 .95 .135 .80 112 .70
1.5 .376 .94 .284 .79 .240 71
2.0 .614 .93 .476 .78 .421 .72
2.5 .810 .92 .668 77 .620 .72
3.0 .925 .91 .819 .76 788 .73
3.5 .976 90 ¢ .915 .75 .899 .73
4.0 .994 .89 .966 74 .960 .73
4.5 .999 .88 .988 .74 .986 .73

a = .0317, so that use of the former with chance .425 and the latter with chance
.575 will result in an effective « = .025.

Since for § = 0 all the power curves agree in ordinate and slope, the limiting
power efficiency function as § approaches zero may be obtained by interpolat-
ing among the second derivatives of the power functions of ¢ in the same manner
as among the ordinates for § not zero.

Computation for the limiting power efficiency for the one sided rank sum
test randomized to & = .0125 for N; = N; = 5 was made by interpolating among
the first derivatives of the power functions for one-sided t-tests. The same
power efficiency, .964, was obtained as for the corresponding two-sided test
with « = .025.

Table III gives these limiting power efficiencies for the rank sum test for
sample sizes N; < N, < 5. The cases indicated by an asterisk apply also to the
maximum deviation, median, total numbers of runs tests. Of course they apply
also to any test which has, for the stated «, a critical region corresponding to

TABLE III

Limiting power efficiency of rank sum test W against the alternative | p1 — p2 |/o = § = 0,
for various levels of significance a and various sample sizes N1 and N from normal populations
with equal variances o and means p1 and us . Values marked with asterisk (*) apply also to
mazximum absolute deviation (D), median (M), total number of runs (R), and similar tests.

Ny, Ne| 2,2 | 2,3 2,4 3,3 4,4 55 L w,

a 1/3 | 1/6 | 2/15 4/15|1/10 1/5 | 1/70 | 1/126 2/126 4/126 |0 < a« < 1
Eff. .995*| .990 | .971* .966 | .975* .973, .965% .957* .962 .965 t 9549 = 3/w
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the case of all observations in one sample greater than all observations in the
second sample, or vice versa. The limiting value, 3/, for large samples is given
by others [2], [5].

3. Theory. The computation of power requires the evaluation, numerically
in most cases, of the integrals representing the probabilities that various sample
configurations lying in the critical region will occur under various alternative
assumptions. Two such expressions will be displayed.

The first case corresponds to all observations in one sample greater than all
observations in the second sample, or vice versa. Here a = 2(N!)?/(2N)! and
the rank sum statistic equals D1 ¢ for two samples of size N. The power P(5)
for normal cdf F(z) is

N [° F*@) F'6 — ) dF@) + N [ " PN =) G — 1) df(o).

In the second case, where the smallest observation and only this smallest
observation of one sample lies between the two largest observations of the other
sample, the rank sum statistic equals 1 + »_1 4 for two samples of size N. In
this case the power P(8) for normal cdf F(x) is

NV — 1) [ ) [ TPy — ) P —a) F@ — 8) dF(y) dF(z)
~vw =0 [ [T ) Ry - 8 B - ) dRG) dF@)

+ 8 [ FU@ 6 — ) Fo— 0 dF@) — N[ F(—0) P — 8) dF @).

Similar expressions may be written down for larger «, and for the other tests.
The quadratures were performed for § = .25(.25)2.00, 3.00, 4.00 for N = 3, 4
and for & = .50(.50)3.50, 4.50 for N = 5; other values were filled in by sub-
tabulation. The power curves of the nonparametric tests and the {-test, when
subjected to the transformation

z(8)
PG) = f_ @m) e dt,

yield an z(8) essentially linear in 6 when § is not close to zero. Consequently, all
interpolations were performed on x(8). This procedure was also used in inter-
polation for the power efficiency function. Second differences were adequate in
most cases.

An extensive bibliography on the above tests is given by Savage [4].

4, Conclusions. _

Tasre I. The four nonparametric tests considered have high power efficiencies
for very small samples and small @, when compared with the ¢-test for normal
alternatives. Power efficiency decreases slightly for more distant alternatives.
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As the level of significance increases, the power efficiency of the rank sum test
increases slightly whereas the power efficiencies of the median and maximum
deviation tests decrease.

TasreE II. When tests for samples of size 5 are randomized to the single
level of significance e = .025, it is easy to compare the tests and note that the
rank sum test has greater power than the median and maximum deviation
tests. Particularly for near alternatives, the maximum deviation test has greater
power than the median test.

Tasue ITI. The local power efficiencies for the rank sum test are very high.
For all cases computed they are greater than 3/w, the limiting local power
efficiency for large samples.
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Addendum
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A REMARK ON THE JOINT DISTRIBUTION OF CUMULATIVE SUMS

By HerBERT ROBBINS

University of North Carolina and Columbia University

Let Xi, k = 1, -+, n, be any finite number n of independent random vari-
ables with respective distribution functions Fi(z) = Pr[X; = z]. Let 7% =
X, + -+ 4+ X, be the successive cumulative sums of the X3, with individual
distribution functions Gi(t) = Pr[T, = {] and joint distribution function
Gy, -, t,) = Pr[Th £ t,---, Tu £ t,]. Since the T are not in general
stochastically independent, the function G(¢, -, ¢,) will not in general be
equal to the product of the n functions Gi(t), but we shall show that the ¢n-

equality

o) G, -t 2 T1 G
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