TRUNCATED LIFE TESTS IN THE EXPONENTIAL CASE

By BenjaMIN EPSTEIN

Wayne University*

1. Introduction and Summary. It is frequently desirable on practical grounds
to terminate a life test by a preassigned time T . In this paper we consider life
tests which are truncated as follows. With » items placed on test, it is decided in
advance that the experiment will be terminated at min (X, ., T,), where
X,y ,» is a random variable equal to the time at which the rith failure occurs
and T, is a truncation time, beyond which the experiment will not be run. Both
ro and Ty are assigned before experimentation starts. If the experiment is ter-
minated at X,,,. (that is, if 7, failures occur before time 7'), then the action in
terms of hypothesis testing is the rejection of some specified null-hypothesis.
If the experiment is terminated at time 7'y (that is, if the roth failure does not
occur before time T)), then the action in terms of hypothesis testing is the ac-
ceptance of some specified null-hypothesis.

While truncated procedures can be considered for any life distribution, we
limit ourselves here to the case where the underlying life distribution is specified
by a p.d.f. of the exponential form, f(z; ) = 6 "¢, x > 0, 8 > 0. The practical
justification for using this kind of distribution as a first approximation to a num-
ber of test situations is discussed in a recent paper by Davis [1]. It is a common
assumption for electron tube life.

Two situations are considered. The first is the nonreplacement case in which
a failure occurring during the test is not replaced by a new item. The second is
the replacement case where failed items are replaced at once by new items drawn
at random from the same p.d.f. as the original n items. Formulae are given for
Eo(r), the expected number of observations to reach a decision; for Ee(7T), the
expected waiting time to reach a decision; and for L(6), the probability of ac-
cepting the hypothesis that 6§ = 6, , the value associated with the null-hypothe-
sis, when 6 is the true value. Some procedures are worked out for finding truncated
tests meeting specified conditions, and practical illustrations are given.

It is an intrinsic feature of all life test decision procedures that they are in
some sense truncated, although not necessarily by a fixed time 7'y . In Section 3
we give exact formulae for Ee(r) and E¢(T) for a decision procedure given in
[2]. There is a close relation between these results and those in Section 2.

2. Derivation of a truncated test in the nonreplacement and replacement case.
It will be assumed throughout this section that the underlying p.d.f. of the life
of items is given by f(z; 8) = 67'%¢*°, £ > 0, 6 > 0. In the nonreplacement case,
n items are drawn at random from the population and placed on life test. Items
which fail are not replaced and the experiment is truncated at time min (X, , ,
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T,), where X,,,» is the time when the r¢th failure occurs and o and T, will be
taken as preassigned. T is a truncation time beyond which the experiment does
not run. The variate is considered to be time for convenience only. It is perfectly
clear that it can be other things, depending on the physical applications one is
concerned with. Generally the variate will be nonnegative.

Since the probability of an item failing before time T is given by ps = 1 —
¢~ ™" it follows from the binomial law that the probability of reaching a decision
requiring exactly & failures is

(1) Prr=1Fk|6) =blk;n,p) = Ops(l — )", k=012 ---,7—1

ro—1

2) Pr(r =1 | 0) = 1 — 2 blk;n, ps).
k=0
The expected number of observations to reach a decision is
0
3) Ey(r) = ,,Z k Pr(r = k| 6).
=0

It can be readily shown that (3) simplifies to
ro—2 ro—1
4 Ey(r) = npo[,;, blk;n — 1, po)] + 7o [1 - kZ; b(k;n, pa)]-

This is in a convenient form for calculation. For any preassigned n, Ty, and
7o , Eo(r) can be found easily from the Binomial Tables [8] or the Tables of the
Incomplete Beta Function [6].

We now wish to prove that Es(T), the expected waiting time to reach a decision
based on the stopping rule min (X,,,., To), is

®) Eo(T) = kg Pr(r = k | 0)Es(Xe.0),

where Ey(X;..) is the unconditional expected waiting time (measured from ¢ = 0)
to observe the kth failure in the random sample of size n drawn from the under-
lying exponential p.d.f.

To prove (5), we note first that Ee(T) is

ro—1 n
®  E(T) = To[g:o b(k; n, po)] + 2 00651, ) Eo(Xpon | 7 = ).

- , k=rgo
Furthermore Ey(X,,..), the unconditional expected waiting time to get the rith
failure, is

ro—1

Eo(X,y.n) = g b(k; n, po) Ee(Xeg,n |7 = k)
@) - .
+ kZ b(k; n, ) Es(Xpgon | 7 = ).

=10
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From (6) and (7) we get
ro—1

(8) Eo(T) = E‘?(Xro,n) + g b(k; n, PO)[TO - Eo(Xro,n I r= k)]-

Since the underlying distribution is exponential, it can be verified in the non-
replacement case from results in [3] that

(9) Eo(Xro,,. l r = k) = To -+ Eo(Xro—k.n—k), k= 1, 2, cer,To — 1

where Ey(X,,—x,n—x) is the unconditional expected waiting time to get the
(ro — k)th failure in a random sample of size (n — k). It has been shown in [2]
that forl < k < n,

1 1 1
(10) Eo(Xk,n) _0<;I,+’;LT1+ M +m>
Therefore
(11) Eﬂ(Xro—k.n—k) = EO(Xro,n) - Eo(ka); 1=k=sn.

Using (9) and (11) in (8) gives the desired formula (5).

In the replacement case the test is started with n items and any item that
fails is replaced at once by a new item drawn at random from the underlying
p.d.f.; thus the number of items under test is always n. As in the nonreplace-
ment test, case experimentation is truncated at time min (X,,,., 7o), where
X .0 is the time (measured from the beginning of the entire experiment) when
the reth failure occurs, and T is a preassigned truncation time.

Since the underlying distribution is exponential with mean life 0, the replace-
ment of failed items by new items makes the life test a Poisson process with
occurrence rate \g = n/0.

Thus the probability of reaching a decision requiring exactly k failures is

(12) Prl =6 = p(ki M T) = 1 ™ GTo/0)% k=0,1,2, ,ro— 1
r0—1

(13) Pr(r =1 |0) =1 — kZO p; Ao To).

The expected number of observations to reach a decision is

(14) Ey(r) = kr;: kPr(r = k|6).

It can readily be shown that (14) simplifies to

o

15 B0 =M E pntd |+ rf 1=ty ]

This is in a convenient form for calculation. For any preassigned n, Ty and 7o,
Ey(r) can be found easily from Molina’s tables of the Poisson distribution [5]
or from the tables on the incomplete I'-distribution [7].
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The expected waiting time to reach a decision is given by a particularly simple
formula in the replacement case. It is

(16) Eo(T) = (6/n)Ey(r).

The proof of (16) is analogous to the proof of (5) in the nonreplacement case.

Thus analogous to (8) we have
ro—1

a7) Bo(T) = EBo(Xrpn) + 2o p(k; X T[T — Eo(Xpyn |7 = K-
Analogous to (9) we have

(18) Ey(Xsgm |7 = k) = To + Eo(X1y—tn), k=1,2,---,7 — 1.
Furthermore

(19) Ey(Xrykn) = Eo(Xron) — Eo(Xin) = (r0 — k)6/n, 1<k =<7,

since the unconditional expected waiting time to get exactly s failures in a re-
placement situation is Ey(X,,.) = s6/n, for any integer s. Substituting (18)
and (19) in (17) yields (16).

It is interesting to note that in analogy with (5) in the nonreplacement case
we can write (16) as

(20) Eo(T) = 3 Prlr = k| 0)E(Xs.0).

The unconditional waiting times Ey(Xy,,) are given by (10) in the nonreplace-
ment case, by k6/n in the replacement case.

Suppose the truncation rule is such that the hypothesis Hy:0 = 6, is accepted
if min (X,,,., To) = T, that is, if the waiting time required to observe Xoon 18
more than T, . Then if L(6) is defined as the probability of accepting § = 6,
when 6 is true, it follows in either the replacement or the nonreplacement case
that

(21) L) =1 — Pr(r = ny | 0),

where Pr(r = o] 6) is given by (2) in the nonreplacement case and by (13) in
the replacement case.

3. Atestbased on the first r out of n ordered observations. In [2] it was proved,
in the nonreplacement case, that when testing the hypothesis Hy:6 = 6, against
any simple alternative 6 = 6, (6 < 6,), the “best”’ region of acceptance for H,
(in the sense of Neyman and Pearson), based on the first » out of n ordered ob-
servations from an exponential distribution, is of the form §,, > C, where

(22) bpn = [% > Ziw A+ (n — r)x,'n]
1=1

both r and n being preassigned integers.
One could interpret the decision rule 4,, > C to mean that we wait until
time ,,, then compute 6, , and make the appropriate decision. However, this
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procedure clearly wastes information since we are able to observe the life test
continuously. We will now show that, if continuous observation is taken into
account, often we can shorten the waiting time to reach a decision and reduce
the number of items failed. More precisely, suppose that at some moment ¢
there are exactly k failures, 0 < k < r — 1, and that the observed total life V' (2),

(23) V() = Z: Tin + (n — k)t

is greater than rC. The k items which fail by time ¢ contribute Y i_; ;. t0
V(t). The (n — k) items which have not failed contribute the amount (n — k)¢.
In particularif ¢ = x, ,, then V(z,,.) = D.i =1 2in + 0 — 1)y = b, . Since
V (t) is monotonically increasing in ¢, we know that V(z,,) = V() > rC, and
thus we should stop experimentation at time ¢ and accept H, . More generally a
decision rule having precisely the same O.C. curve as 6, , > C, but requiring on
the average fewer failures and a shorter decision time, is as follows:

(a) Continue experimentation so longas V({) < rCand 0 £ k < r — 1.

(b) Stop experimentation with acceptance of H, as soon as V() > rC and
0sk=r-—1

(c) Stop experimentation at z,, with rejection of H, if V(t) < »C for all
t < Zn.

Note: This means that acceptance of H, takes place between failure times,
and always before time ., .

We now proceed to find certain useful properties of the truncated rule based
on V(¢). To find these properties, we first remark (defining x,,, as zero) that

(24) }:1‘” + (n — N, = ; (n — &+ 1) (Tin — Tic1.n)-

Introducing new random variables defined by
(25) El = N1, , Si = (’I’L - 7’+ 1)(1151'," - x'i—l,n)) 1 = 1’ 29 e, T

6., > C can be written as
(26) > &> rC.
i=1

The £; are mutually independent random variables, each distributed with com-
mon p.d.f. 6% z > 0,6 > 0. If we interpret £; as the time interval between
the ( — 1)st and ith event in a Poisson process having mean occurrence rate
A = 67, it is clear that D i, & > rC, if and only if k, the number of events in
an interval of length rC,is 0 < k < r — 1. If the number of events in such an
interval is = r, D i, & < rC. Thus the probability of reaching a decision re-
quiring exactly p = k failures is

27) Pro = k|6 = plk; w), E=0,1,2,---,7 — 1,

29) Prlp = r10) = 1 = 3 plk; ).
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In (27) and (28), us = rC/6 and p(k; us) = ps e */k!. The expected number of
observations to reach a decision is

@) B) = Sk Prlo = £10) = s S ok ) |+ r[1 = T o650 .

It can be verified that E¢(T) for the V(¢) procedure can be written (as in the
replacement or nonreplacement case) as

30) E(T) = kz;lpr(p = k| 0)Eo(Xs.0),

where Pr(p = k| 6) is given by (27) and (28) and Ey(Xy,,) is given by (10).
Finally L(6), the probability of accepting 6 = 6, when 6 is true, is given by
L(6) = 2 izo p(k; mo).

Up to this point in the present section we have been treating the nonreplace-
ment situation. It is interesting to see what happens if failed items are replaced
at once by new items drawn from the p.d.f. 67 **. As in Section 2, let zx.. be
the time when the kth failure occurs (whether it be an original item or replace-
ment item) measured from the beginning of the experiment. It can be shown, in
the replacement case, that if one starts with » items, then the “best’’ region of
acceptance, in the Neyman-Pearson sense, for testing a hypothesis H, that
6 = 6 against alternatives of the form 6 = 6,(6; > 6,), based on the first r fail-

ure times i,» , T2,n, *** 5 Trn, is of the form 8, , > C, where 8,,, is now simply
equal to
(31) bpn = Ny /7.

It follows that the region of acceptance for H, is of the form «,,, > C* = rC/n.
Use of z,,, > C* as a region of acceptance means in words that the test is ter-
minated at min (X, ,, C*) with acceptance of H, if truncation occurs at C* and
rejection of H, if truncation occurs at X, , . This is precisely the test treated in
Section 2 with » = 7 and C* = T} .

4, Some computational remarks. In Section 2 we gave formulae for the O.C.
curve, the expected waiting time, and expected number of items failed in the
course of reaching a decision for any preassigned », Ty, and 7, . We now give a
procedure for finding the appropriate truncated test (that is, for finding o and n)
when the truncation time T is preassigned and the O.C. curve is required (for
preassigned type I error, «, and type II error, 8) to be such that L(6) = 1 — «
and L(6;) < . Here 6, and 6, are preassigned with 6, > 6; .

To find such a test we recall [2] that the best acceptance region of size « for
the hypothesis 6 = 6, (against any alternative 6; < 6,), based on the first 7 out
of n failures, for preassigned r and =, is

(32) by > C = 00 xi—a(2r)/2r.

(A chi square variable with » degrees of freedom is denoted as x*(n). The con-
stant x> (n) is defined by the equality Pr(x*(n) > x3(n)) = v.) Inorder that the
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TABLE 1
Values of r (upper numbers) and of xi—«(2r)/2. (lower numbers) such that the test based on
using 8y > C = Boxi—a(2r)/2r as acceplance region for 0 = 6 will have
L) =1—aand L) = B8

a =01 a = 05 a = .10
00/6y

B = .01 B = .05 B=.10 [B=.01| =05 | B=.10 |B=.01! B=.05 | g=.01

3/2 136 101 83 95 67 55 77 52 41
110.4 79.1 63.3 79.6 | 54.1 43.4 66.0 | 43.0 33.0
2 46 35 30 33 23 19 26 18 15
31.7 22.7 18.7 24.2 | 15.7 12.4 19.7 | 12.8 10.3
5/2 27 21 18 19 14 11 15 11 9
16.4 11.8 9.62 | 12.4 8.46 6.17 | 10.3 7.02 5.43
3 19 15 13 13 10 8 11 8 6
10.3 7.48 6.10 7.69 | 5.43 3.98 7.02 | 4.66 3.15
4 12 10 9 9 7 6 7 5 4
5.43 4.13 3.51 4.70 | 3.29 2.61 3.90 | 2.43 1.75
5 9 8 7 7 5 4 5 4 3
3.51 2.91 2.33 3.20 | 1.97 1.37 2.43 | 1.75 1.10
10 5 4 4 4 3 3 3 2 2
1.28 .823 .823 | 1.37 .818 818 | 1.10 .532 .532

test have an O.C. curve for which L(6) = 1 — a and L(6;)) < B, we need to
choose r suitably. The appropriate values of r for certain values of @, 8, and
6o/ 6, are given in Table 1. For values of «, 8, and 6,/6; not given in the table, the
appropriate r to use is the smallest integer r such that xi_.(2r)/x3(2r) = 61/6,.

It is now an easy matter, in the replacement case, to find a truncated test
meeting the conditions prescribed in the opening paragraph of this section. In
view of the last two paragraphs of Section 3, the appropriate 7, in the replace-
ment case is given by the values in Table 1. Furthermore, we want T = C* =
rC/n = Boxi—.(2r)/2n. Since n must be an integer, the equality can be satisfied

only approximately. For all practical purposes n can be chosen as
(33) n = [8o x1-4(2r0)/2T]

where [z] means the greatest integer < . It is interesting to note that the ap-
propriate n, for fixed o and B, is inversely proportional to the time of truncation
Ty . Thus, for example, to reduce the truncation time by a factor of two requires
doubling n. It is clear from (33) that the values of xi_.(2r,)/2 are useful to tabu-
late. These are given below the associated r, in Table 1.

The O.C. curve of the test min [X,,,., To], where 7, is given by Table 1 and
n by (33), is such that L(6)) = 1 — «, but in some cases L(6;) may be slightly >
B. This can be avoided in either of two ways. One way is to give the experimenter
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the freedom to use, instead of T, the shghtly larger truncation time 7; =
Boxi—«(2r)/n; the test based on min [Xro, To] will have L(6) = 1 — « and
L(6,) = B. The other way is to use n + 1 items throughout the test, and to use,
instead of T,, the shghtly smaller truncation time T = Ooxi_o(2r0)/(n + 1);
The test based on min [X,,,.41, To] will have L(6)) = 1 — « and L) = 8.In
most cases it will be a matter of indifference which procedure one adopts.

The most direct (and also the most lengthy) procedure for finding a tifuncated
nonreplacement test meeting the conditions prescribed in the opening paragraph
of this section is to note that such a test is equivalent to a binomial situation in
which we test po = 1 — ¢ 7% against p, = 1 — ¢ 7 ®1 and want the O.C.
curve to be such that L(py)) = 1 — o and L(p;) < 8. In binomial terms, we are
seeking a sample size n and a rejection number 7, such that we will accept the
hypothesis that p = p, if the number of defectives (failures) in the sample <
ro — 1. The hypothesis that p = p, will be rejected if the number of defectives
in a sample of size n is = 7, . The detailed calculations can be carried out in any
given situation by using the Binomial Tables [8] or Tables of the Incomplete
Beta Function [6].

While the procedure described in the preceding paragraph can always be
worked out, it is both tedious and time consuming. If the values of « and 8 are
small and the ratio 6o/7) is substantially more than one (say =3), then the re-
quired n will be fairly large. In such cases a somewhat less exact, but much
shorter, way of finding the appropriate 7, and n can be used. As ro use the same
value as in the replacement case. Let the sample size n = [r,/(1 — ¢ 79)],
where C = Ooxl_a(2r0) /2ro. The justification for this approximation is briefly
the following. If n is substantially more than 7, , then the O.C. curve based on
the rule 8, .2ry,» > C, where B8,,,, = 1/E(X,,..) is very close to the O.C. curve
based on the rule é,,,, > C. To truncate experimentation at time 7'y means find-
ing an n such that C/B,,. = To. When n is large 1/8,,.. ~ log [n/(n — r)].
After some simple manipulation we arrive at the above formula for n.

In Table 2, we give some values of n computed by this formula for « = .01,
05; 8 = .01, .05; 8o/6, = 2, 3, 5; and 6o/To = 3, 5, 10, 20. These values have
been checked by computing L(6) and L(6:); the O.C. curve does come very
close to meeting the requirements L(6)) = 1 — a and L(6;) < 8.

TABLE 2
Values of n to be used in truncated nonreplacement procedures.
@, B .01, .01 .01, .05 .05, .01 .05, .05
3 5 2 3 5 2 3 5
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5. Examples.

ProsrLEM 1. Find a truncated replacement plan for which T, = 500 hours,
which will accept a lot with mean life = 10,000 hours at least 95 per cent of the
time and reject a lot with mean life = 2,000 hours at least 95 per cent of the
time. Compute L(8), E¢(T), and Ey(r) at § = 10,000 and 6 = 2,000, respectively.

SoruTIoN. In this case 6, = 10,000, 6; = 2,000, « = 8 = .05. Since 6y/6; = 5,
it follows from Table 1 that o = 5. Since 6,/Ty = 20, n = [(1.97)(20)] = 39.
Thus the following truncated replacement plan meets the requirements. Start
the life test with n = 39 items. As soon as an item fails, replace it by a new item.
Accept the lot if min [Xj 3 , 500] = 500 and reject the lot if min [X5 5 , 500] =
Xs.3 . If the lot is rejected, experimentation is stopped at X3 5 , the time of oc-
currence of the fifth failure.

For 6 = 10,000, o7y = 1.95. Using the tables [5] and (21), it is easily verified
that L(0) = .952. Substituting in (15) and (16) respectively gives Eo(r) = 1.93
and Ey(T) = 495. For § = 2,000, N\eTy = 9.75. For this value of 6, L(6) = .034,
Eo(r) = 4.95, and Eo(T) = 254.

ProsLEM 2. Same as 1 except that we want a nonreplacement procedure.

SoLuTION. 7y = 5. According to Table 2, the sample size is n = 42. For § =
10,000, To/6 = .05, and py = 1 — ¢ ™" = .049. Using the table [8], one finds
L(8) = .946. Substituting in (4) and (5) respectively gives Eo(r) = 2.02 and
Eo(T) = 494. For 6§ = 2,000, T,/6 = .25. For this value of 6, L(6) = .031, E¢(r) =
491, and Eo(T) = 248.

ProBrLEM 3. Consider the truncated replacement plan meeting the conditions
of Problem 1. For what values of 8 is L(6) = .5? What are Ey(r) and Ee(T) for
this value of 6?

SorvutioN. To find the @ such that L(§) = .5 means finding Ay such that
> w5 plk; NTo) = .5. Using the tables [5] we see that this means that N7 =
4.67. Therefore § = 4,180. From (15) and (16) we find that Es(r) = 3.97 and
Eo(T) = 424.

ProBrLEM 4. Consider the truncated nonreplacement plan meeting the condi-
tions of Problem 2. For what values of 8is L(8) = .5?

Sorurion. This means finding ps such that D 2, b(k; 42, ps) = .5. Using the
tables [8] this means p, = .1104. Since p, = 1 — ¢ " the appropriate 6 =
4,274. Here Eo(r) and Eo(T") will be approximately the same as in the replace-

.ment case; they have not been computed exactly.

ProsrEM 5. Find a test of the form 8, > C, discussed in Section 3, which
will have an O.C. curve such that L(6,) = .95 when 6, = 1,500, and L(6;) < .05,
when 6; = 500.

SorurioN. From Table 1, it is readily verified that » = 10. Therefore the ac-
ceptance region has according to (32) the form

b0, > C = 0 x1-(20)/20 = 815.

ProsreM 6. Set n = 20 in Example 5. Compute FE4(r) and Ey(T) at 6§ = 1,500
and 8 = 500, respectively.
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Sovurion. If we interpret the test as in the second paragraph of Section 3,
it may be possible to stop experimentation with fewer than 10 failures and be-
fore time 10,2 . Using formulae (29) and (30) for § = 1500 we get Ey(p) = 5.39
and Ey(T) = 475. When 0 = 500, Ey(p) = 9.93, and E,(T) = 331. It is interest-
ing to note that if 6y94 is computed only after observing x4 , the number of
failures would always be 10. Furthermore, the expected waiting time to reach
a decision would then be Ep(Xiw2) = 0 D> iw (21 — k). For § = 1,500,
Ey(X10,2) = 1,004 and for 6 = 500, Ep(X10,20) = 335. Thus there is considerable
saving if we take advantage of continuous availability of information. The ulti-
mate in this direction is a purely sequential procedure which is treated in detail
in another paper.
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