CONFIDENCE BANDS FOR POLYNOMIAL CURVES

By Pauvr G. Hoen
Unaversity of California, Los Angeles!

1. Summary. A method is given for constructing confidence bands for poly-
nomial growth-type curves. The method assumes that the mean population
size can be expressed as a polynomial in time and that the generalized T' func-
tion for the mean values of the observations at fixed time points possesses a
known and parameter-free distribution. Independence between observations
at various times is not assumed. The method yields only a lower bound for the
confidence coefficient.

2. Introduction. Consider a random variable 3, that represents some meas-
urable characteristic of an individual from a population, or that represents
the size of a population, at time ¢. The graph of E(y,) as a function of ¢, where E
denotes expected value, will be called the mean growth curve.

One of the basic problems in studying growth and related phenomena is that
of estimating the mean growth curve. In particular, it would be highly desirable
to be able to construct a confidence band for the mean growth curve. Then the
experimenter would be able to observe the accuracy of his sample curve as an
estimate of the mean growth curve.

A method for getting a confidence band for a mean growth curve should be
such that, corresponding to a given confidence coefficient ', the probability
is Cy that the entire curve will lie inside the band. This means that the prob-
ability is Cy that for all ¢ the mean growth curve ordinate E(y,) will lie between
the corresponding ordinates of the two curves determining the confidence band.
In this paper a method is presented for constructing such a confidence band for
polynomial curves, but it yields a band which covers with probability =(,
rather than with the exact probability C, .

Although the method will be described from the point of view of polynomial
growth curves, the method is applicable to polynomial curves in general. The
language of growth curves is used for its descriptive convenience and to stress
the fact that the variables y., - - -, y; which are involved are dependent vari-
ables, and hence that standard regression techniques are not applicable to this
problem. The variable { may represent any physical quantity, although it will
be described as time in this discussion.

3. Assumptions. It will be assumed that observations are always made at the
times f, £y, -+, & and that n > & independent sets of such observations are
made. If y, represents a measurable characteristic of an individual at time ¢,
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this implies that n individuals are observed at the same stages of their growth.
If y, represents the size of a population at time ¢, this implies that the same initial
size population is chosen each time and that the same time pattern for observa-
tions is used. It is possible to vary the initial size population, but the statistical
interpretation then becomes more complicated. Let y;, 92, « -+, yx denote the
values of y, at the specified time points for a randomly selected individual, or
initial population, and let i, %2, -+, #x denote the sample means of those
variables for the n sets of observations.

Two basic assumptions will be made. First, it will be assumed that the mean
growth curve is a polynomial of known degree, k — 1 or less. Second, it will be
assumed that the distribution of the generalized T function for the variables
Y1, Y2, -+, yr is known and does not depend upon any unknown parameters.

If one is studying growth problems, the first assumption may seem somewhat
unnatural since exponential functions are often encountered in such problems.
1t is usually possible, however, to approximate such curves quite well over limited
time ranges by polynomials of fairly low degree. Furthermore, by choosing a
function of ¢ as the independent variable, or by choosing a convenient function
of y, as the basic variable and assuming that its mean curve is a polynomial
curve of degree k — 1 or less, the range of application of the method is extended
considerably. If, however, a function of y, is used, the interpretation will be in
terms of the mean of this function rather than in terms of the mean of the vari-
able. The methods to be presented are actually valid for finding confidence bands
for curves expressible in the form y, = aig1(t) + -+ 4+ argr(t), where the g.(t)
are any given functions of ¢. For such more general curves, however, the formulas
derived in Section 4 for polynomials are not applicable.

The second assumption will be satisfied if the variables y;, y2, - -+, ¥ are
jointly normally distributed, because then the distribution of 7% is well known
[1]. Even though the variables %1, y., -+, yx are not jointly normally dis-
tributed, the second assumption may still be considered to be satisfied if »n is
fairly large, because it can be shown that under mild restrictions 7* possesses
an asymptotic chi square distribution [2].

4. Derivation. Let the mean growth curve be a polynomial curve of degree
r — 1 £ k — 1 and let the ordinates on this curve for the times ¢, &, -+ - , &
be denoted by uy, w2, -+, we . If the first 7 of the points (41, w1), (2, ma), -+,
(t: , me) are chosen to determine the curve, its equation can be written in 1hc
Lagrange polynomial form

) y = Z @ —=t) - (= ti)(t — b)) - E—t) i
i —t) - 6= ) = tiga) - (B — )
The coordinates of the remaining k¥ — r points must of course satisfy equation (1).
Now introduce the variables @y, 22, -+, 2, defined by

©) _ =t (= b)) = b)) - (t - 1)

VW= = ) — t,,o =)
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Then (1) may be written in the form
3) Y = mTr.+ pels + 0+ e,

In the coordinate system (z1, -- - , z,, y), equation (3) represents an r-parameter
(w1, * -+, ur) family of planes passing through the origin. The method to be pre-
sented for constructing a confidence band for (1) is based on finding the envelope
of this family, subject to a single restriction on the parameters. This method is
a generalization of a similar method used by Hotelling and Working [3] to obtain
a confidence band for a line of regression. An extension of their method to more
general problems is given in [4].

The restriction that will be placed on the parameters u;, - - - , u, is obtained
by means of the generalized T function. For the variables v, ys, -+, ¥,
Hotelling’s generalized T is defined by

E ok
(@) T = (n — 1) Z‘i Z; s — w) @ — u),
t=1 j=
where (s*) = (s;;)”" and where s, is the sample covariance,
1< _ _
8ij = n :Zl Yia — §) Wja — 7).

Under the assumptions made in the preceding section, a value of 7° can be found,
which will be denoted by 7% , such that

) P{T* S Ti} = Co,

where Cy is a given number satisfying 0 < Cy < 1. The number C, will be the
the lower bound for the confidence coefficient corresponding to the confidence

band to be constructed. In terms of the preceding notation, the restriction that
will be placed ou the parameters of (3) is the restriction

(6) T" < Ts.

From the remark made after (1), it follows that the parameters w4y, -« -,
pe can be expressed as linear combinations of u;, -+, g, and that therefore re-
striction (6) can be expressed as a restriction on u; , « - , u, only.

Now the technique for finding the envelope of an r-parameter family of sur-
faces such as (3), subject to a single restriction on those paramecters such as
T® = T4, consists in first using the restriction to express (3) as an (r — 1)-
parameter family of surfaces, and then eliminating those parameters between
(3) and the r — 1 equations obtained by differentiating (3) with respect to those
r — 1 parameters. But analytically this technique is equivalent to that em-
ployed in finding the maximum and minimum of the function y = wa; + -+ +
w2, for fixed «’s when the u’s are subject to restriction (6). The analysis will be
carried out from the latter point of view with the aid of matrix algebra.

Let (4) for T = T, be written in the form

E ok
; ; @i — G — 7)) = Mo,
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where a;; = s and \g = T/(n — 1). If the parentheses are removed this equa-
tion assumes the form

k k k
) ; Zl: Qij Wi fhj — 221: aipi + M = N

Let a denote the vector of a;’s, § the vector of §;’s, and A the matrix of a;’s.
It will be seen that

®) ‘ a = Ay,
and that A, is the quadratic form in ,, - - - , §, given by
9) M= gAg.

Denoting z;(t;) by z;;, it follows from (1) that u; = ma1; + -++ + wu,; for
j=r+4+1, -,k By means of these relations, (7) can be reduced to an equa-
tion in the parameters u;, - -+ , u, only. This reduction can be accomplished by
means of the transformation
(10) u = By,
where v; = p;for< = 1, ---, r, and where B is the k& x k matrix

1 O --- 0 0O --- 0]
0 1 -« 0 0 .-- 0
(11) B={ 0 0 -~ 1 0
T1r41 Tt T
™ DU S

The reduction of (7) by means of (10) then proceeds as follows:
wWAp — 20'u + M = No

(12) VB'ABy — 2a'By + M\ = N\
| v'Cy - 2 + M = No

where

(13) C = BAB and ¢ = Bla.

Since the last k& — r columns of B consist of zero elements, the matrix C will
contain zero elements in its last ¥ — r rows and columns, and the column vector
¢ will have zeros for its last £ — r components. In summation notation, (12) will
therefore assume the form

(14) Z: ; Cijminj — 2 ; G+ M= Ao,

since v; = p;fore =1, -+ r
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It will be convenient to express (14) in the form
(15) Zl Zl: ciilpi — ad(w; — ) = .

Expanding (15) and comparing with (14), it is readily observed that ¢ = Ca,
where a denotes the vector of «;’s, or that

(16) a = (.

Here C denotes the r x r matrix consisting of the first 7 rows and columns of (’,
and ¢ denotes the r-dimensional column vector consisting of the first » com-
ponents of ¢. It is assumed that C" exists. This assumption will be satisfied if
(si;) is nonsingular, and the latter condition will be satisfied with probability
one. The comparison of (14) and (15) also shows that A, = Ay — A, + o/Ca,
which because of (9) and (16) can be written in the form

(17) A= N — 7'A7 + ¢C e

Now return to the problem of maximizing the function y = w1 + - -+ + wa,
for fixed z’s subject to the restriction (6), which, hecause of the preceding analy-
sis leading to (15), is equivalent to the restriction

(18) 33 ol — @)y — ) S N

In the parameter space u1, - -+, ., the function y is the scalar product of the
two vectors (z1, -+ -, «,) and (w1, -+, u.), whereas the restriction (18) states
that the terminus of the vector (ui, - -, u,) must lie inside or on the ellipsoid
whose equation is given by (15). The scalar product is conveniently interpreted
here as the length of the x vector multiplied by the projected length of the u
vector projected onto the x vector, {ogether with the proper sign. The vector
w whose terminus must lie inside or on the ellipsoid (15) and which has maximum
z-directed projected length is a vector whose terminus is a point on the ellipsoid
where the tangent plane to the ellipsoid is perpendicular to the x vector. There
will be two points of this type, one yielding a maximum and the other a minimum.
The coordinates of these two points can be found as follows.
Let the equation of the ellipsoid (15) be written in the form I’ = 0, where

I = ; ; cu-(u, - Oli) (Nj - aj) — A
Direction numbers for the normal to the tangent. plane of the ellipsoid are given
by the derivatives
Flli = 2[61'1(‘-‘1 - 011) + -+ Cir(ﬂr - ar)]; 1= ]., e, T

If the tangent plane is to be perpendicular to the & vector, these direction num-
bers must be proportional to the components of the & vector; hence it is neces-
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sary that F,;, = 2 pox;, where 2 p, is the constant of proportionality. In matrix
notation this becomes C(u — a) = pox. Hence

(19) p—a=pC .

The constant p, is determined by realizing that u;, --- , u, must satisfy equa-
tion (15); hence

(poC'2)'C(poC ') = .
Solving for p, yields

(20) Po = == VN/2'Clx.

The maximizing vector is the vector given by (19) when the positive value in
(20) is selected. The maximum value of the function y = u'x is therefore given by

Ymex = (@ + poC7'2)" z = @'z + pr'C7'z = &'z + VA V2'C 2.
Finally, if the values obtained in (16) and (17) are substituted, this will become

(21) Ynax = € C7'% + VN — §AF + ¢C ¢ V2l 'z
The minimum value of y is obtained by using the negative value in (20); hence
(22) Ynmin = ¢ C 7w — VN — JAF + ¢/C ¢ V2'Ca.

6. Interpretation. Since, by (2), the vector £ has components that are poly-
nomials in ¢, equations (22) and (21) define two curves in the ¢, y plane such
that the curve (1) will lie between these two curves if restriction (6) is satisfied.
From (5) the probability is at least Cy that the mean growth curve (1) will lie
between the curves (22) and (21). The latter probability would be exactly Co
if only parameter points satisfying (6) could yield mean growth curves lying
between curves (22) and (21); unfortunately, however, when r = 3 there are
parameter points not satisfying (6) which yield such curves. As a result, Cy is
only a lower bound for the confidence coefficient corresponding to the confidence
band determined by (22) and (21).

The difficulty encountered in the preceding paragraph is best explained by
considering a special case. Assume that k¥ = 4, r =3, and that the ellipsoid (15)
is a sphere of radius 3 with center at the origin. Now it follows from the defini-
tion of the z; in (2) that Zi’x, = 1; hence the z vector will have its terminus
lying in the plane Z:{uz = 1. As it varies, the terminus will describe a curve in
this plane that is easily seen to be a parabola with vertex at the point (0, 1, 0)
and passing through the points (1, 0, 0) and (0, 0, 1).

As the x vector describes the parabola, its intersection with the sphere will
describe a curve on the sphere. This curve will be the locus of the maximizing
points on the sphere, because the tangent plane at any point on this curve will
be perpendicular to the x vector through that point. The curve on the sphere
which is symmetrically opposite this curve will be the locus of the minimizing
points. Now as ¢ varies over its range of values, the tangent plane along the
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maximizing curve and the tangent plane along the minimizing curve will generate
a closed surface. Every point inside this surface will yield a value of the function
Y = T + pa®e + pst; that lies between ymin and ymex for all values of ¢.

The closed surface here will resemble, very roughly, the surface formed by two
right circular cylinders, of diameters equal to the diameter of the sphere, which
intersect at right angles. The actual confidence coefficient here would appear to
be not appreciably larger than Cj , since most of the parameter points inside this
surface will also lie inside the sphere. For more complicated situations, however,
the relationship between Cy and the actual confidence coefficient is unknown.

A minor difficulty with the method is that for some sample points the relation-
ship between the u’s, given by u; = mar; + -+ + s G =7+ 1, .-+, k),
will be inconsistent with restriction (6). Geometrically, this means that the
random ellipsoid determined by (6) does not intersect all the planes determined
by this relationship. For such sample points, the radical in (22) and (21) will
be imaginary. The probability that this event will occur is undoubtedly quite
small for most applications. As an illustration that is unrealistic but simple to
compute, if n is large, k = 5, r = 4, and (6) is assumed to be a spherical restric-
tion, it can be shown that the probability is less than .001 that inconsistency
will occur when C, = .95. For larger values of C, such as C, = .99, the prob-
ability is extremely small that inconsistency will occur. Since nonintersection
can occur only when the parameter point does not satisfy (6), the lower bound
C, for the confidence coefficient still applies, provided one interprets imaginary
confidence bands as bands incapable of covering any growth curve. If one ex-
cludes the nonintersection cases, the conditional probability of covering the
mean growth curve will be slightly larger than the unconditional probability.

The choice of the first 7 points to determine the curve (1) was arbitrary. In-
vestigations have not been made on how best to choose the points so that com-
putations become simple, nor on hew best to utilize the data. The problem of
constructing a confidence band with known confidence coefficient by the method
of this paper appears to be very difficult, if it is at all possible.

6. Illustration. The calculations involved in using formulas (21) and (22)
will be illustrated by a simple example. Consider the problem of finding a 90 per
cent confidence band (lower bound) for a parabola when ten individuals ob-
served at each of four equally spaced time points yield ¢; = 0, 1, 2, 8; 7; = 5.0,
5.4, 6.0, 6.9; and

1 —.4 3 —.5
-4 1 -3 4
3 -3 1 —.5]
-5 4 -5 1
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Fia 1.

Here k = 4,r = 8,n = 10, and C, = .90. Using (2), z; = 3(® — 3t + 2), 2, =
— &+ 2,73 = 3(* —t). For t = 3 these give 214 = 1, 2 = —3, 2 = 3.
These values enable one to write down B in (11). The inverse of (s;;) yields

1.426 .333 —.051 .554
.333  1.288 149 —.274
—.051 .149  1.357 .593

554 —.274 .593 1.683

From (13) and (18) it follows that ¢ = B’A 4. First B’A is computed, then
¢ = B'’Aj and C = B’AB are computed. Next C' is computed, and then
¢'C™" and ¢'C™%¢. Finally, 7’A 7 is computed. For this illustration, computations
yielded the values

¢ = (28.906, —41.760, 62.167)
¢C™t = (5.0099, 5.3875, 6.0130)
¢Cl%¢ = 293.644  §'A § = 293.673.
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The value of A\, = T%/(n — 1) can be found by means of tables of the F distri-
bution, using the relation 7% = Fo(n — 1)k/(n — k), where »; = k and », =
n — k, or by means of tables of the incomplete beta function, or by numerically
solving the proper equation (see [1]). For this illustration Ay will be found to
have the value Ay = 2.121. With the above computations completed, equations
(21) and (22) can be written down in terms of the x’s. If the z’s are replaced by
their expressions in terms of ¢, (21) and (22) reduce to

y = 1248 + 254 ¢ + 5.010
£+ V(174 ¢4 — 1.067 £ + 2.109 ## — 1.469 ¢ + .640)2.092.

The graphs of these two curves, together with the values of the ;, are shown
in Figure 1.

If the equations of the two curves determining the confidence band are not
needed, the graphs can be constructed much faster by using equations (21) and
(22) expressed in terms of the x’s, rather than in terms of ¢, and calculating the
a’s corresponding to convenient ¢ values. When ¢ = ¢;andj = 1, - - - | r, it follows
from (2) that z;(¢;) = 8:; and hence that 2’C ™" reduces to the element in the
jth row and jth column of C~’. The quantity ¢'C 'z then reduces to the jth com-
ponent of the row vector ¢’C~". Although the computations are more difficult
for j > r, they are still simple.
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