ON CERTAIN CONFIDENCE CONTOURS FOR DISTRIBUTION
FUNCTIONS

By Sten MarmquisT
Institute of Statistics, Uppsala, Sweden

0. Summary. By a generalisation of a theorem by Doob, certain confidence
or acceptance contours for distribution functions are obtained. The power of
tests based on such contours is briefly discussed and some approximate results
derived. Using the aforementioned generalisation of Doob’s theorem, the limit-
ing joint probability distribution of the coordinates of the maximum deviation
between a sample distribution and the corresponding parent distribution is
evaluated.

1. Introduction. Let F3(U) be the empirical distribution function for a sample
of N mutually independent observations on a statistical variate with a continu-
ous distribution function F(U). Consider the process

Xy(U) = [FHU) — F(D)IVN.
Given Fx(U), the probabilities for events such as
(A) G[F (1)) = Xa(U) = G[F(U)),

for all U, can be used for testing the hypothesis that F(U) is a given function.
The situation is illustrated in Fig. 1. The interval AB is called an acceptance
interval, the interval CD isa confidence interval. Allowing U to vary, acceptance
and confidence regions are obtained (cf. [3], p. 515; [13]).

Probabilities for an event such as (A) have the attractive property of being
independent of the distribution function F(U). One may suppose that F(U) =
U,with0 = U = 1.

The limiting distributions

(B) lim Py{Xx(U) £ (U),0 £ U £ 1} (one-sided alternative),
N—oo

(C) lim Py{Gi(U) £ Xv(U) £ Go(U),0 £ U £ 1}  (two-sided alternative),
N—oo

where the inequalities within brackets should be fulfilled for every U, have been

derived by Kolmogorov (7] for Gi(U) = —a and G»(U) = a. Related problems

have been considered by Smirnov [12].

Doob [5] has demonstrated the Kolmogorov and Smirnov theorems by replac-
ing the process Xx(U) by a Gaussian process X (U) with the same correlation
function. This transformation has been justified by Donsker [4]. The process
X (U) is then transformed to a Wiener process W({), and limiting probabilities
concerning X y(U) are (ransformed to probabilities concerning W (¢).
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For finite N, probability distributions involving confidence contours G(U) = a
have been tabulated by Massey [10], [11] and Birnbaum and Tingey [2]. A gen-
eral method for calculating distributions (C) above has been developed by Ander-
son and Darling [1], (cf. [6]).

For a given U, Fy(U) follows the binomial distribution and we have, supposing
F(U)y=Uwith0=U =1,

E{Xx(U)} =0, E{Xy(U)Xy(Uy)} = Ui(1 — Uy), 0<UigU:<1.

In particular, E{Xx(U)} = U(l — U) for 0 < U < 1. This shows that the
variance decreases towards the tails of the distribution. Thus, in constructing
the contours Gi(U) £ Xw»(U) = G(U) it seems reasonable to let the width
Gy(U) — G1(U) decrease towards the ends of the distribution (cf. section 5). In
absence of general principles in this respect, the form —@(U) = Go(U) =
aV/U(1 — U) with exclusion of the points U = 0 and U = 1 has been suggested
by Anderson and Darling [1].

If, for example,

IA

{(a—b)U—l—b 0< U<,
(D) Gy (U) = ) a>b
b—a)U+a L=2U
then deviations of X 5(U) at the extremes of the distribution will have a greater
chance of being detected. Or, the width of the confidence contours can be made
smaller at the tails than at the middle of the distribution. Naturally, here also
general principles for the choice of a and b are lacking.

We may also be interested in the deviations Xy(U) for a certain part of the
distribution F(U). That is, G5(U) should for example be of the form

alU + b ASUZB
(1 - U)VN elsewhere.

IIA
[

IIA
—

)

(1) Gy(U) = {
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In Section 3 below the limiting probabilities for inequalities of type (B) are
evaluated for the form of G(U) indicated by (D) and (E). For the derivation
of the probabilities in Section 3 we use generalisations of theorems proved by
Doob [5] concerning the Wiener process. These generalisations, proved in Sec-
tion 2, follow very simply from the symmetric property of the aforementioned
Gaussian process X (U). The theorem proved in Section 2 is in agreement with
the fact that the Wiener process is continuous with probability one and may be
approximated by a discrete Gaussian process with a corresponding correlation
matrix.

In Section 4, a numerical example is given of upper and lower limits for the
power function in the case when one of the earlier derived limiting probability
distributions is used for testing a specified normal distribution against a certain
other normal distribution. The limits, which are capable of improvement, are
rather wide and indicate for the example chosen a relative power of about 60
per cent, compared with the most powerful test. This comparatively low value
is not surprising, considering the general nature of the testing procedure used.

From the aforementioned properties of the Xx(U) process it follows that a
large deviation between the empirical and theoretical distribution functions
Fx(U) and F(U) is more probable in the middle of the distribution than at the
extremes. It may therefore be of interest to consider both coordinates of the
maximum of Xy(U). The joint and conditional distributions involved are de-
rived in Section 5. (Corresponding expressions for W(t) are given by Lévy [8],
chap. 6.)

2. Generalisation of a theorem by Doob. Let W(1),0 < ¢t < «, be a Gaussian
process for which
Pr{W() =0} =1, E{W@®)} =0, E{WESWO)} =s, s

The process W(t), called the Brownian movement process or the (normalised)
Wiener process, has uncorrelated, and thus independent, increments.
For the Gaussian process W, (') defined for t’ = ¢t — #, by

IVeo(t,) = [V(t) - ]V(lo), t :ﬁ to,
we have E{W (')} = 0. Further, for t; < (s,
E{W ()W, (t)} = E{IW (¢ + k) — WWIIW(E: + t) — W)}

=ty —to— bty + 1o = {1

lIA

i

I

Thus, W,,(¢') is also a Wiener process.
It has been proved by Doob [5] that

(1) PriWt)Sat+d =1-—¢" az0b>0;alt,0<t< o,

The inequality within brackets must be fulfilled for every ¢ in the given interval.
The following generalisation will be proved.
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‘THEOREM 1: Let the process W(t) pass through the points {x, s} and {y, s:},
with x £ y. Then

Pr{iWwlt) at+baxstsy| W)

]

81, W(y) = so

-1 2R Py — s Py — s,
LTSNS R Vi v

where R = \/z/y, and
s$i Py =azx+ b, 8 =P, =ay + b.

Tor the proof, we shall use the following transformations due to Doob [5].
First, a process X (U) is defined by

1W(t) 0=¢< »; U=-~~—1~-—,O§U§1.

2 xW) = 14

t+
For the Gaussian process X(U) we then have
E{X(D)} =0, EXU)X(V)} =U1-V), 0=sU=sVE=L

Further, if Uy = 1 — U and V, = 1 — V, then E{X(U)X(Vy)] =
E{X(U)X(V)}. Making use of this symmetric property of the X(U) process,
we have

PriX(U) = f(U),0 < U S U |X(U) = 2"}
=PriX(U)=/1-U),1-UsU<1|XU-U) =2},
where f(U’) z a’. By applying the transformation (2) we obtain

Pr{W(t) (t + 1)f<1 ¥ t) O<t=st|W{) = 81}

= P1~<W(t) t + 1)f<1 _'_t) —tl-,_S_ t < w ! WG;) = 3—‘}

wheret’ = U’'/(1 — U’) and 8, = 2’(t’ + 1). In the case when f(t) = (a — b)t + b,
we have

@+ vy (

6)

1

1+t)=bl+a,

1+t>=at+b; (t+1)f<

and

r{W(l) Sat+ 0,0 <tst|WEH) = )
4
() {W(t) bt+a,,__t<oo|uf<.>_‘;l}

Using the fact that W () — W (1/t') is also a Wiener process, we further have
PrilV() £ bt +a,1/t St < o | IVQA/H) = /1)
=Pr{W@) b +b/t' +a — s//,0 <1< o},
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Thus from (1), (3), and (4),
Pr{Ww(t) Sat+b 0<t=t|W{E) = s}

' —
Pr{W(t) < bt +“‘—i;’——s~‘, 0<t< oo}

(5)

=l—exp{ 2bP1t— 1}, s S Pr=at' + 0.

Further, according to the above mentioned property of the W(t) process
Pr{iW({t) Sat+ba=<t=<y|Wa) =s1, W = s}

=Pr{W({t) Sat+ax+b—s1, 0<t<y—zx|Wy—a =8 — 8},
Finally from (5), takingt’ = y — zand s, = s, — 81,

Pr{Wt) Sat+b z=t=y|Wk) =351, W = s}
©) =1—exp {—2(azx 4+ b — s)(Py — s2)/(y — )}
L exp{_2Pl—-slP2-—82 R 2}'
vV Ay 1—-R

where R = Va/ywithPi=az + b2 ssandPy=ay + b 2 5.

The same method can be used to generalise the result in [5] concerning two-
sided probabilities. The following result, obtained by using formula (4.3),
p. 398, of Doob [5], will be given without proof:

WO Sa+0], ety W) =85, W = s

m=1

) —2R
=1- Z (exp {(—1‘_*1?27\7?; [(2m — DP, — s][@m — )Py — 82]}
) + exp{(i QR\/—~ [@m — 1P, + sll(2m — 1)P. + s»]}
—exp o (1= R ) \/ [@mP; — 8)2mPs + s2) + s 32]}

TP (R )\/ [(2mP, + s)(2mPs — s) + & %]})

with R = A/x/y while P, = ax + band'Py = ay + b.

Finally, a remark concerning the one-sided and two-sided alternatives. Let
a be the event that W({) passes Gi(t) and b the event that W(¢) passes Ga(f).
Then

PiGit) S W(t) £ Go(t)} =1 — Pla+ b} =1 — P(a) — P(b) + P(ab)
According to the correlation properties of the W (t) process, we have P(ab) <
P(a)P(b). Then for small values of P(a) and P(b),

1 —Pla+0b)>~1— Pa) — P
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Even if P(a) and P(b) are moderately small, P(ab) may be neglected. In that
case the probability for a two-sided alternative may be computed from the prob-
abilities for the one-sided alternatives involved.

3. Some examples. We shall now consider some examples of special interest
concerning the use of the relations in Section 2.

A. First we consider
faa+b0<t=s1
P, = P {W(t)
Sh4+a;12t<

Using (4) and (5), we get

—2b(a-+b— 2 —s?/2
e (a+ a;)] e s}/ ds,

1 a+b
®) neygl -
=®a+b) — 270 —b) + ¢ P(a — 3b)

where &(zr) is the normal (cumulative) distribution function with mean zero
and unit variance. Further, uising the transformation (2) in Section 2 we have

Se—-0U+b,0<U=LS
§@—@U+m%§U<J‘
Then, replacing X (U) by X»(U) as indicated in Section 2, for F(U*) = %,
sm—wmw+m~w<vgm}

H=quww*wme:w—@mw+ww<U<w

ﬂ=PPW)

An expreésion of the above type for a > b gives greater weight to deviations at
the extremes of F(U) than does the ordinary expression with a = b.
B. Next we consider

Sat+b;0<t =1,

2 —(at+b);1=5t<

< (@ — DF(U b; — o U= U*
= lim Py {[Fﬁ(U) ~F(U)]\/NS (@ = IO + < ]‘,
> —(a—bFWU) —b;U*s U < |

E=P%Ww b>ma+b>#

‘

where, as before, F(U*) = . We have

1 a+b
Py = Ve [(a+b) (-
=1=28(—a — b) — [l —20(~a — 3b)] + ¢ ¥ [®(Ba — b) — d(a — 3b)]

—-‘Jb(a-i-h—-xl)]e—sf/‘ll‘l . e—-?a(n-f—b-l-sl)] d?l

Probabilities of this type can be used, for example, in cases when the dispersion
in F*(U) is of particular interest.
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C. Finally we consider

Ps

Pr{i|Wt)|2at+bz=t=y}
lim Py{ | Fx(U) — F(U) | /N = (a — D)F(U) + b, U’ = U £ U"}
where F(U") = z/(1 + z) and F(U”) = y/(1 + y). From (7) we get

P2
4
Pa= oz Rz\/—f,,1 a5 L,, dse

ool T (V2) ~ Ve (R el
PR = [\Va Vay Vy/ 1) pe=ay+0.

With some reduction we obtain
1 +p1/4/z +p2 /Yy —1 \ \
P3 = 2‘;‘—."*“““\/1 — »RZ [——pll'\/; d81 A/;pﬂ\/{[ d82 exp {m [81 - 2R81 So -I— 82]}
mt1 ~2mab e P2 —1
QW“\/l 27"2 (=1 ¢ fl ds; fn, ds; exp {m.;).

- [s1 + 2Rsy s, + sgl} ,

where
Ay = —(p1 + 2aam)/\z, B, = —(p2 + 2bm)/\/y, {pl = ar + b,
Ay = (py — 2azm)/\/z, B, = (p. — 2bm)/\/37, p: = ay + b.

This distribution, for @ = #, has been evaluated by Anderson and Darling [1]
and Maniya [9].

4. Power functions. It may be of interest to compare the power of the one-
sided test for a certain class of hypotheses for which the power of the most power-
ful test is known. As an example we choose the case where a normal distribution
with, let us say, mean zero and unit variance is tested against the class of normal
distributions with the same variance but a negative mean.

Let @(U) be the normal cumulative distribution function with mean zero and
unit. variance and ¢(U) = @'(U) the corresponding frequency function. Thus
the counterhypotheses are H(U) = &(U 4+ m/+/N), with m > 0. We define,
for x = H(U),

K] = KT = [ + m/v/N) — ®(U)IVN = mp(U) + O1/VN);
Further, omitting terms of lower order,

oK P ml o . m
= K'[x] mU, K'[x] = o(U)



530 STEN MALMQUIST

Koa
mPO) | ---------~ £
mP@) [ .
K\m : K
i
0 ®(2) + |
Fia. 2
We then get (cf. Fig. 2)
Az, 0<z =<4,
KM%I@:{AZ—Q:) <oA= 2me(0)
—_— Bz + C, 0<z=%B=—mz
]l < = y
Kiel = Klx] {B(l —D)+ 0, 3= <1;C = med) + me);

where — o < z < 0. Now consider the probability
P(a,b) = P = lim Py

[F¥(U) — FINIVN < (@ = DF(U) + b, —0 < U £ U¥;
[FXU) = FADIVN £ (b — Q)F(U) + ¢, U* S U < o

with F(U*) = 1. According to (8) we have
P(a,b) = ®(a + b) — 2¢7°"®(a — ) + ¢ Po(a — 3b).
If the hypotheses H(U) is true, we have, omitting terms of lower order
P = Py = lim Py

H*(U) = HOIWN = (a = HHU) + b — K[HU)], == < U £ U
[H*U) — HU)IVN £ (b — a)H(U) + a — K[H(U)], U* £ U < o=}

with H(U*) = 1. Thus
Py=Pla—-—B—-0Cb—-0C)<Py<Pla—A,b) =Pg.

Now, 1 — P(a, b) = « is the probability of rejecting the hypothesis F' when it

is true. Let Pr{H, a} = 1 — Py be the probability of rejecting F, when H is

true. We then have, for the power function Pr{H, a!,
1—P;7=R[‘<Pr{f[,a} <Pi’= 1 _.PU'

On the other hand, from the assumptions concerning I' and H it follows that
the most. powerful testing procedure should be to compute from the observations
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 the normally distributed variable My = Y_x,/A/N, and reject F if My < A,
by
where / d®(z) = a.

-]

Am
If H is true, then the probability of rejecting F will be Prya.x = f d®(x).

The following table shows, for some values of a and b and form = 1 and z =
—20(0), the probability «, the limits Pr and Pr for the power function for the
test in question, and Pry,y , the value of the power function for the most power-
ful test.

a b a _PLI_. F;‘ ’ Pl'max
1.5 1.5 0.011 0.044 0.054 ‘ 0.098
2.5 1.0 0.012 0.052 "0.094 0.105
2.0 1.0 0.029 0.103 0.169 0.186

The values in rows 1 and 2 indicate that for the hypothesis in question, we would
prefer to take a > b.

b. The joint distribution of the coordinates of the maximum deviation. So
far, we have considered only one of the coordinates for the maximum deviation.
We shall now also consider the location on the U-axis of this maximum. For sake
of simplicity, we deal only with one-sided alternatives. The corresponding two-
sided alternatives can be treated in the same manner.

Let K(a, U) denote the probability that the maximum value of the Gaussian
process X (U) defined by (2) is found for U* < U and that this maximum value
is smaller than or equal to a. Thus, K(a, U) is the joint (cumulative) distribution
function for the coordinates for the maximum of X (U). Further, let the cor-
responding frequency function be k(a, U), the marginal frequency functions be
g(a) and h(U), and the conditional ones be gy(a) and hs(U), respectively.

From (1) we have g(a) = 4ae™'.

To evaluate k(a, U), we calculate the probability, say P, that the process
X(U), before reaching the ordinate through the point U, oversteps the line
x = a, but not the line x = a + da, and that X(U) does not overstep the line
x = a after t. We then have k(a, U) = 6P/sU.

Transforming to the W(t) process, P is equal to the probability that W (),
before reaching a vertical line through ¢ = U/(1 — U), oversteps the line a(¢ 4 1)
but not the line (@ + da)(t + 1) and that W(¢) does not pass the line a(t + 1)
after ¢.

Using (4) and (5) we then have

R

S 8 —satr-myjy L —22/2¢ —2a(R—2Z)

P = f — (1 — ¢ e 1 — YA
- 0Q [ ¢ ] /2t ¢ [ ¢ Id
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where R = a(t + 1). This reduces to
P = 4ae”"%(a, U"), U= QU - 1)/VU{A - ),

where ®(x) is the normal (cumulative) distribution function with m = 0 and
¢ = 1. Thus

k(a, U) = 4aeap(alU’) dU’'/ dU

where ¢(r) denotes the normal frequency function. We have further

h(U)—og-ﬁda—‘é Mo, U)da =1, 0<U<L
Thus
— k(a, U) — —2a2 ’ av’ ' _ _.__Z_U,_:._l____. .
gu(a) = WO 4ae”"" ap(al’) v’ U' = \/m,
k(a) U) _ ' au’ ' -2U_:1
ha(U) = ga) ag(all’) au’ U= VUA = 1)
Finally

Gyla) = foa gu(a) da = 1 —-2(a/z)e—(‘”")2/2 — 2b{—a/z}, 2= U1 = 0),

V) = [ h(0)aU = a0, U = QU — 1)/v T = T

Inspecting these conditional distributions, we see that if the value a increases,
then the probability also increases that this maximum value will be in the middle
of the underlying theoretical distribution F(U). Further, if the expressions of
Kolmogorov-Smirnov are used in their ordinary form for testing a hypothesis
concerning F(U), one undervalues the importance of deviations between the
empirical and theoretical distributions at the extremes of F(U) compared with
those in the middle. An alternative procedure could then be to observe the co-
ordinate U and then use the conditional distribution Gy(a). In this connection,
it should be kept in mind, however, that the distributions derived are limiting
distributions.
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