EMPIRICAL POWER FUNCTIONS FOR NONPARAMETRIC TWO-
SAMPLE TESTS FOR SMALL SAMPLES!

By D. TEICHROEW

University of California, Los Angeles

A number of nonparametric or ‘“distribution-free” tests have been proposed
[2] for the problem of testing the hypothesis that two samples come from the
same population. Some of these tests are functions of the “ranking” sequences
which are obtained by arranging the observations from both populations from
smallest to largest, and then replacing the observations from the first population
by zero and the observations from the second population by one.

If a sample of m is taken from the first population and a sample of n from the
second, there are (m 4 n)!/m! n! different sequences. (Since we are dealing with
continuous distributions, the probability of a tie is-zero. The computer auto-
matically carried about eight decimal places for each normal deviate and there-
fore there was no need to investigate ties.) If the populations are identical,
all sequences have equal probability of occurring. If the populations are not
identical, some sequences have a higher probability than others.

The hypothesis can be tested by the use of a critical region. The simplest
test consists of selecting, in advance, k particular rankings to be in the critical
region. If one of these rankings occurs, the hypothesis will be rejected. The size
of the critical region, that is, the probability of rejecting the hypothesis when it
is true, is given by

_ m! n!
“= (m +n)!’

Non-integer values of &k can be obtained by the use of randomized tests.

The problem of which rankings to place in the critical region is settled on the
basis of power. Let P(R,) be the probability of a ranking under an alternative
hypothesis. The power, for any alternative, is obtained by summing the P(R,)
for all R; which belong to the critical region. Therefore, to construct an opti-
mum test, one wants a test which, as a is increased, places the rankings into the
critical region in the order of decreasing P(R;).

Clearly, this test is the optimum test against the alternative, since it maxi-
mizes the power. In general it has been possible to construct such optimum tests
only against simple alternatives. It is of some interest to determine whether the
construction yields optimum tests against classes of alternatives, that is, whether
uniformly most powerful tests exist.

Consider the special problem of testing the hypothesis that two samples come

Received November 12, 1954, revised December 15, 1954.
1The preparation of this paper was sponsored (in part) by the Office of Naval Research,
USN.

340

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. MIKOIRS ®

5 ()

v

o 22

WWw.jstor.org



POWER FUNCTIONS

341

TABLE I
m=3 8
Rankingi ca 0.00 25 .50 a5 1.00 1.25 1.50 2.00 2.50
n =2
00011 exact | 10.00 6.44 3.94 2.29 1.3 .65 32 .1
00011} —1.66 | 9.0 6.50 4.10 2.25 1.3 .20 .10
00101| =1.16 | 11.0 7.30 5.10 3.45 1.1 1.40 .85 .2
01001} —.66 | 11.3 8.00 6.30 4.45 2.9 1.95 1.45 .2
001100 —.50 | 9.8 8.65 6.65 5.45 4.6 2.30 1.35 .5
01010 00| 9.3 9.15 8.70 7.40 5.8 4.55 3.20 1.4
10001 .00 | 10.0 10.60 9.85 8.10 6.6 5.35 3.70 1.5
01100 .50 1 10.3 11.55 11.25 11.15 11.2 8.70 7.20 3.7
10010 .66 [ 9.0 11.35 12.25 12.00 12.6 11.05 9.20 4.4
10100 1.16 | 9.9 12.40 15.00 18.45 19.7 20.90 20.50 18.6
11000 1.66 | 10.4 14.50 20.80 | 27.30 34.2 43.60 | 52.45 69.5
11000; exact | 10.00 14.77 20.81 28.05 36.24 45.04 54.01 70.72
n=3
000111} exact 5.00 2.859 1.533 770 .361 157 .064 .008 .001
000111} —2.11 4.90 2.825 1.675 .875 .400 175 .075 .025
001011! —1.71 4.60 2.950 1.875 .750 .400 .275 .100 .025
010011; —1.27 5.00 3.175 1.825 1.250 .800 .375 .100 .025 .05
001101, —1.27 4.30 3.550 2.075 1.475 .925 375 .200 .025
0101015 —.83 5.60 3.700 2.375 1.825 1.025 .600 .350 175
|
100011, —.64 | 5.00 4.275 3.250 | 2.325 1.750 .800 475 175 .05
()01110} —.64 | 5.35 4.275 3.600 | 2.525 1.475 .950 .550 .225 .025
011001, —.43 5.35 4.225 3.150 2.500 1.675 1.075 .600 .075 .05
010110 —.20 | 4.40 4.050 3.900 | 2.675 2.000 1.075 .750 .150 .10
lOOlOli -.20 | 5.35 4.575 3.650 | 2.850 1.825 1.525 1.025 .125 .05
IOIOOIE .20 | 4.65 5.050 4.525| 3.725 3.375 2.325 1.575 .500 .20
011010 .20 | 4.40 5.150 4.950 3.675 3.350 2.500 1.775 .675 .15
100110 .43 | 4.95 5.725 5.400 | 5.025 4.300 3.225 1.975 .825 .35
011100; .64 5.75 5.500 5.500 6.000 5.375 4.475| 3.675 1.725 .70
110001: .64 5.356  5.900 6.350 6,150 4.975 4.150 3.350 1.775 .60
101010; .83 4.65 5.875 6.300 | 5.975 5.825 5.000 4.100 2.000 .60
1011000 1.27 5.15 6.450 7.650 | 9.050 8.425 8.800 | 8.400 6.175 3.35
110010; 1.27 5.06 6.550 8.300 | 9.175 9.750 9.850 | 8.600 5.550 3.15
1101000 1.71 5.40 7.825 11.150 | 13.375 15.850 17.400 | 18.475 17.350 13.60
111000, 2.11 4.80 8.375 12.500 | 18.800 26.500 35.050 | 43.850 62.400 76.95
1110()0; exact 5.00 8.222 12.748 | 18.697 26.025 34.499 | 43.721 62.357 78.116




TABLE II

m =4 ’ 8
bﬁfR—a;i(ing a1 i 0.00 .25 .50 .75 1.00 1.25 1.50 2.00 2.50
n =2
000011 exact 6.67 4.02 2.29 1.23 .62 .13 .02
000011 —-1.91 6.28 3.52 2.02 1.26 .70 .12 .04 —
000101 —1.47 6.70 4.86 2.74 1.44 .78 .32 .02 .02
001001 —-1.07 [6.44 4.68 3.44| 2.04 1.14 .26 .06 .06
000110 —.84 | 592 474 3.54| 2.58 1.68 .48 14 .02
010001 —.63 [6.32 5.46 4.02| 2.80 2.14 .60 .26 .04
001010 —.44 [ 6.98 5.52 4.8 | 3.28 2.26 .98 .44 .04
001100 .00 [ 7.28 6.58 5.58 | 4.76 3.62 1.48 .50 .20
010010 .00 [ 7.00 6.26 5.44| 4.28 3.08 1.64 .54 .24
100001 .00 | 6.76 6.04 5.28 )| 4.62 3.34 2.00 .70 .18
010100 44 | 6.76 7.70 7.46| 6.40 5.30 ) 3.22 1.10 .44
100010 .63 | 6.96 7.82 8.32| 7.96 7.04 4.86 2.70 .98
011000 .84 | 6.64 7.88 9.26 | 10.04 9.74 7.24 3.90 1.78
100100 1.07 | 6.52 8.78 9.98 | 10.70 11.36 9.14 6.64 3.60
101000 1.47 | 6.94 9.54 13.00 | 15.96 18.08 19.42 16.92 11.14
110000 1.91 6.50 10.62 15.06 | 21.88 29.74 48.24 66.04 81.26
110000 exact 6.67 10.45 15.55 | 21.99 29.66 47.43 65.38 80.11
n=3
0000111 exact 2.86 1.49 .72 .32 13 .05 .02
0000111 —2.46 | 2.77 1.50 .82 .36 .15 .06 .02 — —
0001011 —-2.11 3.34 1.68 .84 .50 .14 .08 .05 — —
0010011 —1.76 | 2.68 2.06 1.07 .66 .35 .22 .07 — —
0001101 —-1.70 | 2.80 1.82 .88 .34 .28 .06 — .01 —
0100011 —1.35 [ 2.85 2.02 1.21 .66 .35 .16 .10 .01 —
0010101 -1.35 |3.07 1.62 1.24 .70 .34 .10 .05 — —
0001110 —1.11 2.7 2.06 1.35 .78 .34 .14 .05 .01 —
0011001 —1.00 | 2.84 2.14 1.48 .90 .62 .28 .08 .02 —
0100101 —-.94 (252 2,02 1.37 .98 .65 .22 .10 .04 —
0010110 —-.76 | 3.32 2.58 1.68 1.18 .68 .34 .15 — —_
1000011 —.76 | 2.90 2.26 1.88 1.20 .95 .36 .22 .08 05
0101001 —.59 | 2.70 2.04 1.64| ‘1.06 77 .90 .27 .01 —
0011010 —.41 2.61 2.72 1.75 1.16 .64 .52 .27 .05 —
0100110 —~.35 | 2.80 2.34 1.98 1.38 .94 .52 .31 .05 —
1000101 —.35 [2.74 2.26 1.94 1.44 .95 .56 .27 .02 .05
0110001 —.24 [3.01 2.68 1.92 1.48 .97 .76 .35 .15 —
1001001 .00 {3.08 2.82 2.28| 2.04 1.62 .74 .62 .10 —
0101010 .00 | 2.57 3.06 2.37| 2.02 1.50 .76 .48 .12 —
0011100 .00 |3.00 2.64 2.51 2.10 1.51 1.00 .45 .12 10
1000110 .24 1291 2.90 2.74| 2.24 1.60 1.24 .80 .20 —
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TABLE II—continued

m =4 é
Ranking Ca 000 25 50 75 100 125 150 200 250
n = 3—continued

1010001 35 | 2.77 3.16 2.82 2.38 1.74 1.36 .88 .28 .05
0110010 . .35 2.85 2.70 3.15| 2.52 1.95 1.60 .97 .27 .10
0101100 .41 2.7 3.26 2.82 2.8 2.17 1.52 1.11 .30 —
1001010 ! .59 2.85 2.54 3.14 2.82 2.48 1.82 1.27 .47 .15
1100001 ! .76 2.57 3.16 3.58 3.70 3.15 2.66 1.71 .91 .20
0110100 .76 3.00 3.36 3.61 3.16 2.80 2.32 1.88 77 .25
1010010 .94 3.22 3.68 3.81 4,20 3.52 3.04| 2.08 1.10 .25
1001100 | 1.00 | 2.75 3.54 3.81| 3.80 3.64 3.04| 2.44 1.32 .25
0111000 1.11 2.61 3.46 4.15 4.44 4.32 4.14| 3.61 2.2 .95
1010100 ’ 1.35 2.87 3.84 3.8 5.00 5.31 5.08 4.17 2.42 .90
1100010 1.35 | 2.92 4.04 4.82 5.28 5.40 5.22| 4.50 2.52 1.2
1011000 1.70 | 2.67 4.48 5.87| 6.96 7.98 8.26 | 7.91 6.27 4.2
1100100 . 1.76 | 3.04 4.28 5.57 6.86 8.85 9.76 | 9.25 6.58 4.25
1101000 2.11 2.74 3.90 7.00]| 9.42 12.08 14.36 | 18.00 17.75 13.75
1110000 : 2.46 2.97 5.38 8.94 | 13.46 19.60 27.20 | 35.37 55.71 73.30
1110000 . exact 2.86 5.11 8.53 | 13.39 19.77 27.59 | 36.57 55.94 73.52

from the same normal population against the alternative that they come from
normal populations with the same variance ¢ but with means which differ by
g8. The optimum test for this problem is, of course, the ¢ test. The optimum
rank test for this problem, under the assumption that & is small, is the ¢; test
which was given by Hoeffding [1] and studied in detail by Terry [4].

An interesting practical problem arises as to the behavior of the ¢; test for
large values of §, for example, should one use the ¢; statistic in preference to
the rank sum? The question may be phrased in the following way. If the rank-
ings are ordered so that

P(R)) = P(Ry) = P(Rs) = ---

is true for small values of 8, will this condition hold for all values of &?

Tables I and II give the empirical frequencies, in percent, of all possible rank-
ings which are obtained when a sample of m from N(0, 1) and a sample of n
from N(—4, 1) are ranked in order of size and the individual values are replaced
by 0 if they come from N(0, 1) and by 1 if they come from N(—3, 1). For the
two extreme rankings, exact probabilities have been computed [3] and are given
for comparison. The tables also give for each ranking the corresponding ¢, value.

The frequencies were obtained as a by-product of a sampling experiment per-
formed on the SWAC. The number of samples computed for the different values
of 6 varied in the experiment. The values for n = 2 in Table I are based on 2000
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samples for § = .25, .50, .75, 1.25, and 1.50, and on 1000 samples for § = 0,
1.00, and 2.00. The values for n = 3 in Table I are based on 4000 samples for
each 6 except 2.50, in which case 2000 samples were obtained. Table II is based
on 5000 samples for n = 2 and 7000 samples for n = 3, for all values of 4.

The rankings in the tables have been arranged in the order of their ¢; values;
in cases where the ¢, value is the same for two or more rankings, the ordering
is by increasing probability. The tables sho'v that the probabilities increase
essentially monotonically. The deviation frcs: monotonic increase can be ac-
counted for by sampling fluctuation. These tables, therefore, indicate that, at
least for some significance levels, it may be possible to construct uniformly
most powerful rank order tests for the hypothesis.

The tables may be used to estimate the power function of any rank order test
for testing whether two samples from normal populations with the same vari-
ance have different means for sample sizes (m,n) = (3,2), (3,3), (4,2), and (4,3).
The tests may be randomized or unrandomized and one-sided or two-sided.

I am indebted to I. R. Savage for suggesting the problem and for helpful dis-
cussions about the results.
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