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1. Summary. This paper is concerned with a generalization of the sometimes-
pool procedure for pooling two estimators which is based on a preliminary test
of significance. A weighted estimator for one of the parameters is obtained by
using weights which are determined by the observed value of the preliminary
test statistic. The efficiencies of the weighting procedure and of the sometimes-
pool procedure are compared for the special case where the estimators are nor-
mally distributed. Further, it is shown that the weighting procedure offers a
greater degree of control over the disturbances which may result from pooling
than does the sometimes-pool procedure. Some problems concerning the choice
of a weighting function are discussed.

2. Introduction. The effects of preliminary tests of significance on subsequent
statistical inferences have been studied in various special cases by Bancroft
[1], [2], [3], Bechhofer [4], Mosteller [8], and Paull [9]. They found that the use
of such tests introduces serious disturbances into the final inferences. These dis-
turbances take the forms of biased estimates, losses of efficiency as regards esti-
mation, or shifts in the sizes and powers of tests of hypotheses.

Preliminary testing procedures may be characterized as follows: A statistic,
T, is evaluated from the data at hand. If T is not significant at some preassigned
level of significance, a given procedure is used to estimate the parameter in ques-
tion or to test the major hypothesis. If T is significant, an alternative procedure
is used for obtaining estimates or for testing the hypothesis. In any event, the
only information derived from T is that it does or does not fall into the region of
rejection. If more of the information contained in 7 is utilized, it is possible to
exert more control over the disturbances inherent in the preliminary testing
procedures than is possible by merely altering the level of significance of the
preliminary test.

Let Xy, ---, X, be a random sample with joint probability density function

f(Xl: "':Xn;gl)"':ok)s

where the functional form is known, 6; and 6, are unknown parameters, and the
last £ — 2 0’s are parameters whose values may or may not be known. Let b,
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and 0, be the best estimators of 6; and 6, as provided by statistical theory. If
6, = 02, a pooled estimator g(8; , §,) will, in general, provide an estimator for 6
which is better in some sense than §; . When it is not known whether or not 6,
and 6, are equal, a better estimate for 6; may still be obtained by making use of
any information provided by &, .

Let T be the statistic which the theory indicates will provide the best test of
the hypothesis that 8, = 6, against the class of alternatives 6, 5 6, . Evaluate T
using the data at hand, and for an estimator of 6, use the function

1) W(T) = ¢(T)bs + [1 — ¢(D)Ig(by, b2),
where ¢(T) is a function of T only. If ¢(T) is defined as

o(T) = 0, Tc A4,

@2) ¢(I) =1, TCR.

where A, and R, are the acceptance and rejection regions for the test of H,
with probability of type I error equal to «, then W(T) reduces to the estimator,
SP(T), following from the ‘“sometimes-pool” procedure based upon the pre-
liminary test of significance.

In order to determine whether or not W(T') offers any advantages over SP(T)
or f, as an estimator for 6;, the mean square deviation, D?, about the true
parameter value is used as a criterion of goodness.

3. Pooling normal estimators. Let 8, and 8, be two independent, unbiased,
normally distributed estimators for 6, and 6, respectively. Let 6; and 6, have
known variances, o1 and o5 , respectively. A pooled estimator for 4, is obtained
in this special case as
. 30 16
3.1) WD) = oMb+ [1 — o(1)) ot o0

o + o3
where ¢(T) is a function of T only and

b — 62

@2 "= Vi
is normally distributed with mean

01 — 62
3 RV

and variance one. Equation (3.1) may be written as

o3l + 016, | oiTe(T)
o? + o} Vol + ¢’

(34) w(T) =
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The mean square deviation of W(T) about 6, is a function of the nuisance
parameter v and is given by

Dy(y) = EW(T) — 6,

2
[

(3.5  Di(y) = ml—;{ﬁ + o} f_ : (Te(T) — +I’'N(T — ) dT},

where

—y?/2

NG = e

The bias of W(T') as an estimator for 6y, is

of

66 Batr) =0 - BWD) = Ay~ [ 1e(n - ) ar |

4. Weighting functions. In order to use the estimator given by the weighting
procedure (3.4), the weighting function ¢(7") must first be selected. The choice
of ¢(T') will be restricted to the class of single-valued functions of 7" which are
continuous except on a set of measure zero, which are defined for all 7', and
which satisfy the conditions:

() 0 £ ¢(T) £ 1,forall T,

@ii) ¢(—T) = ¢(T).

The class of functions so defined will be referred to as the admissible class of
weighting functions.

The choice of a weighting function should be based on some criterion by means
of which the relative merits of various alternative functions may be assessed.
A possible criterion is unbiasedness; that is, if a function ¢.(T) exists such that
for all v

EW.(T)] = 6

then ¢.(T) is an unbiased weighting function.

TuroreM 1. Among the class of admisstble weighting functions the only unbiased
weighting function is (T) = 1.

Proor. Because of the symmetry of ¢(7) the bias of W(T'), equation (3.6),
may be put into the form

By = s [ Tl = oIV = 9) = N(T + 9] dT.

It is obvious that this is equal to zero when v is not equal to zero if and only if
¢(T) is identically equal to one.

A second desirable property would be uniformly minimum mean square error
about 6; . If ¢,(T) is an admissible weighting function such that D3, (y) < D3 (y)
for every ¢’ and every v, with inequality holding for at least one v and one ¢/,
then ¢,(T) is a uniformly minimum mean square error weighting function. It
will be shown in Theorem 3 that such a function does not exist.
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A third criterion which might be proposed is one which selects a weighting
function which yields an estimator whose efficiency is greatest when averaged
in some sense for all y. One such measure of overall efficiency is the area between
the curves corresponding to D (y) and to the variance, oi, of the “neverpool”
estimator, 6; . The following theorem is obvious and is stated without proof.

TuEOREM 2. Among the class of admissible weighting functions, that one which
mazximaizes the integral

@y 1= et - Dyl ay

is¢(T) = 1.

As a consequence of Theorem 2 and the fact that if v is zero the minimum
variance estimator is obtained by letting ¢(7) = 0 the following theorem may
be stated.

THEOREM 3. Among the class of admissible weighting functions there exisis no
Sfunction ¢,(T) such that

D%.(v) = D3 (v)

for every ¢' and every +.
Suppose that v is fixed and we consider an estimate

2 A o2
a [} 01 + g3 02
Ab + (1 A4) m“ ,
where 4 can be a function of v. Its mean square deviation about 6, is
o1 os
[ + A+ (1 - AW],

2 2| 2
o + o3 Loi

and this is minimized with respect to 4 when 4 = v*/(1 + 7).
Since v is considered to be unknown and since T is an unbiased estimator for
v, it was decided to estimate 4 by
T2

(42) (bo(T) = I—T—Tz

6. Mean square and bias when ¢(T) = ¢o(T). If ¢o(T) = T2/(1 4+ T?) is
substituted for ¢(7) in the expression (3.5) for the mean square deviation,

(5 1) D2 ( _ O'f 2 2 ® T3 :
. wo'y)——m 0’2+0’1 [ ’Y—'-l—-;—T-Q 1V(T—"Y)dT .

The integral in (5.1) can be put into the form

(5.2) Iy) = 14 3H(y) — 5G(v),
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where
(53) H(y) = [ N = ) ar,
(5.4) Gly) = f_ (—1-+—T2)_2 N(T — +) dT.

A series solution for the integral H(y) was found by using a method given by
Zemansky [10].

—v2/2 2\ n
(5.5) Hp =3 O ( Z) A,
0 —22/2
A~n = 61/2.[ erZ,
1 2"

00
1/2 —23/2
Ao=e/f e dz,
1

1

A=t (1= 4,0,
Since
G(yv) = [1/2] [1 -y dI;(y) - 72H(7)] ’
Y
a series solution for G(y) is obtained from that of H(y), (5.5).
(56) Gr) = [1 + 22 G- 4],

and substitution into (5.1) gives

4 —v22
(57) Dhy(y) = ot + 28 [3 gy —2 + ol (” A, — §A,._l>].

+ n=1 2"'n' 2 2
A similar procedure gives the bias of W(T') when ¢(T) = ¢o(T) as
. B aiy Z "72’272"A,,+1
(08) Wo('Y) \/ T 1 0'2 = 271
6. Equal variances. If o =03 = o2, the estimator for 6, reduces to
b+ b, To(T)o
6.1 w(T) = + ,
(6.1) (1) =52+ 2
where
— 02
T =
af

Let ¢(T) = T?/(1 + T%), then the mean square deviation of Wo(T) is
2
(62) Diyly) = ;_{2 + e‘*"‘ﬂ[ 4-2+ T v (121 4, - gAH)]} ,

ne1 2"n!
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and the bias is

VT e e
(6.3) Byw,(v) = ok i Z%znn! Appr.

The “sometimes-pool”’ estimator for 6, is obtained if we let

_Jofor T < ta,
$(T) = {1 for T = t.,

where P(|t| = t,) = « and ¢ is the standard normal deviate. Mosteller [8] gave
the mean square of SP(T).

Dirt) = (5 ){2 + e+ DN+ ) + 0 = DN = 2
(6.4)

ta—7

+o -0 [ NG dy}.

The bias of SP(T) is obtained from the results reported by Bennett [5].

ta—

- ta—7

65 But) = Z5[v [ N@ dr+ NG+ - NG -],
'\/5 ta—"

The two estimators were compared on the basis of their efficiencies relative

to 6, . These efficiencies are plotted as functions of |y| in Figure 1. Let v* be de-

fined as the largest value of |y| such that for all |y| < v* the efficiency is greater

1.5

1.4 (a) SP(T), 1= 1.6
(b) W, (T)
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than one. v* will be referred to as the effective difference of the estimator. The
curves of Figure 1 indicate that: (1) the maximum possible loss of efficiency is
smaller for Wo(T) than for SP(T); (2) the effective difference is greater for
Wo(T); and (3) for larger values of |y|, SP(T) is more efficient than Wo(T).

7. Two-parameter weighting functions. In order to study the effects of chang-
ing the shape of the weighting function curve, a two-parameter family of weight-
ing funections is defined as

(7.1) #(T;a,b) = 1 — aec™*",

where the parameters have ranges
@) b =o0.
The mean square of Wq(T) is

{aé ot [[br = TG - e N -y ar).

2

(41
2 2
(53 + a2

Integration yields

4 2 2
2 _ 2 g1 a Y —2by 2/ (4b+1)
Da(y) = a1 + I F ag{(4b T 1) [1 + 5 ¥ 1] €

Da(v) =

(7.2) 2
_ 2a [1 2y ] e—b72/<2b+1)\
@b + 1) % + 1 .
For the special case where o; = o3 = o
2 2
20y _T )]y 2a _ 2y | —brmen
: Datv) =3 {2 @b + 1 [1 26 + 1] ¢
(7.3) ,

2
a Y —2b72/(4b-+1)
+(4b+1)3/2[1+4b+1:|e }

and the efficiency of Wa(T) relative to 6 is o*/Da(y). This was evaluated for
various values of a and b.

In Figure 2 the efficiency curves are plotted as functions of |y| for a = 1.00
and b = 1.00, .50, .25, .10. When a is fixed, decreasing b has the following effects:
(1) for |y| = O the efficiency increases; (2) the maximum possible loss of effi-
ciency is increased; and (3) the range of |y| for which large losses of efficiency
may be sustained is increased without a corresponding increase in the effective
difference.

The curves of Figure 3 are the efficiencies of W (T) for b = .10 and a = 1.00,
.65, .42. They reveal that as a decreases, b fixed: (1) the efficiency at |y| = 0 de-
creases; (2) the maximum possible loss decreases; and (3) the effective difference

increases.

8. Comparison of Wy(T), Wa(T'), and SP(T'). The relative efficiencies of these
three estimators for 6; in the case of equal variances are plotted as functions of
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(0) SP(T), tq= 1.6
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Fic. 4. Efficiencies of SP(T), Wo(T), and W, (T)

|y| in Figure 4. The constants involved were selected so that the efficiencies of
all three would be very nearly equal for |y| = 0. The following facts are apparent:
(1) Wu(T) provides the greatest effective difference, SP(T") the smallest; (2)
the maximum loss is least for Wo(T'), greatest for SP(T); and (3) the range of
|v| for which large losses occur is shortest for SP(T).

To compare these estimators on the basis of overall efficiency as defined in
Section 4 the integral

J==7 f_w 1 — (D) dT

was evaluated for each of the weighting functions plotted in Figure 4 with the
following results, the largest value corresponding to the greatest overall effi-
ciency; Jo = — .785¢%, Ja = —.875¢%, Js, = —1.3654". Of the three, Wo(T)
has the greatest overall efficiency.

9. Discussion. The results of Sections 6, 7, and 8 indicate that in the case of
normal estimators the generalized pooling procedure is effective in reducing the
maximum loss of efficiency and increasing the effective difference.

Since it was shown in Section 4 that there is no uniformly minimum mean
square error weighting function and no unbiased weighting function, the choice
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of a function, ¢(T'), might be based on one of the following criteria or on a com-
bination of them:

(1) Select a weighting function which will provide a small maximum loss.

(2) Choose ¢(T) so as to have a large overall efficiency.

(8) Select ¢(T) to give a large effective difference.

(4) Select ¢(T) so that the gain in efficiency is large when v = 0.

It is readily apparent that these criteria are not independent and that min:-
mizing the maximum loss or maximizing with respect to any one of the last
three will, in general, lead to the never-pool estimator or will have adverse
effects on the other characteristics of the estimator. Of the functions which were
studied it appears that ¢o(T) is the best compromise when nothing is known
concerning the size of the nuisance parameter v. Any prior knowledge concern-
ing v might conceivably be used as an aid in selecting one of several possible
alternative functions.

It is realized that only a beginning has been made on the applications and
effects of the generalized pooling procedure and that the problems which were
considered in this investigation belong to the simplest class of problems to which
the procedure might be applied. The author feels, however, that the results
which have been achieved here indicate that the procedure should be effective
in controlling some of the disturbances which arise in other more complex ap-
plications of preliminary tests of significance. He feels that the advantages
claimed for the weighting procedure in this study warrant further investigations
along two lines: (1) An investigation should be made into the operating charac-
teristics of the procedure when used in the other problems for which the effects
of a preliminary test have been studied; and (2) a more rigorous examination of
possible weighting functions and rules for their selection should be considered.

REFERENCES

[1] T. A. Bancro¥r, “On biases in estimation due to the use of preliminary tests of sig-
nificance,” Ann. Math. Stat., Vol. 15 (1944), pp. 190-204.

[2] T. A. BANCROFT, “Bias due to the omission of independent variables in ordinary mul-
tiple regression analysis’’ (abstract), Ann. Math. Stat., Vol. 21 (1950), p. 142.

[3] T. A. BANCROFT, ‘‘Preliminary tests and pool rules’’ (abstract), J. Amer. Stat. Assn.,
Vol. 49 (1954), p. 348.

[4] R. E. BecuHOFER, “The effect of preliminary tests of significance on the size and power
of certain tests of univariate linear hypotheses,”” Unpublished Ph.D. thesis,
Columbia Univ. Library.

[5] B. M. BenngTT, “Estimation of means on the basis of preliminary tests of signifi-
cance,” Ann. Inst. Stat. Math., Tokyo, Vol. 4 (1952), pp. 31-43.

[6] D. V. HUNTSBERGER, ‘‘An extension of preliminary tests for pooling data’ (abstract),
J. Amer. Stat. Assn., Vol. 49 (1954), p. 348.

[7] Tosto Krracawa, “Successive process of statistical inference,” Mem. F aculty of Sct.,
Kyusyu Univ., Ser. A, Vol. 5 (1950), No. 2, pp. 139-180.

[8] FrepERICK MOSTELLER, ““On pooling data,” J. Amer. Stat. Assn., Vol. 43 (1948), pp.
231-242.

[9] A. E. PauLL, “On a preliminary test for pooling mean squares in the analysis of vari-
ance,” Ann. Math. Stat., Vol. 21 (1950), pp. 539-556.

[10] M. W. ZEMANSKY, ‘‘Absorption and collision broadening of the mercury resonance
line,” Phys. Rev., Vol. 36 (1930), pp. 219-238.



