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CORRECTION TO “ON THE MAXIMUM NUMBER OF CONSTRAINTS OF
AN ORTHOGONAL ARRAY”

By EsTHER SEIDEN

Northwestern University

The proof of Lemma 2 of the paper mentioned in the above title (Ann. Math.
Stat. Vol. 26 (1955), pp. 132-135) is incorrect. The number 20 on top of page 134
should be replaced by 15 and hence no contradiction has been reached with
nys = 45. Fortunately the assertion made in the above mentioned remains valid.
The last seven lines of page 133 and the first two lines of page 134 should be
deleted and replaced by the following:

This means that every 4-rowed orthogonal subarray must satisfy the equality
nis = 1, contrary to Lemma 1 of the paper “Further remark on the maximum
number of constraints of an orthogonal array’’ (to appear in the December issue,
Ann. Math. Stat. Vol. 26 (1955), which asserts that no such array exists.

I wish to thank W. S. Connor for pointing out the mistake in my former
proof.

ot

ABSTRACTS OF PAPERS

(Abstracts of papers presented at the New York meeting of the Institute, December 27-30, 1955)

1. The Midrange of a Sample as an Estimator of the Population Midrange,
PavuL R. RipER, Wright-Patterson Air Force Base.

A study is made of the distribution of the midranges of samples from five different
symmetric populations of limited range, and of the relative efficiency of midrange and mean
in estimating the population midrange, or mean, or median. It is found that the midrange is
more efficient than the mean for all of the populations considered, and that this efficiency
increases as the standardized fourth moment decreases.

2. Distribution of the Product of Maximum Values in Samples from a Rec-
tangular Population, Paur R. Riper, Wright-Patterson Air Force Base,

(By Title).
The distribution of the product of maximum values in samples from a rectangular dis-

tribution is derived. Results are obtained for the case of two samples of different sizes and
for k samples of the same size.

3. A Note on Non-Recurrent Random Walks, Cyrus DErmAN, Columbia
University, (By Title).

Let {X;},72 =1, --+ , be a sequence of independent and identically distributed random
variables with density function f(z) and EX; = N > 0. Let {S.}, n = 1, -+, be the se-
quence of cumulative sums S, = iy X;, H(x) = 251 P(S, < ), and h(z) = H'(z).
Let A be any Borel set of the positive real numbers and m(A4) denote its Lebesgue measure.
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Chung and Derman (to appear in the Pacific J. Math.) proved that (I) #(4) = P(S.¢ 4
infinitely often) = 0 if m(4) < «, and (II) that #(4) = 1if m(4) = «, provided that as
2 — 0,0 < lim inf 2(z) < lim sup h(z) < «. The following theorem was proved: (i) If
N < o and lim sup h(x) < «, then lim inf A(z) > 0 and consequently (I) and (II) hold.
(ii) If lim inf A(z) > 0, then (I) holds. (iii) If N\ < «, and if there exists a constant a« > 0
and an interval (a, b) such that f(z) 2 « for z ¢ (a, b), then lim inf 2(z) > 0.

4. Statistical Spectral Analysis, I: Consistent Asymptotically Normal Estimates
of the Covariance Function and Spectral Averages, EMANUEL PARZEN,
Columbia University, (By Title).

Let the wide-sense stationary time series z(¢) have mean m, covariance R(v) = E z(t)
z(t + v) — m?, spectral distribution function F(w) such that R(v) = f e dF (w), and

spectral density function f(w) = F’(w). The problem of statistical spectral analysis is to
estimate these quantities on the basis of an observed sample. We shall be especially con-
cerned with finding consistent and asymptotically normal estimators, for both continuous
and discrete parameter processes, under the following assumptions: (1) R(v) is absolutely
and square summable; (2) the process y(¢) = z(¢) — m is stationary of order 4; (3) the non-
Gaussian part of the fourth moment, or the fourth cumulant, Q(v:1 ,v2 ,v5) = E y(t) y(t + v1)
y(t + v2) y(t 4 vs) — R(®) R(wz — vs) — R(v2) R(vs — v1) — R(vs) R(v1 — v2) is absolutely
summable; (4) there is an absolutely integrable function g(w: , s , ws) such that Q1,2 ,03)

= f [ f dew; dws dws exp © [wwy + wws + wws] gler , wz , ws). Examples are given of processes

satisfying these assumptions; they are examples of multilinear processes. Given z(t), for

0<t< T (orfort=1, .-, Tinthe discrete case), define the sample mean mr , the sample

covariance Rp(v), the sample spectral density (or periodogram) fr(w), and sample spectral
T |v

averages Jr(4) by Tmr = f z(t) dt, TRp(v) = [ [z(@t) — mq] [x@ + |v|) — mz],
0 .

0
Rr(v) = f et fr(w) dw, Jr(4) = f A () fr(w) dw for suitable A (w). Expressions are obtained
for the limit, as T — o, of TE(mr — m)?, TE | Rr(v) — R(@) |*, and E | Jr(4) — J(4) 1%,
where J(4) = fA(w) f(w) do.

5. Statistical Spectral Analysis, II: Asymptotic Mean Square Error of a Class
of Estimates of the Spectral Density, EManueL ParzeN, Columbia
University.

It is well known that the sample spectral density (or periodogram) fr(w) is not a con-
sistent estimate of the spectral density. A class of consistent estimates may be found in the
following way (where we write out the formulas only for the discrete parameter case, noting
that similar statements hold for the continuous case). Define f7(w) = (37) X Zjvisr 7%
k(Bv) Rr(v), where Bris a sequence of constants such that By —0 and TBr— « as T — «,
and the kernel k(u) is defined for all real u as an even, bounded, square integTrable function,

with Fourier transform K(w). It is assumed to satisfy £(0) = 1, and f | k(w) | du =

—T
MT# < for some ¢ > 0 and constant M. Various estimates that have been proposed for the
spectral density (Bartlett, Daniell, Grenander, Tukey) may be regarded as special instances
of fi(w). To study the properties of (), and to form a theory of the optimum estimate of
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this form, we need to know the mean square error E | fz(w) — f(w) |2. An asymptotic ex-
pression for it can be obtained from the following two theorems.

Theorem 1: TB po®[fp(w)] — | flw) |2 / k2(w) du {1 + 8(0, w)} where 8(0, ) = 1 or 0

according as w = 0 or # 0.
Theorem I1: Let r > 0 be such that = | v | | R(w) |[<°, and k™ = limy»o (1 — k(u))/ |u |
is finite. Then By~ | E f7(w) — f(w) |2— | kM £ () |2 where fT (w) = (3r)Ze~ | v |"R(»).

6. A Central Limit Theorem for Multilinear Stochastic Processes, EMANUEL
Parzen. Columbia University, (By Title).

A definition of a multilinear process is given. Intuitively, a stochastic process xz(t),
defined for all real ¢, is said to be multilinea: if it arises from a process with independent
increments by means of passage through a finite bank of “linear filters’” and ‘‘polynomial
law instantaneous devices’’. Many physically observed stochastic processes may be as-

T
sumed to arise in this way. Let Sy = j z(t) dK(¢) and Sy = Z¥ #(tnw) an , for some se-
0
quence of points ¢, — «, constants a. , and weighting function K (). Conditions are given
in terms of moments, in order that the normalized random variables (Sr — ESr)/¢Sr
and (Sy — ESy) /oSy tend in distribution to a normal law with zero mean and unit variance.

7. An Extension of Cramér’s Theorem 20.6 to Random Functions with Values
in a Metric Space, EMANUEL PARrzEN, Columbia University, (By Title).

Let (2, @, P) be a probability space, and let (R, p; 8) be a metric measurable space, by
which we mean that R is metrized by p, and ® is the minimal o-field over the open sets in
®. A random function X on @ to R is G@-measurable if @ contains the inverse image under
X of every set in 8; then X generates a probability Py on ®. For a sequence of @-measur-

D
able functions X, , define X, to converge in distribution to X (denoted X, — X) if, for every
bounded real-valued B-measurable function f(z) on R whose set of discontinuities is of

P,-measure 0, (*) f f(X,) dP — f f(X) dP. By a result of P. P. Billingsley (Ph.D. thesis,

Princeton, 1955; Th. 1.1), X, 2’ X if, and only if, (*) holds for every bounded uniformly

continuous function on R. Note also that, if X is a constant, then X, £> X if, and only if,
p (X, ,X) — 0in probability. Extension of Theorem 20.6 in Cramér (Mathematical Methods
of Statistics, Princeton, 1946): Let X, , X be @-measurable functions to (R, , p1 ; ®:) and
let Y, , Y be G@-measurable function to (R:, ps ; B2). Let R be the Cartesian product
of R; and R, , and let p be a metric on R which agrees with the metrics p; and p: , and such

that (X, , Y.), (X, Y) are Q-measufable to (R, p; B). Suppose X,.P')X R Y,.—]")* Y,and Y
is a constant. Then (X, , Y,.)—Iz* (X, Y). Proof. It suffices to show f fXn, Yu)dP—

/ f(X, Y) dP for any bounded uniforrhly continuous function f(z, y) on R. Clearly,
ff(X,. , Y)dP —>ff(X, Y) dP. Let 5(e) be such that | f(Xs,Ya) — f(Xa, ¥Y)| < €for

p2(Yn, Y) < 8(e). Sincef | fXn, Ya) = f(Xa, Y) |dP = e+ P{p(Y,', Y) > 5(e)}, the

desired conclusion may now be inferred.
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8. Orthogonality and Fractional Replication of Factorial Experiments, ALLAN
BirnBaUM, Columbia University.

A simple characterization of orthogonal factorial designs is derived from the condition
for orthogonality of appropriate vector subspaces of the sample space. This leads naturally
to: (a) the definitions of various classes of orthogonal designs, some of them standard (e.g.,
Latin squares) and some less familiar (e.g., “Latin rectangles’’); (b) some lower bounds on

_the fraction of replication which is consistent with orthogonality; (c) some elementary
methods of construction of orthogonal fractional replicates, which in some cases can be
shown to consist of a smallest possible fractional. Examples of such fractional replicates,
including cases of factors at unequal numbers of levels, are given.

9. On the Second Sample Size Function of a Bayes Two-Stage Test for the
Mean, Morris SkiBINsKY, Purdue University.

This paper investigates in detail the second sample size function of a Bayes two-stage
rule that decides between two possible values for the mean of a normal distribution which
has unit variance. The second sample size is the greatest integer less than or equal to a
number, §(const. X log (rn/Wg), W, M), where §(t, v, ) is, for fixed values of its argu-
ments, a value of y for which a certain function, U(y, ¢, v, u), is absolutely minimum; m
is the size of the first sample, r,» the value of the probability ratio from the first sample;
W and g the ratios, respectively, of the simple wrong decision losses and the a priori proba-
bilities associated with the two possible means; and M is the minimum wrong decision loss.
Certain monotonicity, symmetry, and continuity properties of 4, and functions related to
it, are proved, and an asymptotic expression for the function is found when the minimum
wrong decision loss is large. A subsequent paper, continuing thisinvestigation, will consider
Bayes two-stage rules having optimum properties with respect to expected overall sample
size among rules of the same power.

10. A New Estimation Procedure for a Linear Combination of Exponentials,
(Preliminary Report), RicaaRD G. CorNELL, Oak Ridge National Labora-
tory and Virginia Polytechnic Institute.

A new estimation procedure is developed for the parameters of the model y;; = aie™1ti +
ageMti 4 ... 4 ape™Mti 4 ¢;; . The errors e;; are independently and normally distributed
about mean zero with equal variances. The parameters A; are restricted to be positive and
the observation points ¢; are equally spaced. The number of points at which observations
are taken is specified to be an integral multiple of the number of parameters. Also, equal
numbers of observations are required at each observation point. Estimates are obtained by
forming as many independent sums from the observations y;; as there are parameters,
equating these sums to their expectations, and solving for estimates of the parameters.
A computationally simple, non-iterative solution is found. The resultant estimators are
not only asymptotically normally distributed, but are also consistent, sufficient and asymp-
totically efficient. The limiting properties are demonstrated as either the number of ob-
servation points or the number of observations per observation point grows infinitely large.

11. A Note on Weighted Randomization, D. R. Cox, University of North
Carolina.

The standard methods of randomization used in experimental design consist of selecting
an arrangement at random from a set S of similar arrangements, giving each arrangement
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in the set equal chance of selection. As is well known this device makes the standard designs
unbiased in the sense that, under weak assumptions, the randomization expectations of
linear and quadratic functions of the observations agree with their values as calculated
from an appropriate linear model with random residuals. It is also known that these results
do not hold when an adjustment for concomitant variation is made by analysis of covariance.
In the present paper it is pointed out that a randomization justification for the covariance
procedure can be provided if weighted randomization is used, i.e. if the arrangement for use
is selected giving different arrangements in the set S appropriate unequal chances of selec-
tion. Possible applications are considered briefly.

12. On the Analysis of Incomplete Block Designs, MARVIN ZELEN, National
Bureau of Standards.

Let there be 2v normal populations which can be divided into two sets of v populations
each, such that the unknown parameters of each set are (u; , o1) and (ui ,03) = 1,2, -+, v.
Consider the null hypothesis Ho: (u; = 0 for: = 1,2, --- ,v) against the alternative hypothe-
sis Hi:(ui # 0 fors = 1,2, --- , v). If a sample of size r; is made for each of the v popula-
tions of the jth set (j = 1, 2), then one can test H, using two independent F-ratios. The
main problem is to combine the two independent tests of significance into one single test
having (perhaps) greater power than either of the individual tests. This problem arises in
the analysis of incomplete block designs where one set corresponds to the intra-block
analysis and the other to the inter-block analysis. The object of this paper is to show that
exact statistical tests do exist for combining intra- and inter-block information. Methods
are discussed for combining the two tests and a comparison of the power function is made
for particular numerical values of the alternative hypothesis.

13. A Remark to Wald’s Paper: “On a Statistical Problem Arising in the Classi-
fication of an Individual into One of Two Groups,” JunJiro OGawa,
University of North Carolina.

In the paper above mentioned, the late Professor A. Wald proposed a statistic U for the
use in classification procedure and considered its exact sampling distribution. His result is
too complicated to describe here. His proof was divided into nine lemmas, and each lemma
was proved by an ingenious method. But, at least in the author’s opinion, the proofs of his
sixth and seventh lemmas can be improved with the help of the invariant measure defined
on the Grassmann manifold, which consists of p-planes in (n + 2)-dimensional Euclidean
space. The author presents new proofs of these lemmas as an example of applications of
the theory of orthogonal group manifolds developed by A. T. James in 1954 (Ann. Math.
Stat., Vol. 25).

14. Consistency and Optimum Properties of Some Two-Sample Tests, JuLius
R. Brum, Indiana University, and LioneL Weiss, University of Virginia.

Let X;, -+, X, be a sample from the uniform distribution on the unit interval and let
Y1, --+, Y, be a sample with density g(y) on the unit interval. Let Z, = 0, Z,,1, and
Zy < -++ < Zy be the order statistics corresponding to ¥, , --- , ¥, . Foreachi =1, --- ,
n -+ 1 let S; be the number of X’s in the interval [Z;_,, Z;], and for each non-negative
integer r, let Q.(r) be the proportior; among Sy, -+, S.;1 which are equal to r. Let o =

m/n, and for each r, let Q(r) = a’f {92(y) /[« + g(y)I"*1} dy. Then it is shown that under
(]

mild restrictions on g(y) we have P{lim,., sup,>, | @.(r) — Q(r) | = 0} = 1. This is ap-
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plied to prove consistency of certain two-sample tests such as the Wald-Wolfowitz run
test (Ann. Math. Stat., Vol. 11 (1940), pp. 147-162). One of these tests is shown to have a
further desirable property.

15. Remarks on Characteristic Functions, EveeNE Lukacs, The Catholic
University of America and The Office of Naval Research.

Let F(z) be a distribution function and denote by ¢(t) its characteristic function (Fourier
transform). Functions of characteristic functions are studied which are themselves char-
acteristic functions. The following theorem is established: Let ¢(¢) be a characteristic
function and let G(2) be a function of the complex variable z which is analyticin | 2 | < R,
where R > 1. The function G[¢(t)] is also a characteristic function if, and only if, G(2) has a
power series expansion about the origin with non-negative coefficients and if G(1) = 1.
The class of functions G(z) which have the property that Gl¢(t)] is a characteristic function
whenever ¢(t) is a characteristic function includes also functions which are not analytic,
for example the function | z |2. By means of the theorem, one obtains also the following
result: Let ¢(t) be an arbitrary characteristic function and p be a real number such that
p > 1; then, (p — 1)/[p — ¢(t)] is the characteristic function of an infinitely divisible dis-
tribution.

16. The Limiting Distribution of the Serial Correlation Coefficient in the Explo-
sive Case, JoHN S. WHITE, University of Manitoba.

An auto-regressive process satisfying the stochastic difference equation z; = az;—; + u: ,
(¢t =1,2, --+), where the u’s are independent identically distributed random variables,
%) is a constant, and « is an unknown parameter, is said to be explosive if | @ | = 1. If the
u’s are normally distributed with mean zero, it is shown that the maximum likelihood esti-
mator for « has an asymptotic Cauchy distribution when | @ | > 1. For |« | = 1, a char-
acteristic function is obtained for the limiting distribution. For « = 1, it is also shown that
the limiting distribution of the maximum likelihood estimator for « is the distribution of a
certain functional of a Wiener process.

17. The Distribution of the Ratio of Two Measures of Normal Dispersion,
H. O. HarTLEY, Iowa State College.

Let us denote by #; (¢ = 1,2, --- , n) a random sample of n items from N (0, 1) and by
% and s? the sample mean and variance, i.e., £ = n~12%; ; 2 = (n — 1)712(x; — %)2. Con-
sider now, the measure of dispersion ¢ = ¢(#1 — &, ++- , zn» — &), Where ¢ is a 1st order
homogeneous function of its arguments z; — &, and finally u = ¢/s. Special cases of such
a ratio which have been considered in the literature are: (a) ¢ = range = ZTmax — Zmin
(David, Hartley and Pearson) Biometrika, 41, 482; (b) ¢ = Zmax — & (Pearson and Chan-
drasekar) Biometrika 28, 308; (¢) ¢ = 1/n2 | z; — & | (Geary) Biometrika 27, 310, 353. Here
we develop a general distribution theory for the ratio u based on a fundamental integral
equation: Introducing the probability integrals F(U) = Pr{l/u = U}; G(U) = Pr{l/p = U}

it follows from the independence of u and s that G(U) = f F(Us) fo(s) ds where f,(s)
0

is the ordinate distribution of s based on » = n — 1 degrees of freedom. Given the known
integral G(U) equation (1) is an integral equation Fredholm 1st kind for the unknown
integral F(U). Various methods of solving this equation are discussed and applied to cases
(a) and (b), supplying answers unobtainable by the methods hitherto employed. Also,
d) ¢ = G @ — i41)?/(n — 1)t (von Neumann; Ann. Math Stat. 12, 367); (e) ¢ =

3| % — %i41 |/ (0 — 1) (Kamat, Biometrika, 40, 116).
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18. Estimating a Linear Functional Relation, H. FamrrieLp Smita, North
Carolina State College.

The problem considered is to estimate a theoretical line & cos 8 — & sing — P = 0
from paired observations z:;%.; which are assumed to be random vectors from bivariate
normal distributions around arbitrary centers &1 £2; . Most attempts to fit such a functional
relation to observations with errors in both variates introduce the £,; as what Neyman
and Scott (1947) called ‘“‘incidental parameters.’”’ These bring troubles to both least squares
and maximum likelihood formulations. Attention is focused on the condition that the only
ascertainable quantities from which a solution must be deduced are deviations of observa-
tions from the line in some prescribed direction. These have univariate distributions whose
expectations in general deviate from the line by amounts proportional to their distances
from the respective £,; . But when, and only when, the deviations are measured in one
particular direction their expectations are zero independently of £,: . By utilizing this con-
dition, and only thus, the incidental variables can be eliminated from the problem. The
probability of a sample can then be expressed in terms of univariate normal distributions
about the line, and maximum likelihood may be applied free of incidental variables. Kum-
mell’s solution is then seen to be unique and efficient. The estimator of the angle g8 is un-
biased and its asymptotic variance may be evaluated. With certain supplementary condi-
tions the exact sampling distribution has been obtained. (Supported by the Office of Ord-
nance Research).

19. Asymptotic Distributions of Roots of Certain Determinantal Equations,
R. GNANADESIKAN, University of North Carolina.

The tests obtained by Roy for the hypotheses: (i) &, = 2= -+ = &, 1.e., 2* = 0 where
Z* ig the “between’ covariance matrix, and (ii) Z:12(p X q) = 0 where 2, is the covariance
matrix between a p-set and a g-set (p = ¢), on multivariate normal populations depend
on the largest characteristic roots of (i) S*S—1 where S* and S are the sample “‘between’’
and “within”’ dispersion matrices respectively; and (i) S S1287 S12, where Su(p X p)
S22(g X ¢) are sample covariance matrices of the p-set and the g-set respectively, and
Si2(p X q) is the sample covariance matrix between the p-set and the g-set. The exact
c.d.f. of this largest root has been obtained by Roy. For large sample sizes the problem
becomes identical with that of finding the c.d.f. of the largest characteristic root of the
sample dispersion matrix for a sample from one multivariate normal population. This
limiting distribution has been obtained by Nanda for two particular cases, but there exists
no explicit and general method of obtaining it. This has been done now. Also considering
the test of, = = =y = I(p) in particular, on one p-variate normal population we get Roy’s
test depending on the largest and the smallest characteristic roots of S(p X p), the sample
covariance matrix. The joint c¢.d.f. of the largest and smallest roots has been obtained.
Explicit expressions for some particular cases have also been obtained,

20. Investigation of the Possibility of Using Likelihood Ratio Tests of Certain
Multivariate Hypotheses, for Obtaining Confidence Bounds, R. GNANA-
DESIKAN, University of North Carolina, (By Title).

The likelihood ratio tests considered are of the following composite hypotheses on one
or more multivariate normal populations N[¢(p X 1), Z(p X p)]: (i) Ho:= = I(p) (one
population), (ii) He:Z1 = Z, (two populations), (iii) Ho:& = + -+ = & (analysis of variance
of mean vectors for k populations) and (iv) Ho:Z12(p X ¢)(p = q) = 0 (where 2y, is the
covariance matrix between a p-set and a g-set), the alternative in each case being H # H, .
One wants in each case confidence bounds (in terms of the observations) on meaningful
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parametric functions which, as it were, would measure departures from the null hypothesis,
such functions being (for the different cases) the respective characteristic roots of (i) Z,
(i) =:25", (iii) Z*=! (where =* is the “between’” and Z the “within’ dispersion matrix
of the k populations) and (iv) >3 21255 Sia(where 2y and s are the dispersion matrices
of the p-set and the g-set and =i, has been already defined). While the confidence bounds
on these parametric functions are already available if one starts from other tests of these
hypotheses and then inverts, it is found that if one starts from the likelihood ratio tests and
then tries to invert, the problem of separation of the parametric functions from the ob-
servations becomes quite difficult.

21. Asymptotic Efficiencies of a Nonparametric Life Test for Investigating
Smaller Percentiles of a Gamma Distribution, Joun E. WaLsH, Lockheed
Aircraft Corporation, (By Title).

In many life testing situations the quantity of interest is a specified smaller percentage
point of the statistical population investigated. For example, a substantial loss may be
incurred if more than a specified small percentage of the items of the population have the
property of failing too soon. This paper considers some well known nonparametric tests of
the sign test type and investigates their properties when applied to smaller percentage
points for the case of a sample from a gamma probability distribution. Asymptotically, the
nonparametric results are found to be highly efficient compared to the ‘‘best’’ parametric
results based on the same fraction of items failed for the case of gamma distributions.
Intuitive reasoning indicates that this high efficiency property holds for any reasonable
type of statistical population and any sample size. Appropriate use of these nonparametric
tests and estimates sometimes can yield a saving in cost and/or time without loss of sta-
tistical efficiency since the experiment can be stopped when only a fraction of the items
being life tested are failed.

22. A Test of Judge Concordance for Paired Comparison Designs, (Preliminary
Report), J. W. WiLkiNsoN, University of North Carolina.

In a recent paper, (to appear in Biometrika), R. C. Bose has given several highly sym-
metrical designs where each of v judges compares r pairs of n objects, (1 < r < n(n — 1)/2),
and each pair is compared by k judges, (1 < k = v). To obtain a test of judge concordance
for these designs, a pseudo-preference matrix P; = (ps), (s,t = 1,2, -+ , n), is constructed
for each judge ¢, (¢ = 1, 2, --- , v), where pf; = 1 or 0 according as g, is, or is not, pre-
ferred to a; . The diagonal cells, and cells p;; and pi, when a, and a; are not compared by
judge 7, are left blank. A statistic 2’ is defined as =’ = Zv;;(yi; — 1)/2, where summation is
extended over the non-diagonal cells of P = Z{.;P;, and where v;; is the entry in cell
(i, 7) of P. The distribution of =’ under the hypothesis that the preferences are allotted
at random has been obtained, and has been tabulated for most of the known designs. Calcu-
lation of the first few moments of =’ would indicate that a linear function of it is a x2 for
large n and k. For r = n(n — 1)/2, 2’ and its distribution are identical with those obtained

" by Kendall and B. Smith (Biometrika, Vol. 31, 1940).

23. On the Efficiency of Certain Classes of Tests Based on U-Statistics, JoaN
Raup RoseEnBLATT, National Bureau of Standards.

A class of non-parametric decision problems is characterized by partition of a set of
possible probability distributions into sets defined by the value of a functional. Particular
attention is given to a class of functionals of the form E¢(X; F), where X is a vector ran-
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dom variable with distribution F(z), and especially to the subclass in which the function
¢(x) takes only the values zero and one. Certain families of tests are considered, which are
based on functions of observed values of X which depend on these values only through
the function ¢ (). One such family is that based on the U-statistic corresponding to the
functional E¢(X).

Methods are developed for computing an asymptotic expression for an index of efficiency
for these families of tests relative to decision problems stated in terms of values of E¢(X; F).
These methods are applied in particular to comparison of a family of two-sample tests based
on the Wilcoxon-Mann-Whitney statistic with a family of tests based on a related statistic
which has binomial distribution. Additional examples are given. (Work done at the Univ.
of No. Carolina, with the support of the U. S. Air Force.)

24. The Dynamic Statistical Decision Problem when the Component Problem
Involves a Finite Number, m, of Distributions, James F. HANNAN,
Michigan State University.

The dynamic problem consists in a sequence of N statistical decision problems with
identical formal structure. Decisions are made successively within components and the
risk of a sequence decision function is taken to be the average of the risks incurred in the
components. An earlier paper by Hannan and Gaddum (submitted for an Annals of Mathe-
matics Study) considered a sequence of formally identical two person S-games under the
assumptions: (i) IT’s risk points in the component game form a closed and convex subset
of the unit m cube, (ii) II’s choice of strategy in each component can depend on the e.d.
(empirical distribution) of I’s moves in prior components. The principal theorem of that
paper exhibited a usable sequence strategy (not depending on N) whose average risk across
the N games exceeds by less than (6m/N)* the single-game minorant risk against the e.d.
of I’s N moves. The present paper is concerned with the substitution of estimates for the
successive e.d. in (ii). If mixtures of the m distribution have unique representation, there
exists a bounded vector kernel for unbiased estimates of the e.d. and the sequence decision
function obtained by the substitution of unbiased estimates of this type satisfies the
analogous theorem with the bound on the excess increased by multiplication by a bound
of the kernel.

25. On Certain Systems of Experiments as Interdependent Stochastic Processes,
(Preliminary Report), Davip RosSENBLATT, American University, (By
Title).

In certain systems of experiments, one may regard behavioral interaction between a
‘“‘responsive’’ generalized subject and an experimenter in terms of interdependent discrete
time-parameter stochastic processes. The subject (2) engages in actions or decisions A ;
the experimenter (1), on the basis of an estimated conditional distribution of subject’s
actions, produces stimuli or treatments Ax , where Ax takes one of the values @i , -+, aa ,
i=1,2,k=1,2, --- ;subject and experimenter act alternately. The sth entity ( = 1, 2)
possesses (a) a probability distribution R over a finite set of m; configuration states
(threshold or preference configurations), i.e., a point in the m;-dimensional simplex; (b)
parameter stochastic operators (m; X m; matrices, row sum unity) IL;; , j = 1, .-+, [;
(c) parameter mapping TI'; or behavior function (matrix r.s.u.) which takes Ri into the
conditional distribution Gi» of A, Gir assuming values in the I!-dimensional simplex.
Let fj(Ai) = 1if Au = aij, = 0 otherwise. Consider the system: (i) Ru = Ry ; (ii)
Ruty = Run(Zhat i(A2) 1) (id) Row = Roueer (Zhar fi(A1)Iay); (iv) Gie = RaTs 50 = 1,2,
k=1,2, ---, where each relation holds with probability one. The ‘‘conjoint process”
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Ey = (As , Rt , Aix , Rix), k = 2,3, .- , is a Markov process with stationary transition
function. Conditions are adduced under which lim (Gix — Gax) = 0, the null vector, with
probability one, where Gix is the experimenter’s ‘‘estimate’ of the ‘labile’’ conditional
distribution of the subject’s actions, Gar . This model is constructed within the formal
system OFK presented at the August, 1955, meeting of IMS (forthcoming abstract in
Econometrica).

26. A Sphericalljr-Symmetric Order Statistic r, (Preliminary Report), BrRiaN
Gruss and Frep L. STRODTBECK, University of Chicago.

n properties A, B, - , E are ordered 1, 2, --- , n by m people and scores a, b, -+ , e
are calculated such that ¢ = 2 (ranks of A) — [(n + 1)m/2], and so on. A statistic r is
defined in the following manner: Consider # lines in an (n — 1)-dimensional space with
orthogonal axes (1, -+ , s»—1), in which each line corresponds to one of the characteristics
A, B, --- , E. The lines all pass through the origin and are such that the angles between
all pairs are equal. Points 4, B, --- , E are defined on the lines such that the distances
OA, --- , OF (where O is the origin) are a, b, - - - , ¢, respectively. A point P(X; « -+ , Xpn_1)
is then obtained such that OX}; is the sum of the projections of OA, --- , OF on Oz; . Then
OP = r. The paper shows that r = 4/Sn/(n = 1), whére S is Kendall’s statistic [M. G.
Kendall, Rank Correlation Methods, 1948, Chap. 6.]. By this approach the paper shows it
is possible by considerations of volumes of the space to test various hypotheses including
()A=B=..-=EF;(@{i) A > B> .-+ > E versus all other contingencies.

27. Generalized Normalization Polynomials, D. TricaroEw, University of
California at Los Angeles and National Cash Register Company, Dayton,
Ohio.

Normalization polynomials have been studied by Campbell in 1923, Cornish and Fisher
in 1937 and Hotelling and Frankel in 1938. Expansions based on these polynomials enable
one to use the normal integral table for computing probability points of other distributions
which approach the normal. These expansions have been expansions about the mean and
the further the variate is from the mean the higher is the error of approximation. This
paper shows that it is possible to get polynomials for expansions about an arbitrary point.
These expansions are useful for obtaining probability points for probabilities very close to
zero or one. Some expansions are obtained for the { and Gamma distributions. (Part of
this work was sponsored by the Office of Naval Research).

28. “No Interaction” in a Three-way Table, MArvIN A. KasTENBAUM, Univer-
sity of North Carolina.

Let niji denote the observed frequency, and p; ;i the probability of having an observation
in the (4jk)th cell of a three-way table, (¢ = 1,2, --- ,r;5=1,2, .-+ ;8;k=1,2,---,1).
Also let the marginal probabilities Z; pijx = Dojk , ete., Zik Pijk = 2k Pojk = Pojo , €be.,
and Z;, ;.5 pijx = 1, and Z;,;.x nijr = n. Then, if the marginal frequencies are stochastic
variates, the condition of independence between ‘“(35)’’ and ‘‘k’’ is expressed as: (1) pijx =
PijoPook ; and the conditions of independence between ‘4’ and ‘.’ and between ‘j”’ and
“k’ are given as (2) piox = PiosPoos , and (3) Pojr = PojoPook , respectively. A condition of
“no interaction” is defined as one which, when taken together with (2) and (3), will yield
(1). This condition is (4) pijx = (qijeq:okGoix)/(Qiooqojoqoor), Where it is not assumed that
¢ijo = Pijo , etc., nor even that gio = Z; gijo , etc. The ¢’s in (4) may be eliminated in such
afashion astoyield distinct Telationships among the p;;i’s, namely: (5) (prsipije)/(RiseDric) =
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(Pr-kpiik)/(PiokPrfk); 1=1,2,---, (r— D;i=1,2,+--, (s=1); k= 1,2, ..., (@ —=1).
If the hypothesis (4) of “no interaction’’ is to be tested, then the p;;z’s may be estimated
by maximizing the multinomial likelihood function, subject to (5) and to the further con-
straint 2:,;,x psjr = 1. The resulting $i;i’s, expressed in terms of their respective 7:x’s
and the deviations from expectation, are then substituted into the expression
Zi.i (Mije — nPijr)?/nPis , which for large n, is distributed asx? with (r — 1)(s — 1) (¢ — 1)
degrees of freedom.

29. On Bartlett’s Test of Complex Contingency Table Interaction, Susir Kumar
Mitra, University of North Carolina.

Contrary to some of the current beliefs it is shown that the stochastic cubic equation
suggested to Professor Bartlett (J. Roy. Statist. Soc., suppl. 1935) by Professor R. A.
Fisher in developing a test of his hypothesis of no interaction in a 2 X 2 X 2 table might,
with probability approaching one, have all the three roots real, under the null hypothesis
of no-interaction. In such a case only the real root with the numerically smallest value
will validate the use of x? test. This could be immediately extended to a general r X s X ¢
table. A little thought would reveal that the numerical example considered by Bartlett
actually represents 4 samples from 4 binomial populations. An attempt has been made to
interpret interaction and main effects in this case and to furnish suitable tests for the
suggested hypotheses.

30. A Theorem in Minimum Chi Square, Susit Kumar MiTrA, University of
North Carolina, (By Title).

Let the possible results of a certain random experiment E be divided into r mutually
exclusive groups and suppose that the probability of obtaining a result belonging to the
ith group is p¢ = pi(al, --- , a}) where &” = (a} , - -+ , @3) is an inner point of some non-
generate interval A. We assume that p;(a:1 , -+ -, @s) considered as functions of a1 , -+ , @,
over A satisfy Cramér’s conditions (a), (b), (¢) and (d). (See Cramér: Mathematical Methods
of Statistics, Section 30.3.) Let fy(a1 , -+ ,as)k =1,2,--+ /¢t < sbetfunctionsofa; , -++ , a,
such that for all points in 4, the fx satisfy the following conditions: (¢) Every fi has con-
tinuous derivatives (9fx)/(8e;) and (62fr/(8ee;de;); (f) the matrix {(0fx)/(0a;)} where k = 1,
2,-++,8,7=1,2 .. sisof rank ¢. Let fi(k =1, 2, - - -, t) be certain numbers in the range
of the respective fi's over A. We denote by H the hypothesisfi(al, -+, ad) = fik =1,2,---,
t). Let »; denote the number of observations belonging to the ¢th group in » actual repetitions
of E. Cramér has shown that the modified minimum chi-square equations have exactly one
system of solutions & = (@1, -+, &) such that & ?a" as n — « and such that xj =

Zia (vi — npi(@))?/npi(@) is asymptotically distributed as a x? with r — s — 1 d.f. The
following results are proved: If H, is true (1) the modified minimum x2? equations subject to
restriction H have exactly one system of solutions &g such that &g -—17 a® as n — «, and

such that xy = Zi.i (v — npi(@y))?/ (npidy) is asymptotically distributed as x? with
r—s4+t—1df.; (@) x4 — xt is asymptotically independently distributed of xj as a x?
with ¢ d.f. This result is analogous to a result in least squares proved by C. R. Rao in his
" book. This also extends a result proved by Neyman (Proc. First Berk. Symp.).

31. Sequential Estimation from a Finite Population, HErBERT T. DAVID and
IngraM OrkiN, University of Chicago.

This paper is concerned with sequential estimation of the fraction defective p, in a
finite (hypergeometric) population. The development is similar to that of Girshick,
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Mosteller, Savage (Ann. Math. Stat., v. 17, 1946, 13-23), who treat the case of infinite (bi-
nomial) populations. Path count ratios play essentially the same role in both cases, and are
shown to provide unique unbiased estimates of certain functions of p when the regions are
simple. Expressions for the variance of the estimate of p are given for both cases, and it
is shown that for symmetric boundaries the variances in the finite and infinite situations
are formally similar polynomials in pg of the same degree. A generalized finite population
correction is discussed and, in particular, boundaries for which the variance is equal to
¢pq are considered.

32. Tables for Computing Bivariate Normal Probabilities, DonaLp B. OWEN,
Sandia Corporation.

A table of T'(h, a) = 1/(2x) ./; exp [—3h2(1 + 2%)]/(1 + #?) dx, which may be used to

obtain bivariate normal probabilities, has been computed to be used with a special two-
dimensional linear interpolation scheme. The function is tabulated in two tables, one
table having a coarse interval in one of the parameters and an interval fine enough for
ordinary linear interpolation in the second parameter. The second table has the coarse
interval on the second parameter and the fine interval on the first. By choosing the four
points at the coarse intervals of the two tables that are nearest to a value to be inter-
polated and four other points on the fine intervals, the interpolation scheme gives ac-
curacies comparable to ordinary linear interpolation with only ten per cent as many entries
as that required for ordinary linear interpolation.

33. Bounds and Approximations for Constants Used in Quality Control, J. T.
Cxu, University of North Carolina and Case Institute of Technology.

Very close, yet very simple in form, upper and lower bounds are obtained for constants
a,c2,b,A,E, ;and B; ,7 =1, --- , 4, often used in quality control to set up control charts
forindividual observations and the means and standard deviations of groups of observations.
For example, let a random sample: z, , --- , z, , be drawn from a normal distribution with
variance o2 If s2 = 2., (x; — %)2/(n — 1) where & = 27, z:/n and @ = E(s)/s, then
[2n — 3)/@n — 2)I} < a = [(2n — 2)/(2n — 1)} for all integers n = 2. In using these
bounds and their arithmetic mean as approximations to a, the proportional errors are shown
to be respectively less than E = $(2n — 1)(2n — 3) and E/2(E/2 = .004 if n = 5). Similar
results are obtained for the constants mentioned above. Tables are given for illustration
(Research partially supported by the Office of Naval Research).

34. Four Streams of Traffic Converging on a Cross-Road, BriaN Gruss, Uni-
versity of Chicago, (By Title).

Four streams of traffic arrive at a cross-road in independent Poisson process. The lights
operate such that if they have just turned red against two of the streams they will turn
green again when either (i) » cars are waiting, or (ii) a time « has passed, whichever is the
sooner. n and « are prearranged. The frequency function and expectation of the waiting
time 7 of a car wishing to go straight or to turn right are obtained: E(v) = [n(n + 1)/2 —
emaZh_o (n — R + 1)(n 4+ R)(ma)®/2(R)1]/(t + tz)m?, where m = sum of mean flows of
the two streams for which the lights are red, and ¢, and ¢; are the expected red time-periods
for the two sets of two streams. The frequency functions of the waiting times u, v of a car
arriving in a green or red period respectively and wishing to turn left, and therefore having
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to wait for a sufficient time-gap in the opposing stream or until the lights turn red again,
are found. E(u) and E(v) are then calculated for some sets of parameter-values by ap-
proximate integration.

35. Markov Processes Arising in Learning Models, Joun G. KemeENY and
J. L. SNELL, Dartmouth College.

The paper studies two learning models, one due to W. K. Estes, and the other due to
R. R. Bush and F. Mosteller. In the cases studied both models lead to one-parameter
families of Markov processes; the Estes model having a finite number of states, the Bush-
Mosteller model an infinite number. For each value of the learning-parameter there is a
single Bush-Mosteller process, but an infinite number of Estes models—one for each pos-
sible number of states. It is shown that for a given value of the learning-parameter, as the
number of states tends to infinity, the stationary distribution of the Estes processes tends
to the stationary distribution of the corresponding Bush-Mosteller process. Moments of the
stationary distribution are found in the Bush-Mosteller processes, and the distributions
themselves are also found in several special classes of processes. It is shown that as the
learning-parameter tends to zero the stationary distributions in both models approach
very simple distributions. Since some psychologists are interested primarily in low values
of the learning-parameter, this result provides simple approximate answers.

36. On a Decision Rule for Selecting a Group Containing the Population with
the Largest Mean, (Preliminary Report), R. C. Bost and 8. 8. Guera,
University of North Carolina, (By Title).

Suppose there are (n + 1) normal populations N (u; , ¢*?),7 = 0, 1,2, -+ , n, and that
Ty, , -+ , &, are the (n + 1) means based on samples of equal size &, one from each popula-
tion. One would like to select as small a group as possible subject to the restriction that the
least upper bound of the probability of not including in the group the population with
the largest mean is «(0 < @ < 1). K. C. Seal (Ann. Math. Stat., Sept., 1955) has given an
infinite class of decision rules for this problem and has obtained an optimum rule for the
situation when all means but one are equal. Another rule has been studied here in detail.
This is based on the auxiliary statistic ¥ = (Y@ — Yo)/s, where Yo, Yy, ---, Y, are
independently and identically distributed N (0, ¢?), ¢ = o*2/k, corresponding random
observations y1 , ¥z, --- , Y» being ordered as ya) < Y@ < -+ < Y and where s? is an
independent estimate of o2. The rule is, “Reject any observation z, from the given
(6 =0,1,2, «-- , n) if Ta) — To > suU, and retain otherwise; where ) < z@) < -+ < T
are n ordered observations among (x1, %z, *+- , Zx) and u. is the upper a % point of
(Y — Yo)/s.”” The upper 5 % points of U, in the case when ¢ is known, have been tabu-
lated.

37. Recurrent Values of Sums of Independent Random Variables, (Preliminary
Report), Louts J. Cort and HENRY TEICHER, Purdue University.

Let {X;} i = 1,2, --- be a sequence of independent random variables defined on a proba-
bility space with Sm.n = Ziem Xi, S1.n = Sp and P, = P{| Sm.n — b | < ei.0.} where i.o.
signifies “‘infinitely often’’ (i.e., for infinitely many values of n = m). The real number b
is called recurrent or quasi recurrent for the sequence {Sn..} according as P, = 1or P, > 0
for all € > 0. The classes of such values are examined and conditions for the existence of
recurrent or quasi-recurrent values are considered.
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38. A Problem Involving the Distribution of Shadows, (Preliminary Report),
Herman CuerNOFF, Stanford University, and Josepu F. DALy, National
Bureau of the Census.

A source of light is at a point P and a worm is crawling in a given direction along a line
L which does not go through P. Circular disks are distributed randomly throughout the
plane containing P and L. Suppose that the worm can travel only in the shadow. The
distribution of the distance the worm can travel from a given starting point is character-
ized. One such characterization involves the wave equation. The results generalize to the
cases where the disks are replaced by line segments parallel to L and the source of light is
at infinity and these results have applications to geiger counter and traffic problems.
The corresponding problems of the worm who travels only in light are rather easy to treat.

39. Note on Two-stage Test Procedures, S. G. GHURYE, Lucknow University,
(By Title).

This note concerns tests of hypotheses regarding a parameter which are designed to have
power independent of another parameter. The conditions satisfied in the problem of the
mean of a normal distribution solved by Stein (Ann. Math. Stat., 1945) are stated more
generally, and the corresponding general solution is given. It is shown that these condi-
tions are also satisfied in the problem of testing for the location parameter of an exponential
distribution by a number of two-stage tests, and the performances of some of these tests are
compared in some particular cases.

40. Some Properties of Generalized Sequential Probability Ratio Tests, JAck
C. Kierer, Cornell University, and LioneL Wgiss, University of Vir-
ginia.

Generalized sequential probability ratio tests (GSPRT) are known to form a complete
clags with respect to the probabilities of making errors and the distribution of the sample
size, when one simple hypothesis is being tested against another. In this paper it is shown
that (1) under certain conditions, a GSPRT is uniquely determined by the distributions
of the sample size under the two hypotheses; (2) for a GSPRT to be admissible with respect
to the probabilities of error and the distribution of the sample size, the decision bounds
characterizing the test must obey certain inequalities; (3) under certain monotonicity con-
ditions on the probability ratio, a GSPRT forms a complete class with respect to the proba-
bilities of error and the ‘“‘average’’ distribution of the sample size (averaged over a set of
alternatives to the two hypotheses being tested); and (4) a class of tests complete with
respect to the probabilities of error and the expected sample size under a third distribu-
tion consists of truncated GSPRT whose decision bounds satisfy certain inequalities.

41. Sequential Decision Problems for a Class of Stochastic Processes. Testing
Hypotheses, (Preliminary Report), A. T. BuarRucHA-REID, University
of California, Berkeley.

Let {X:(¢), ¢t = 0},7 = 1, 2, be two different stochastic processes with continuous time
parameter. Beginning at ¢t = 0, a process {X (¢), ¢ = 0}, which is either {X,(¢)} or {X.(¢)},
is observed continuously, and on the basis of the observed realization of the process, z(t),
the statistician wishes to decide whether {X(¢)} is {X.(¢)} or {X.(t)}. This problem has
been considered by Dvoretzky, Kiefer, and Wolfowitz (Ann. Math. Stat., Vol. 24 (1953),
pPp. 254-264) when {X (¢)} is a stochastic process with stationary independent increments.
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In this paper we consider the case where {X (¢)} is a Markov process, with z(¢) a sufficient
statistic for the process. We consider in particular the application of these results to some
branching stochastic processes, e.g., the birth, death, birth-and-death, and Pélya processes.
Let p(z,t;w) = Pr (X(t) =z |w),2=0,1,2, --- ;w £ 2, and denote by D(t) the decision
function log {p(z, ¢; w2)/p(x, t; w1)}. For decision boundaries A and B, B < 0 < A4, the
Wald sequential procedure is used to test the hypothesis Hs(¢ = 1, 2) that v = w; , where
w1 and w; are any two positive numbers, w; # w2 . Let f(d; w) denote the probability that
the decision procedure will terminate with the acceptance of H; when the parameter is
really w and D(0) = d; and let m(s, r) = E{exp (sr)} be the moment generating function
of the observation time 7 necessary to reach a decision when D(0) = ¢ and the parameter
is really w. The usual probabilistic reasoning leads to functional equations for f(d; »)
and m(s, r), the analytic properties of which will be discussed in a subsequent publication.
(This work was supported by the USAF School of Aviation Medicine.)

42. Note on a Markov Chain with Matrix States and. Some Applications, A. T.
BuarucsA-REID and Ropas# P. BuarRucHA-REID, University of Cali-
fornia, Berkeley, (By Title).

In connection with a probability problem in learning theory concerned with latent and
reinforced types, it was necessary to consider a Markov chain with matrix states. Various
ways of defining the transition probabilities are considered, and the asymptotic properties
“of the chain investigated. The results obtained are applicable to the study of changes in
systems whose structure has a matrix representation, e.g., communication nets, social
groups, etc.

43. On the Comparison of Two Stochastic Epidemics, A. T. BHARUCHA-REID,
University of California, Berkeley, (By Title).

In this paper the Girshick procedure for comparing or ranking two populations with
respect to an unknown parameter is applied to the problem of comparing the effect of twe
types of housing on hospital admission rates for acute respiratory disease. The procedure
is applied when different stochastic models are used to describe the development of the
epidemic. Data used are from an epidemic situation studied at Sampson Air Force Base,
Geneva, New York. (This work was supported by the USAF School of Aviation Medicine.)

44. A Sequential Multiple Decision Procedure for Selecting the Population
with the Largest Mean from k& Normal Populations with a Common
Unknown Variance, (Preliminary Report), R. E. Becurorrr, Cornell
University, and M. SoBEL, Bell Telephone Laboratories, (By Title).

Let 2;;(6 = 1, -+ , k;j= 1,2, ---) be independent observations from normal popula-
tions II; with unknowns means x; and a common unknown variance, andlet gy < -+ = py
denote the ranked means. A sequential procedure is proposed which guarantees probability
P* of selecting the population with the largest mean up; whenever up — spg-1y = 6*; the
constants P* < 1 and &* > 0 are preassigned. Let

Bim = Z0amii/m, sk o= D Ty (@ij — Fim)/k(m — 1),
and tijm = (Fim — Ejim — 0*)/sm\/2/m. Fori =1, --- , klet

k k —(km—1)/2
Lt'm = [1 + §l ﬂ§1 Aaﬂ tiam ttﬂm/k(m - 1)] ,
‘ @B i



ABSTRACTS 219

where Aop = 2(k — 1)/k for @ = g and —2/k for o # 8, let Lyym < -+ S Lpym denote
the ranked Lip , and let Pn = Lpym/Ztei Lim . At every stage, the k values, L, differ
with probability one and are in one-to-one correspondence with the k populations II; ;
let I ;%) denote the population associated with Lxl» at the mth stage. Procedure: At the
mth stage (m = 1, 2, ---) take the vector observation (Zim , -+ , Zxm) and compute P, .
If P,, 2 P* stop and select Iljzym ; if P» < P*, take the (m + 1)st vector observation and
compute P, . This procedure meets the requirement, is scale and location invariant,
and the probability of termination is unity. The procedure can be generalized to handle
problems such as obtaining a complete ranking of the k£ means. (Research supported in
part by the U. S. Air Force through the Office of Scientific Research of the ARDC.)

45. A Scale Invariant Sequential Multiple Decision Procedure for Selecting
the Population with the Smallest Variance from 2 Normal Populations,
(Preliminary Report), R. E. BrcuHorer, Cornell University, and
M. SoBEL, Bell Telephone Laboratories, (By Title).

Let 2;;G6 =1, --- , k;j= 1,2, ---) be independent observations from normal popula-
tions I; with unknown means u; and unknown variances o} , and let o) < --- = oty de-
note the ranked variances. A sequential procedure is proposed which guarantees probability
P* of selecting the populations with the smallest variance o{;; whenever o}y/oh; = 6%;
the constants P* < 1 and 6* > 1 are preassigned. Let #im = ZTui 2:ij/m, sim =
Iy (Tij — Fim)?, and Rjim = Sim/sim . Fori=1, -+, klet

Lin = iz Ryim] ™91 + Ziy,j5s Rijim/0*]7Hm112,

let Lyjm < +-+ = Liym denote the ranked Lin , and let Pp, = Ligym/Z%1 Lim . At every
stage, the k values, L;» , differ with probability one and are in one-to-one correspondence
with the & populations II; ; let II;;j» denote the population associated with L., at the
mth stage. Procedure: At the mth stage (m = 2, 3, ---), take the vector observation
(Zim 5 *** , Tktm) and compute Py, . If P, = P*, stop and select Hpym ; if P < P* take
the (m + 1)st vector observation and compute P, ;. This procedure meets the require-
ment, is scale and location invariant, and the probability of termination is unity. The
procedure can be generalized to handle problems such as obtaining a complete ranking
of the k variances. A similar procedure can be used for the case of known means and for
ranking the scale parameters of exponential populations. (Research supported in part by
the U.S. Air Force through the Office of Scientific Research of the ARDC.) .

46. Exact Probabilities in a Test for Markoff Dependency; REeEp B. Dawson,
JR., Department of Defense.

This paper is concerned with Markoff dependency (of the first order) in a digital stream,
where the object is to test the hypothesis of independence against any alternative which
alters the probabilities of the pairs. Let N digits be distributed about an oriented circle so
that each of the (N — 1)! arrays are equally likely, and form a matrix [f;;], where f;; is the
number of digits ¢ which are followed by a digit j. The exact probability of this matrix of
pairs is found, generalizing a result of Stevens (Ann. Eugenics, Vol. 9 (1939), pp. 10-17).
This probability, asymptotically the same as the probability that a matrix with the same
entries will arise from the usual contingency table assumptions, illuminates a special case
of the asymptotic test of Hoel (Biometrika, Vol. 41 (1954), pp. 430-433) for Markoff de-
pendency of general order. A formula for the expectancy of a product of factorial powers
of the fi; is derived.
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47. A Combinatorial Problem and Its Application to Probability Theory, T. V.
Naravana, McGill University.

A quasi order called k-domination is defined on the r-partitions of two integers m and n.
An explicit expression for the number of k-dominations of the r-partitions of n by those of
m is derived. This result is extended and shown to be a generalization of the ‘‘probléme
du serutin’ of D. André. Two classes of coin-tossing problems are solved as an application
of this result. A number of combinatorial identities and the solution of a class of difference
equations are obtained by probability methods. The relation of this problem to the recur-
rent events of Feller in the case of coin tossing is briefly discussed.

48. The Bayesian Inference Problem in Stochastic Systems, Max A. Woob-
BURY, George Washington University.

In an experimental or environmental stochastic system, the possible inputs to the
controlled stochastic process are represented by stochastic mappings of the internal states
of the system into each other. The observable outputs are assumed to be the result of a
stochastic mapping from the internal states of the system to the set of possible outputs.
In the case where the inputs only are known, the general formula for the a posteriori dis-
tribution at a given time is the result of applying the product of the input stochastic matrices
to the a priori distribution vector. If, however, account is taken of the information pro-
vided by the output the result is expressible in linear terms only if the requirement for a
normalized probability vector is dropped. The relationship of this result to the stochastic
behavior models of Rosenblatt, Flood and Mosteller is discussed. (The research covered
by this abstract was supported by the Office of Naval Research.)

49. Some Nonparametric Generalizations of Multivariate Analysis and Analy-
sis of Variance, S. N. Roy, University of North Carolina.

With observed frequency data arranged in a multi-way table, assuming that the observa-
tions are independent in probability, there will be, under any hypothesis, (i) a single multi-
nomial distribution or (ii) the product of a number of separate multinomial distributions
according as (i) only the total number of observations is supposed to be fixed from sample
to sample or (ii) marginal frequencies in certain directions of the table are supposed to be
fixed. An attempt is made at a systematic elaboration of the historically prior ideas of
Barnard and Pearson (Biometrika, 1947), to (i) multivariate analysis, starting from a
single multinomial and framing hypothesis suitable to multivariate analysis situations
and to (ii) analysis of variance, starting from the product of an appropriate number of
multinomials and framing hypotheses suitable to analysis of variance situations. The
theorems used are those of Cramér [Mathematical Methods of Statistics, Chapter 30] and
some other theorems which can be proved on the same lines. The conditional probability
approach is altogether abandoned.

50. Further Remarks on Measures of Association for Cross-Classifications,
Leo A. GoopMmaN, University of Chicago, and WiLLiam H. KRUSKAL,
Universities of California and Chicago.

Measures of association discussed by the authors previously (J. Amer. Stat. Assn., 49
(1954), 732-64) are considered further, especially in regard to the sampling distributions
of their sample analogues. Asymptotic distributions are obtained for a number of cases,
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and numerical investigations of the accuracy (qua approximations) of these asymptotic
distributions are described.

51. Uniformly Consistent Sequences of Multiple-Decision Rules, WiLLIAM
JacksoN Harv, University of North Carolina.

Suppose z has an unknown distribution function F, belonging to one of m disjoint classes
w1, ***, wm, and suppose 4;, ---, A, are corresponding alternative decisions, one of
which is to be chosen by a multiple-decision rule (m-d.r.) D, after taking a sample of size n.
D, is defined by ¢™(z) = [p1 (%), - , dm()], ¢7 = 0, = denoting the sample, where the 6’s
sum over ¢ to unity. ¢; (z) is the probability that D, chooses A; when z is observed. Defini-
tion 1: {¢*(2)},n = 1,2, -+ , defines a ‘“‘uniformly consistent sequence (u.c.s.) of m-d.r.’s
{Da} for discriminating among w1, «++ , wm’ if liMp.y, infres; Erdpd(X) =1 (G =1, -+, m).
Definition 2: ¢*(x) defines a “non-trivial m-d.r. D, for discriminating among w; , *+* , wm’’
if 271 infres; Erdd (X) > 1. Theorem 1: A necessary and sufficient condition for the existence
of a u.c.s. of m-d.r.’s for discriminating among wy , -+ , wm 18 that there exist non-trivial
2-d.r.’s for discriminating between w; and w; for some n;; (sample size) for every i ~ j. Results
of Hoeffding (unpublished) and Berger and Wald (4nn. Math. Stat., Vol. 20 (1949), pp. 104-9)
are adapted to supply some necessary and sufficient conditions, respectively, for the ex-
istence of non-trivial 2-d.r.’s. Theorem 2: A necessary and sufficient condition for the exist-
ence of a most economical m-d.r. relative to any (a1, -+ , an), or relative to any (8:;), for
discriminating among w1 , - -+ , wm (Hall, Abstract, Ann. Math. Stat., Vol. 25 (1954), p. 814)
8 that there exist a u.c.s. of m-d.r.’s for discriminating among w1 , +++ , Wm .

52. Some Hypergeometric Series Distributions Occurring in Birth-and-Death
Processes at Equilibrium, (Preliminary Report), WiLLiam JAckson HaLL,
University of North Carolina, (By Title).

Some time-homogeneous birth-and-death processes at equilibrium are considered in
which the birth and death rates are ‘‘stimulated’” by ‘‘overcrowding.”’ Generally, under
mild restrictions, p, , the distribution of population size n is proportional to A./(M.n!),
where Ay = NAt ¢+ M—1 and Mn = pus -+ - s ; Ma(un) is the birth (death) rate when the
population size is n. If \, is quadratic in » (i.e., constant immigration rate and reproduc-
tionrateislinearinn) and u, linearin n, then p, is shown to be proportional to the (n + 1)th
term in a general hypergeometric series, a four parameter distribution. If A, and . are both
linear (constant reproduction rate), p, is proportional to the (n 4 1)th term in a confluent
hypergeometric series, a three parameter distribution. In the same manner, using a con-
stant death rate, p, is proportional to the (n 4+ 1)th term in a negative binomial series,
as is well known; and, with no reproduction, an exponential series (Poisson distribution)
is obtained. Each distribution is a limiting form of the preceding one. Generating functions,
moments, and approximate estimates by the method of moments of the parameters of the
hypergeometric series distributions are derived.

53. Some General Aspects of Stochastic Approximations, Tosio Kitagawa,
Towa State College.

As one continuation of random integration introduced by the author, some general
aspects of stochastic approximations will be discussed specifically in reference to the risk
function formulations. Our stochastic approximations are concerned with the various
problems of (a) solutions of equations, (b) interpolation problems, (¢) mapping problems,
and (d) numerical differentiations.
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54. The Analysis of Incidence Rates Under Multiple Classifications of the
Population, (Preliminary Report), WymaN RicuARDsoON, University of
North Carolina.

A population is classified two'ways into cells, n;; . The number of cases, a;; (of some
disease, for instance), is assumed to have, in one model, a Poisson distribution with pa-
rameter nijpi; , and in another, a binomial (Q;, n:;) distribution. Q;; is assumed to be equal
to f(8; ,¢¥;). The hypothesisys = --- =y, can be tested in each model by x2, with expected
frequencies in each cell of N;;4;./N;., (where 4;. = Z; A;; , ete.). Maximum likelihood
equations are derived for the case f(6; ,¥;) = 8; . It is shown that, except for a multi-
plicative factor, there is a single solution of these equations, which can be obtained by
efficient iterative procedures. This result holds when there are k classifications. In the
Poisson model, these estimates are sufficient. A large sample test of the hypothesis y; =
--- =y, against the alternative Qi; = 0:; is to compute x2 = 2[Z 4;. log. (6:N:./4:.) +
Z A; log. ¢l

55. Estimation of Percentiles by Order Statistics, A. E. SArnAN, University of
North Carolina.

In previous work of the author (“Estimation of the mean and standard deviation by
order statistics,” Ann. Math. Stat., Vol. 25 (1954), and Part II, Ann. Math. Stat., Vol. 26
(1955)) the means and standard deviations of certain distributions were estimated by the
best linear combinations of the ordered sample values. In the present paper, the same
methods are used to derive a general expression for estimation of the jth percentile and its
variance. From this expression and by making use of previous results, the jth percentile is
estimated for certain distributions. As special cases, the estimates of the 50th percentile
(the population median) and of the semi-interquartile range are calculated.

56. On Renewal Theory, Counter Problems, and Quasi-Poisson Processess
Wavrter L. SmitH, University of North Carolina.

Let {t:} be a renewal process, i.e., a sequence of non-negative, independent, identically
distributed random variables which are not zero with probability one. Let u, = Etf, and
define ny by Zi*; < t < I+ t; (taking ne = 0if ¢, > t). If H() = En, , then it is shown
that (i) if w1 < =, then a necessary and sufficient condition forus < « is thatlim_,, {H(t) —
tui'} = B exist and be finite, when p» = 2u3(1 + B); (i) if ¢; = u; + v; where {w;} and {v;}
are independent renewal processes, the v; having a negative exponential distribution, then
lim..,H'(¢) always exists. The results (i) and (i) render the calculation of the asymptotic
properties of a certain electronic counter process, previously studied by Hammersley,
straightforward. If H(t) is linear in ¢ for all ¢ > r, for some finite r, the process is called
quasi-Poisson, and the class of quasi-Poisson processes is not empty. Let Y (z; {) =
Pr (2™ t; < t + ). Then it is shown that a necessary and sufficient condition for Y (z; t)
to be independent of ¢ > 7 is that {¢;} be quasi-Poisson. When {¢;} is quasi-Poisson, u, < »
for all r, and the study of the effects of an automatic self-paralyzing mechanism on {#;}, of
a type in use for blood-cell counting, becomes trivial.

57. On the Construction of Significance Tests on the Circle and the Sphere,
G. 8. Watson, The Australian National University, and E. J. WiLLIAMS,
Commonwealth Scientific and Ind, Res. Organization, S. Melbourne,
(By Title).

The probability density proportional to exp (k cos 6), where k is a precision constant and
0 is the angle between an observed vector and a population mean vector or polar vector, has
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been considered in two and three dimensions by several authors. Significance tests are
required to test (i) that k£ = k0, is a prescribed value, or that several populations have the
same value of k, and (ii) that the polar direction of a population has prescribed direction
cosines or that several populations have the same polar vectors. Tests of these hypotheses
are given which are free of nuisance parameters. They are based on conditional distribu-
tions formed by holding constant sufficient statistics. Inequalities and approximations are
suggested to make the tests easy to apply in practice. The arithmetic examples given sug-
gest that, in three dimensions, the tests given by one of us (G.S.W.) elsewhere will be
satisfactory.

58. Estimation of Individual Variations in an Unreplicated Two-Way Classifica-
tion, (Preliminary Report), THomAS S. RusseLL and RaLpH ALLAN BRAD-
LEY, Virginia Polytechnic Institute, (By Title).

Consider a two-way classification, the usual model z;; = p + 7; +8; + «j,2=1, .-+ , n,
j=1,..-  r(e.g., r chemists and n batches or r judges and n items) and the usual assump-
tions, except let var (e:;) = o} . It was assumed that an estimator Q; of o7 should be a
quadratic form in the (» — 1)(n — 1) linear contrasts usually ascribed to error. Reasonable
requirements on such a quadratic form led to the estimatorin (n — 1)(r — 1)(r — 2)Q; =
r(r — 1)E; — E, where E; = 2. (z;; — . — 2.; + 2.)2 and E = 2}, E;, the usual
error sum of squares. Q; is the estimator previously suggested by Ehrenberg (Biometrika,
Vol. 37 (1950), pp. 347-357). Q; has been shown to be the maximum likelihood estimator
of ¢} only when r = 3. When ¢} = o2 for all j, the distribution of Q;/s? has been shown to
be that of rxai/(n — 1)(r — 1) — x&nye—ny/(m — 1)(r — 1)(r — 2), the two x*’s being in-
dependent. Q;/E has been shown to be a monotone function of an F with (n — 1)(r — 2)
and (n — 1) degrees of freedom formed from those x2’s. The joint distribution of the Q’s
has been considered and further research on various aspects of the problem is underway.
(Work supported by A.R.S., U.S.D.A. and Q.M.R. and D., U.S. Army.)

59. Empirical Bayes Estimation, (Preliminary Report), M. V. Jomxs, Jr.,
Columbia University.

LetX = (X:,X., -+ ,X,) where the X’s are independent discrete valued random vari-
ables with a common c¢.d.f. F(z | \), and where there exists an a priori probability measure
p over a o-algebra of subsets of the values of the parameter X\, so that the parameter is also
a random variable A. Suppose that it is desired to estimate 6(\) = E(X; | A = \), using the
risk function E(p(X) — 6(A))?, where ¢(x) is any estimator. Let the Bayes estimator (de-
pending on p and F(z | \)) be ¢*(x) = E(6(A) | X = x). Suppose now that p and the form
of F are unknown, but that » independent (r + 1)-component random vectors X; , X,

-, X, , each having the same probability structure as X, are available. Then a ‘“non-
parametric’’ estimator ¢.(x) = on(x; X1, Xz, -+, X,) is given having the property that
limpne E(en(X) — 0(A))2 = E(p*(X) — 6(A))? for any p and F subject to certain mild re-
strictions. The general case where the X;’s are not necessarily discrete valued is also con-
sidered. Similar results are obtained for several cases (considered by Robbins in the Third
Berkeley Symposium on Mathematical Statistics and Probability) where p is unknown but
F belongs to a specified one-parameter family of probability distributions and where the
value of the parameter is to be estimated. The behavior of these empirical Bayes estimators
is also investigated for finite n for certain special cases.



