ON A CHARACTERIZATION OF THE STABLE LAW WITH FINITE
EXPECTATION
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1. Introduction and summary. A remarkable characterization of the normal
law is that if  and y are two independent chance variables such that two linear
functions, ax + by (ab # 0) and cx + dy (cd # 0), are distributed independ-
ently of each other, then both z and y are normally distributed. This theorem has
been proved without any assumption about the existence of moments by Dar-
mois [2], extending earlier results of Gnedenko [4] and Kac [5]. The question that
naturally arises is how far the condition of stochastic independence is neces-
sary, or, in other words, whether the above theorem can be generalised after re-
laxing the condition of stochastic independence of the linear functions of two
independent chance variables. But it is evident that we can always construct two
linear functions of non-normal mutually independent chance variables such that
they are not independent in the probability sense. In the present paper we shall
investigate the nature of the distribution law that may be obtained by imposing
the mild restriction of the linearity of regression of one linear function on the
other, which is, of course, weaker than the assumption of stochastic independence.
We shall prove a general theorem from which a number of results will follow as
special cases. But it should be noted that the statements regarding regression or
conditional expectation require the assumption that the conditional distribution
function exist, and in the following, this assumption will be tacitly made wherever
needed.

2. Results. First of all, we shall give a short proof of the following lemma of
Rao [8], Rothschild and Mourier [10].

LemMA. Let x and y be two proper random variables each having a finile expecta-
tion (which we may assume to be zero without any loss of generality) such that the
regression of y on x exists. Then the necessary and sufficient condition for the regres-
ston of y on x to be linear is that

de(u, v)l=0 _ de,0)

kY du ’

where o(u, v) stands for the characteristic function of the joint cumulative distribu-
ton of x and y, and B is a constant.
Proor oF NECESSITY. Since o(u, v) represents the characteristic function of
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the joint cumulative distribution of x and y, we have
o(u,v) = E(™)

= feiuﬁivv dF(x, y)

= [ [[ e ari]ar),

where F,(y) represents the conditional distribution function of y for fixed x.
But since the expectations of both z and y are assumed to exist and to be
equal to zero and, further, the regression of y on z is linear, we must have

)] i f o] [y ] are

B f ¢z dF (z)

de(u, 0)
du

ProoF oF SUFFICIENCY. Since the regression of y on z is assumed to exist,
let us denote it by E.(y), so that E.(y) = [y dF.(y).
Then proceeding as above, it can be very easily shown that

.&D%Q:lvso =1 f ei“z[E‘”(y)] dF (x)-

Il

=8

Hence, the condition

a«’(u) 1)):| - Bdfo(uy 0)
W o du

gives
[ é=1m.) — a1 aP@) = 0.

Then, from the uniqueness theorem of Fourier transforms of functions of bounded
variation, it follows that E,(y) = Bz, for all z, except for a set of probability
measure zero.

THaEOREM 1. Let x, £, and 4 be three proper random variables, each having a finile
expectation (which may be assumed fo be zero without any loss of generality) such
that x is distributed independently of the joint distribution of & and 7, but & and 1
have a joint distribution where the regression of n on £ exists and is linear and given
by Ee(n) = Bot. Then the regression of ¥ = cx + non X = ax + &, (a # 0), is
always linear irrespective of the disiribution functions of x, &, and 4, whenever the
relationship ¢ = afy is satisfied.

ProoF. Let ®(u, v), o(u, v), and ¢;(u) represent the characteristic functions
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of the joint cumulative distribution of (X, Y), (£ 7), and the cumulative dis-
tribution of z, respectively. Then,

®(u, v) = E{e™* Y}
1) = Bfestitivitny
= p1(au + cv)e(u, v).
Now, differentiating both sides of (1) with respect to » and then puttingv = 0,

we get

2) aq,g:, v)l_o = co1(aw)e(u, 0) + éﬁ(auTv_):I

e1(au).
=0

But, using the lemma above, since E:(g) = B,

do(u,v)] . delu,0)
®) T]v-o = b =g

Next, substituting (3) in (2), we get

v

Again, putting » = 0 in (1) and then differentiating both sides with respect to
u, we get

4) Ml_o = cp1(au)p(u, 0) + Bup'(u, 0)¢r(au).

(5) di’%"_o) = api(auw)e(u, 0) + ¢'(u, 0)er(au).

Now, if ¢ = afo, substituting this value of ¢ in (4) and then comparing with
(5), we get easily

3®(u, v) _ o d®(u,0)
©) 2 :L—o = b du

Then from the lemma above, it follows that the regression of ¥ on X is always
linear, whatever may be the distribution function of z, ¢ and ». From Theorem
1, it follows that if » and £ are stochastically independent, and further if ¢ = 0,
then the regression of ¥ on X is always linear, since in this case 8o = 0 and the
relationship ¢ = aB, is satisfied.

Similarly, if £ = by (0 % 0) and n = dy (d # 0), and further if bc = ad, the
regression of ¥ on X is always linear.

3. Further results.
TrEOREM 2. With the same notations and assumptions as used in Theorem 1,

the necessary and sufficient condition for the regression of Y on X to be linear for
all a contained in a closed interval (a1 , a»), where etther a; < a2 < 00r0 <.ay < @z,
and for some c for which the relationship ¢ 5% aBo vs satisfied for all a in the interval,
s that both x and § should belong to a class of stable law with finite expectation.
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Proor or NEcessity. Using the above lemma, the condition of the linearity
of regression Y on X gives the relation,

a®(u, v) d®(u, 0)
(7) v ]c—() B du :

Next, using (4), (5), and (7) together, we get, after a little rearrangement of
terms,

®) (c — ap)ei(au)e(u, 0) = (8 — Bo)er(au)e’ (v, 0).

We shall first show that in (8) neither ¢ — aB nor 8 — By can be equal to zero
under the conditions of the theorem.
Let us suppose that 8 — 8y = 0 when ¢ — a8 # 0. In this case, (8) reduces to

) e1(au)e(u, 0) = 0.

Since ¢(u, 0) is continuous and equal to unity at the origin, u = 0, there always
exists a neighbourhood, say us > 0, such that for all [u| < u , we have o(u, 0) =
0. Then it follows from (9) that for |u| < we/as, we have

(10) e1(u) = 0,

where aq is the larger of |a;| and |a.|. This implies that the distribution of  itself
is improper, the whole mass being concentrated at the origin z = 0.
Similarly, if ¢ — a8 = 0 when 8 — Bo # 0, (8) reduces to

(11) e1(au)e’ (u, 0) = 0.

From (11), proceeding exactly as above, it can be shown that the distribution
of £ itself is improper, the whole mass being concentrated at the origin, £ = 0.
But both these cases contradict the conditions of the theorem. Now the only
alternative left is when both ¢ — a8 and 8 — B vanish simultaneously. But in
this case we have ¢ = afy , which is again contrary to the conditions of the theo-
rem.

Now it may be noted that both ¢1(u) and ¢(u, 0) may have real roots. Let e
and & denote the smallest of the absolute values of the real roots of ¢i(u) and
o(u,-0), respectively. Since both ¢;1(u) and ¢(u, 0) are continuous functions of u
and since ¢,(0) = ¢(0, 0) = 1, it follows that ¢ > 0 and 6§ > 0. Then, restricting
the values of a to an interval I, (a:, as), for which |a| < ¢/8, we can always
take the neighbourhood of the origin to be defined by |u| < 8. Thus we have
proved the existence of a neighbourhood |u| < & of the origin and of an interval
I, (a1, az), such that both ¢,(u) and ¢(u, 0) do not vanish if @ £ I and |u| < &.

Then, confining the values of » and a in these intervals, since the product
e1(au)o(u, 0) % 0, we may divide both sides of (8) by ¢1(aw)e(u, 0) and thereby
obtain

op) 210 o1(aw) —B—p)° '(u, 0)

(12) (e = ab) aw) (0, 0)
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Next, integrating (12) with respect to u, we get

(13) In gr(an) = L8810 o, 0),

¢ — af
where the constant of integration vanishes by virtue of the fact that In @(0) =
In ¢(0, 0) = 0.

Since the first moment of  exists, In ¢1(aw) is differentiable with respect to a
in the interval (a;, az). Thus it follows that 6(a) = a(8 — Bo)/(c — afB) must
also be differentiable with respect to a in the same interval; denoting this deriv-
ative by 6'(a), we may write

(14) u :1&;:; = ¢'(a) In o(u, 0).

Again, from the conditions of the theorem, 6(a) > 0 for all a in the interval
(a1 , az). Hence, using (12) and (14) together, we get

¢, 0) _ §(a)
(15) Yo, 0) e In ¢(u, 0)
=Aln ¢(u, 0)’

where X = a@'(a)/6(a) for all a contained in the interval (a:, az), and thus it
follows evidently from (15) that X is independent of a.

Then, excluding the origin from the interval |u| < §, that is, in the intervals
(0 <u < + 8) and (-8 < u < 0), we may divide both sides of (15) by

u In ¢(y, 0),
and obtain

1 Qw0 1
1o o0 o, 0) N u

Hence, integrating (16) with respect to u, we get

Nlog |u| + log e, for 0 <u < 436

17 In In ¢(u, 0) =
an ( {Aloglul—l—logch for —6 <u <O0.

Now, (17) evidently leads to the relation

cl“)‘

18) (w, 0) , for 0 <u<+9d
u, 0) =
¢ e, for —6 <u <0,

where ¢; and ¢, are the constants of integration. But it is well known that neces-
sary conditions for a function ¢(#) to be a characteristic function are:

@ p0) =1, ()@ =1, and (i) (—?) = ¢{)-
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Hence, it evidently follows that ¢; and ¢ in (18) should be complex conju-
gates; that is, we may write

ci=—(A+1iB) and ¢ = —(4 — iB),
where A = 0. Thus the formula, .

¢(u, 0) = exp [—(A + B ,—Z,) Iul"]
holds for all u in the interval |u| < 8.

It can be easily shown that § = -+ », since from the continuity of the charac-
teristic function, we have ¢(=4, 0) # 0, which contradicts the assumption that
§ is the smallest of the absolute value of the real root of ¢(u; 0). Hence, the charac-
teristic function of the distribution of £ is given by

(19) o(u, 0) = exp [—(A + iB I%I) Iul":l.

Now, it should be noted that the case A = 0 should be excluded, since when
A =0, |p(u, 0)] = 1 for all u; this leads to the trivial case that the whole mass
of the distribution is concentrated at a single point.

It is already pointed out in (15) that A does not involve a, so that on solving
A = a[f'(a)/6(a)] as a differential equation in a, we get

(20) 6(a) = Kla|".
Hence, we have from (13)
(21) e1(auw) = exp [—K A + B I—%) laul)‘],

where K > 0 for the same reason as 4 > 0.

Next, we shall show that 1 < A < 2. If A £ 1, the first derivatives of both
e1(w) and o(u, 0) fail to exist at the origin, which means that the first moments of
¢ and z do not exist, contrary to the assumption of our theorem. On the other
hand, if A > 2, the second derivatives of both the functions ¢i(w) and ¢(u, 0)
exist and vanish at the origin. In this case, the second moments of both ¢ and z
exist and are equal to zero, which means that the whole mass of the distribution
is concentrated at the point ¢ = z = 0, and we have ¢1(u) = ¢(u, 0) = 1 for
all u (c.f. Cramer [1]). Now, from Lévy and Khintchine [6], it follows evidently
that the characteristic functions (19) and (21) uniquely determine the distribu-
tion function of a stable law with finite expectation when and only when the
parameters A, B, K, and X satisfy the restrictions

A > 0; K > 0; 1 <AN=E2

(22) . chos(%k)iéASin (%r)‘>
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Proor or Surriciency. We have to show that if the distribution functions of
¢ and z are characterized by (19) and (21), respectively, with the parameters
satisfying the restrictions as listed in (22), and further that if the first moment of
7 exists and the regression of 5 on £ exists and is given by E:(n) = B, then the
regression of ¥ = ¢z + 9 on X = ax 4+ # should also be linear, where z is in-
dependent of the joint distribution of £ and 7.

Here we have

(23) In ¢; (au) = K|a]* In ¢(x, 0).

Then we have

eilaw) _ 1 dlngfaw) _ 1g la d Ino(u, 0)
oilou) a du a du °

so that we have
1
(24) o1 (aw) o(u, 0) = - Kla* ¢1(au) ¢’ (u, 0).

Then, if ®(u, v) stands for the characteristic function of the joint cumulative dis-
tribution of X and Y, we have, on substituting the value of ¢;(au)e(u, 0) as in
(24) in (4) and (5) above,

3 (u, v):L-0 _ (Z K |a] + [30) e1(aw)e’ (u, 0),

F}
@) 50
~d_:‘ld = (1 + K |aP)er(aw)e’(x, 0),
so that
+ 2K |of
(26) a®(u, v)] _ Bo+ 2 Kl 4p4, 0)
o 1+K[a} du

Then the proof follows at once from (26), using the lemma.

It is also interesting to note in this connection that if we further assume that
either ¢ or « has a finite variance, that is, that the second derivative of either
(19) or (21) exists at the origin, then A should be equal to 2, and hence both z
and £ should be normally distributed.

CoROLLARY 1. (The problem of Ragnar Frisch.) In the problem of Ragnar Frisch,
which has been solved independently by Rao [8], [9] and by Fix [3], it has been as-
sumed that z, &, and  are mutually independent chance variables. Thus, it may be
treated as o special case of Theorem 2, above, by putting Bo = 0

COROLLARY 2. (Generalisation of Darmois’ Theorem.) If x and y are two inde-
pendent chance variables with finite expectations such that the regression of Y =
cx+ dy (d £ 0) on X = ax + by (b ¥ 0) exists and is linear for all a contained
in a closed interval (a; , az), where either oy < @z < 00r 0 < a; < ag, and for some



194 R. G. LAHA

¢ for which the relationship be ¥ ad is satisfied for all a in the interval, then both
x and y should belong to the class of stable law with finite expectation.

This may be treated as a special case of Theorem 2, above, by taking £ = by
and 7 = dy. Finally, we shall construct a simple counter-example to show that
the theorem is not true when the regression of ¥ on X is linear for some fixed a.

For this purpose, let us take

—sin2lnz

@) o) = | Tlosllr - D (1 <a <2,

We shall show that ¢(¢) in (27) represents the characteristic function of a sym-
metric infinitely divisible law with a finite first moment which is assumed to be
zero. First of all, we note easily that ¢(¢) in (27), being real, represents the charac-
teristic function of a symmetric law. Now, following the notations given by
Logve [7], we define
o —sinZlnz
[—f C @ ifz>0,

xl+8

z e—sinﬂln]:cl
‘/‘_w W dx if z < 0,

Q@) =

where 1 < 6 < 2.
It can be easily verified that G(x) satisfies all the conditions stated in Lo&ve’s

representation formula for the infinitely divisible law. Hence, ¢(#) in (27),
above, is the characteristic function of a symmetric infinitely divisible law.
Using the transformation [t|z = wu, (27) reduces to

© .2
In o(t) = Itl“/0 (cosu — 1) 2P {—sin [?13:: —In|l]} du,

1<dé<2

(28)

Now the first derivative of ¢(£) in (28) exists at the origin, so that the first moment
exists and is equal to zero.
Again, from (28), we have

—sin’ —Injt| —In
1 exp {—sin‘[ln uu1+a |¢] la| 1} du,

In ¢(at) = |at s (cos u —
(29) lad {
1<é <2

Then, using (28) and (29) tbgether, we have at the point @ = ¢", where k takes
any of the values 1, +2, &3 -+,
(30) In p(a) = |a|’ In ¢(?).

If the characteristic functions of the cumulative distributions of z and & are
given by (27), above, then proceeding exactly in the same way ds in (23), (24),
(25), and (26), it can be shown that the regression of ¥ = ¢z + gonz = az + £
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linear for some fixed a, where a = ¢*" and k is any one of the numbers =1,

42 3, -

In conclusion, the author expresses his thanks to the Referee for some helpful

comments.
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