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1. Summary. A method for constructing tolerance limits due to Fraser [8] is
generalized by allowing that each step of the construction may depend not only
on the blocks previously formed but also on all the known boundary observa-
tions and, moreover, on certain sets of indices. Furthermore, Tukey’s [5] lexico-
graphical ordering is replaced by a more general type of ordering.

2. Introduction. Let {Q, %, u(4)} be a measure space with u(Q) = 1 and ¥«
complete. Then the relation P(X ¢ A) = u(4) (4 ¢ «A) defines a random variable
X taking values in the space Q. Let W = (21, - -+ , 2.) be a set of n independent
observations on X and let D; = D;(W) (j = 1, 2, - - -) be disjoint measurable
subsets of @ depending on W. These D; sets are called (nonparametric) tolerance
limits when the joint distribution of the random ‘“‘coverages” u(D;) does not
depend on the true distribution u(4) of X, given that the latter belongs to a
certain rather wide class of probability measures. Such tolerance limits were
first introduced by S. S. Wilks [1] whose method was generalized to a far extent
by A. Wald, H. Scheffé, J. W. Tukey, R. Wormleighton, and D. A. S. Fraser

(121, 31, 141, [3], [6], [7], [8D).

3. Ordering. By a (generalized) ordering o in @ we shall mean an assignment
of exactly one of the relations 21 < %2, 1 ~ %2, or &1 > 2 to each pair z1, 7,
of points in @, such that x; ~ =, is an equivalence relation and such that o in-
duces an (ordinary) transitive ordering among the corresponding equivalence
classes. Let @ = A u Bwith A < B in the obvious sense. We shall assume that
always: (i) 4 is measurable. (ii) If 4 is non-empty, we have 4 = Up{z |z < ax}
for some (at most denumerable) subsequence {ax} of A. Similarly, if B is non-
empty, we have A = Mi{z |2 < by} for some subsequence {bx} of B.

One way of obtaining such a generalized ordering is as follows: Let M be a
finite or denumerable well-ordered set and let, for each m in M, g.(x) be a real-
valued measurable function on Q. If gn.(r1) = gn(x:) for all m in M, we define
%y ~ x5 . Otherwise, 2; < x if and only if g.(z1) < ¢:(x2), where s is the smallest
index such that g,(x1) = gs(x2)-

An ordering o is said to be continuous (with respect to the measure u(4))
when for each z in @ we have u{z |z ~ z} = 0.

LemMa 1. Let o be a continuous ordering and let g(x) = P(X < zo) = plz |z <
zo}. Then ¢(X) s a uniformly distributed random variable in [0, 1].

Proor. Let 0 £ ¢ £ 1,4 = {z]q(x) < ¢}, and B = {z|q(@) > ¢}. We
have to show that

PX)=q =PXed) =ul4) =g
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But for a; in A, we have u{z |z < ax} = p{z |z < ax} = g(m) = g¢; hence,
from (ii), u(4) < ¢ whether or not 4 is empty Moreover, for by in B, we have
w{z |2 < be} = q(bs) > ¢; hence, from (ii), u(4) = ¢ whether or not B is empty.

4. Partitioning. Let m, m, , and m; be positive integers, m = mo + mi . Let
Zy, -+ ,%m bem — 1 points in a measurable subset D of @ and let o be a given
ordering. Denoting by z* the me-th smallest (= m;-th largest) point z; with
respect to o, the partition of D into the three disjoint subsets Dy = {z |z < 2%,
zeD}, Dy = {x|x > z* 2 eD}, and D* = {z |z ~ 2* x £ D} is called the
(mo , my)-partition of D with respect to o and to the m — 1 points 2; in D. Note
that, when z; ~ z; does not happen for 7 > j, the “boundary” element z* is
unique, while Dy, D;, and D* contain exactly mo — 1, m; — 1, and 1 elements
z; , respectively. If o is continuous, u(D*) = 0, hence, u(D) = u(Do) + w(Dy).

Lemma 2. If u(D) > 0 we assume that o is continuous and that 1, -+ - , Tm—
are m — 1 independent observations on X restricted to X & D. Then u(Do) =
qu(D), where q is a random variable which has the incomplete Beta-function
I,(mq , my) as its cumulative distribution function.

Proor. We may assume that u(D) > 0. Let ¥ be the random variable whose
distribution »(4) = w(4)u(D) (A C D) is that of X restricted to X e D.
Observing that o induces an ordering on D which is continuous with respect to
»(A), it follows from Lemma 1 (replacing @ by D, and X by Y) that for g(zo) =
v{z |z < 2, x € D} the variable ¢(¥) is uniformly distributed in [0, 1]. Hence,
q(z*) is the me-th smallest among m — 1 = mg 4 my — 1 independent observa-
tions g(z;) on a uniformly distributed random variable in [0, 1]. This proves
that ¢(z*) = u(Do)u(D)™ has the d.f. I,(mo, my).

6. The construction. For the sake of brevity, we shall employ a somewhat
colloquial language. In the construction two persons are involved: a statistician
(S) and his assistant (A). A knows precisely the actual outcomes of the n inde-
pendent observations i, - - , ¥, on X, while, at the very outset, S has no in-
formation at all about these outcomes. On the other hand, S has at his disposal a
class H of orderings o in € known to be continuous with respect to the distribu-
tion u(4) of X.

In the first step of the construction, S selects an ordering 0, from H and a
positive integer mg , mo < n, and asks A to give him the me-th smallest observa-
tion z*(1) with respect to 0; (this element is unique with probability 1), together
with the two sets of indices corresponding to the me — land m; — 1 = n — mo
observations which are smaller or larger than x*(1), respectively. Now, S can
draw the (mo, m;)-partition @ = Qo u Q% u @ of @ with respect to 0, and the

set of the n observations z; in Q. Let D°(0) = @, D'(5) = Q; (j = 0, 1), and
Df =

After k steps, 0 = k = n — 1 S has obtained a partition of @ into k 4 1
disjoint “blocks” D*(j) (j = , k) and k boundary sets Df (G =1,

, k), each of u-measure 0. Further for each of these 2k + 1 sets, S knows
precisely the set of indices corresponding to the observations x; within the set.
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Finally, for each boundary set DY (s = 1, -+ -, k), S knows the actual value of
the boundary observation z*() in D (with a probability 1 these boundary ob-
servations are unique).

Now, the (k + 1)-th step of the construction proceeds as follows: His choice
depending, in any way whatsoever,' on the knowledge acquired, S chooses:
(i) A distinguished block D = D*(j*) among those of the k¥ + 1 blocks D*(j)

(j =0, ---, k) which contain at least one observation. (ii) A positive integer
mo not larger than the number m — 1 of observations in D. (iii) An ordering
O].;+1 from H.

He then asks A for the mg-th smallest observation z*(k + 1) in D with respect
t0 Ory1, together with the two sets of indices corresponding to the mo — 1 or
mg — 1 = m — me — 1 observations in D which are smaller or larger than
z*(k + 1), respectively.

Using the acquired value z*(k + 1), S is now able to draw the {mqo, mi)-
partition D = Dou D* u D of D with respect to Oz4: and the m — 1 observations
in D. Afterwards, he renumbers the blocks D*(0), - - -, D*(j* — 1), Do, Dy,
DF(G* + 1), -+, D*(k) as D**'(j) (j = 0, ---, k + 1), in this order. Finally,
let -D;:+1 = D*.

After exactly n steps the construction stops. Then S has obtained a partition
of @ into n + 1 disjoint blocks U; = D"() (j = 0, - - - , n) and, further, n bound-

ary sets Di (k = 1, ---, n), each of u-measure 0.

TuroreM 1. The coverages ¢c; = w(U;) ( = 0, -+, n) have the joint distribu-
tion dey dey -+ den, where ¢; = 0, ¢t + -+ + €. = 1 — ¢co = 1. More-
over, the union U of m distinct sets U; has a coverage p = u(U) with d.f. I,(m,
n+1— m).

Let0 < a < 1, and let p = pn() be such that I,(m, n 4+ 1'— m) = a. Then
with a probability 1 — «, the random set U contains at least a proportion p,(«)
of the total probability mass 1 in Q (i.e., we have confidence limits on the dis-
tribution of X or its parameters). For a = .01 or .05, the value p»(a) may be
determined by using F-tables. Let Fo be the a-point of the F-distribution
with n; = 2(n + 1 — m) and n; = 2m degrees of freedom. Then pn(a) =
(1 + F Onl/ n2)—1-

Some warning seems desirable. If the construction stops after k steps, we
have a partition of @ into the blocks D) (j = 0, --- , k) and, further, k bound-
ary sets of measure 0. Let the random variable n; — 1 denote the number of ob-
servations in D*(j) (j = 0, ---, k), and let N; = no + - -+ + nj1. One can
easily see that D*(4) is the union of the “final” blocks Uy, -+ , Un;4n;—1 (Which
might be found by completing the construction) and, further, some set of meas-
ure 0. However (as certain counterexamples show), this does not imply that
conditional to n; = m (m given) the coverage of D*(4) has the conditional dis-

1 Chance decisions are also allowed. For example, instead of making each decision as the
necessity for it arises, S could start with a complete plan which provides for all contin-
gencies. Then we may as well assume that S has already determined beforehand the actual
outcomes of the random decisions which might arise.
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tribution I,(m, n + 1 -- m). Generally, the latter conclusion is only justified
when (with a probability 1) both N; and n; are constant.

6. Proof of Theorem 1. In order to keep the proof on an elementary level, we
shall avoid an explicit use of the usual complicated measure preserving trans-
formations (cf. Fraser [8], pp. 53-54). Let £; = ¢(j) = s;,4/—1(j = 0, ---,7n)
be complex parameters with s; real. It suffices to show that the characteristic
function

Elexp (b log ¢co + -+ + t, log ¢,)] = E(c® - ¢x)

depends only on n and the ¢; but not on the distribution of X or the actual
mode of construction. For then the joint distribution of log co, - - , log ¢. , and
hence the joint distribution of ¢, - - - , ¢, , Will not be affected when X is replaced
by a real random variable, uniformly distributed in [0, 1], and when the order-
ing O (k = 1,---, n) is replaced by the common ordering in [0, 1]. But then
G, *++ , €, become the differences between consecutive order statistics, and
Theorem 1 now follows from a well-known result (cf. Wilks [1]).

After k steps, 0 < k < n, the construction based on the sample W =
(x1, -+, &), yields (with a probability 1) a partition of Qinto the k + 1blocks
D*() (j = 0, ---, n) and, further, k boundary sets of measure 0. Let the ran-
dom variable n; — 1 equal the number of observations inside D*(j) and let N; =
ng + ny + - + njy . Now consider the quantity

IkI I'(n;) p(D*( j))‘(Ni)+'~~+t(Ni+ni_1)
P = 2 Tn; +t(Ny) + --- + E(N; + n; — DI’

depending on the parameters f, - - - , ¢, . Though for 1 < k < n the joint dis-
tribution of w(D*(0)), - -, u(D"(k)) depends strongly on S’s method of con-
struction, it turns out that, for any mode of construction and for each (arbitrary
but fixed) set of values Zo, «-- , fa,

1) E(w) =n!Tn+14bo+ -+ £)7 k=0,1,---,n)-
Fork = n,wehaven; = 1, N; = j, w(D*G) = wU;) =¢; (G =0,---,n),and
(1) implies

B - ) =T+ 1+t + - + )7 [T TG+ D),
j=

where indeed the right-hand side depends only on n and the £;.

Formula (1) is evident for £ = 0. For, u(D0)) = u(@) =1andne = n + 1,
N¢ = 0 (when k& = 0) imply that po is always equal to the right-hand side of (1).
Let k be a fixed integer, 0 < k < n — 1; it suffices to prove that E(px) = E(px+1)-

Let D*(j) G = 0, - -+ , k), D = D*(j*), Do, D1, m, mo, and m, be as defined
in the (k + 1)-th step of the construction. Here, with probability 1, Do and Dy
contain precisely mo — 1 and m; — 1 observations, respectively; (mo + m: = m).
Moreover, u(D) = u(Do) + u(Dy). It now follows from the definitions of px,
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pis1 , and the blocks D*™'(j) G = 0, -+ , k + 1) that

T(mg) T(my) T(m + ' + ") »
(m) T(mo + &) Ty oy L~ 9

where u(Do) = qu(D) and, with N = N,
V=tN)+ - +UN+m—1), =iN+m)+ - +IN+m—1).

2 Pl = P

In view of the footnote to the construction, we may assume without loss of
generality that S has a complete non-random plan of construction which pro-
vides for all contingencies. The following information = has been received by

S from A during the first k steps of the construction: (i) For 7 = 1, , k, the
value £; and the index »; of the boundary observation z*(7). (ii) For Jj= 0
k, the indices o(j, h) (h = 1, - ; — 1) of the observations in the block D"( ,7)

Here, the n different integers v and o(4, h) together constitute the full set of
indices (1, 2, -+ -, n).

Knowing only Z, S can reconstruct the blocks D*(j) (j = 0, - - - , k) according
to plan; hence, = is equivalent to the information known to S at the beginning
of the (¢ + 1)-th step. Therefore, £ completely determines the quantity px,
the distinguished block D = D(j*), together with the ordering 0Oz4;, and the
positive integers mg and my (mo + m; = m = n;) mentioned in the (k + 1)-th
step of the construction.

To almost all samples W there corresponds a set of information = of the above
type. Among these corresponding s, let Zo be a specific set of information (i)
and (ii). Denoting the sth observation by x(7), it is evident that in an actual
construction Ty will arise if and only if: (i) z(»;) = & (¢ = 1, ---, k). (ii) For
j=0,---,k we have z(c(j, h)) e D*() (j = 1, .-+, n; — 1), where the set
D"*(j) is uniquely determined by =, . Hence, we have for 0 < j < k that, given
> = 2, the observations z(¢(j, h)) (h = 1, -+, n; — 1) behave as n; — 1
independent observations on the random variable X restricted to X e D*(5)
(provided u(D*(5)) > 0). '

Further, D, is obtained as the “lower” set in the (mo , mi)-partition of D =
D*(j*) with respect to the n;» — 1 = m — 1 observations z(¢(j*, h)) in D and
the continuous ordering Or41 . It follows from Lemma 2 that, given 2 = 2,
we have u(Dy) = qu(D), where ¢ has the conditional d.f. I,(mo, my).

Moreover, given T = I, the quantities pi , m, mo , my , ¢, and ¢” are constants.
It now follows from (2) that

E(pra| 2 = 20) = px = Epr |Z = Z),
1mply1ng that E(pk+1) = E(pk).

7. A remark. The above proof is not completely rigorous because the very last
step (“implying that’) is still open to doubt for lack of a precise definition of
the expected values E(prya | Z = Zo), E(pr+1), etc. The latter omission is also
the root of the following difficulty.
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If, in the construction, S’s decisions depend too wildly (that is, in a non-
measurable way) on the available information, it may easily happen that the
coverage c; of the final block U; is a non-measurable function (with respect to
the Borel field A" in Q") of the sample point W = (z;, - - - , z,). Then the ques-
tion arises as to what (in the assertion of Theorem 1) is meant by the probability
Pr(c; £ a;) ( = 0, ---, n). The following approach to this question, which
avoids additional measurability assumptions, was indicated to me by Prof. D.
A. S. Fraser.

For simplicity, let us assume that S starts with a complete non-random plan
which provides for all contingencies. Let @ stand for a specific (a priori possible)
outcome of the indices of the observations inside the blocks D*(j) (k = 1, - -+ , n;
Jj =0,:-+,k) and the indices 7 of the boundary observations z*(k) (k = 1,
-+« , n). Let the (finitely many) different possible outcomes @ be denoted by
@, - ,Q,.Let (W) =1(r =1, ---, p) when the construction based on W
yields the outcome Q, ; otherwise, f,(W) = 0. Thus, 2., f,(W) = 1 for almost
all w.

Let F, be the class of all the subsets B of Q" such that, forr = 1, -+ -, p, the

integral
P(B) = [ (W) xa(W) duw)] -+ - duzs)]

has a meaning and exists as a repeated Lebesgue-Stieltjes integral; here (4, - - -,
1,) corresponds to @,, while xs(W) denotes the characteristic function of B.
Let Fi, (0 = k < n) be the class of F,-sets B such that W C B implies Wy C B
whenever the two constructions based on W, and W, yield, at the end of the kth
step, exactly the same information = (cf. the above proof).

One can show that: (1) Fyis a Borelfield (k =0, --- ,n)and FopC F;, C --- C
F,. (i) P(B) = D, P,(B) defines a probability measure on F, . (iii) The func-
tion px(W), employed in the above proof, is Fi-measurable (k = 0, ---, n);
hence, ¢; = c¢;(W) is F,-measurable. (iv) The above proof becomes exact by
defining (at the (k + 1)-th step) E(y | Z = Zo) as the conditional expectation
of y relative to Fy with {F,, P(B)} as the underlying measure space. (v) Con-
sequently, interpreting the assertion of Theorem 1 in terms of this same measure
space, we have a meaningful and true result.

8. The discontinuous case. The above procedure imposes one restriction on
the distribution u(4) of X; namely, that each ordering (which might be used in
the construction) of the given class H is a continuous ordering with respect to
w(A). In the so-called discontinuous case, the distribution u(4) of X is completely
unrestricted. However, in this case the above construction might break down
with a positive probability in the sense that some boundary set will contain
more than one observation. This defect will be repaired as follows (cf. Fraser

[8], p. 50).
Let Y be a real random variable, uniformly distributed in the unit interval
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L
QI

[0, 1], which is independent of X and let X’ = (X, Y), taking values in
Q@ X L. To each ordering o in @ we associate the following ordering o’ in Q’:

(@1, 9) < (@2, 92) fa <zorzy~mandy <.

Let H’ consist of all orderings in €’ which are associated to some ordering in
Q. Then, even in the discontinuous case, each ordering o’ in H’ is continuous with
respect to the distribution u’'(B) of X'.

Let 21, -, z, and %1, -+ -, ¥, be independent observations on X and Y,
respectively. Then z; = (z;,%:) (¢ = 1, -+, n) are n independent observations
on X’. Replacing in the above construction @, H, and z; by @/, H’, and z: , re-
spectively, we obtain a partition of ' into the final blocks Uj (j = 0, - -+, n)
and the set of measure 0 consisting of the n observations z; . Clearly, the cover-
ages ¢; = u'(Uj) satisfy the assertions of Theorem 1. Thus we are able to set
precise tolerance limits on the distribution of X’ = (X, Y) which will yield some
information on the distribution of X.

As a simple illustration: Let o be any ordering in € and let 2'(1) < 2'(2) £

-+ £ 2'(n) be the ordered set (with respect to o’) of the n observations z;
on X’. Then U = {2’ | 2’ < 2/(m)} has a coverage p = u/(U) with a cumulative
df. I,(m, n +1 — m). But, for 2'(m) = (xz(m), y(m)),

W (U) = plz |2z < 2(m)} + ymu{z |z~ 2(m)}
2 p{z|z <z(m)} = PX <z(m)) =c  (say).
Hence,
Plc=p) 2 PWU) =p) = I(m,n+1—m),
a well-known result due to Scheffé and Tukey ([3], p. 191).
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