TOLERANCE REGIONS

By D. A. S. FrasErR AND IRwIN GUTTMAN

Unaversity of Toronto

1. Summary. In this paper definitions are given for three types of tolerance
regions. For distribution-free tolerance regions, an analytic condition is derived
for the characteristic function of the region. Examples of the application of the
condition are considered. For B-expectation tolerance regions, a criterion for a
good tolerance region is introduced, and it is shown that the problem of finding
such a tolerance region can be reduced to that of finding a good test for an
equivalent hypothesis-testing problem. Best tolerance regions are obtained for
a number of single variate and multivariate problems involving normal distribu-
tions.

2. Introduction. Let X (@) be a measurable space and {P% |6 ¢Q} be a class
of probability measures defined over X(®). For the theory in this paper we
assume that an experiment corresponds to a sample of » from a component
experiment. Hence our sample space is ‘W = X", and the probability measures
are the nth power product of the measures {P% |6 ¢ Q}. We designate these
measures by {P% | 6 € 2}.

A statistical tolerance region is a mapping from the sample space W to the
space of subsets @ of the component space.

DermniTion 2.1. A statistical tolerance region, S(xi, --- , %), is a statistic
defined over ‘W = X" and taking values in the s-algebra Q.

In application the statistician calculates from the outcome (z;, -, z,) a
region S(z1, +++, x,) in the space X which is being sampled, and then makes
some probability or expectation statement about the probability measure of
this set.

We first consider distribution-free tolerance regions. Heretofore the term
“nonparametric” has generally been applied to these regions, but in accordance
with the use of the term ‘‘distribution free” in other branches of statistics, and
because these regions can also be considered for parametric problems, we prefer
the term distribution free.

DermniTiON 2.2. S(z1, -+, Z.) is a distribution-free tolerance region for
{P% | 6 £ Q} if the induced probability distribution of

Px(8(w1, + -, 7))

corresponding to the measure P% over X" is independent of the parameter
0 Q.

Because the probability measure or coverage of a distribution-free tolerance
region has a “known” distribution independent of the ‘“unknown” parameter,
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the statistician is able to make a probability statement about the coverage of
the region. .

The next definition is proposed more with a view toward the immediate
requirements of a statistician.

DerintTion 2.3. S(z1, -+, x,) is a B-content tolerance region at confidence
level C if

Pro{Pg((S(le e ’Xn)) = ﬁ} =C

for all 6 ¢ Q.
For such a region, the statistician has confidence C that the probability
content of the region S(z1, - - - , ) is at least B, regardless of the measure being

sampled. Of course in some situations he may prefer that S(z;, - - - , z,) satisfy
the relation

Pro{ < Px(S(X1, -+, X.)) S8} 2 C

for all 8 ¢ Q.

The next type of tolerance region has had perhaps less attention from the
applied statistician than it deserves.

Derinition 2.4, S(z1, - - -, z,) is a B-expectation tolerance region if

E"’W{Pgr(S(Xl,-.-,X”))} =8 for all 9 £ Q.

For such a region the average probability content of the region is at most 8.

In hypothesis testing the reduction to similarity is sometimes helpful for
finding a whole class of tests in convenient form. For tolerance regions, we
therefore propose the following definition:

Dgerintrion 2.5. S(z1, -+« , x,) is a similar B-expectation tolerance region if

By {PX(8X:, -, X))} = 8

for all 6 £ Q.

A similar B-expectation region can also be viewed as a B-confidence region
for a future observation from the distribution being sampled. For by noting
that P% (S(z1, -+, 2,)) is the probability that another observation falls in §
givenz;, + -+, ., we see that the left-hand side of the expression in Definition
2.5 is the marginal probability of such an event. This probability is equal to
8; hence there is 8 confidence that the future observation falls in S.

‘3. Distribution-free tolerance regions. For distribution-free tolerance regions
we are able to give a necessary and sufficient analytic condition. To do this we
need the definition of a characteristic function, ¢,(z:, ---, z,), of a region
S(@i, -+, Ta):

Il
o

ey(@1, -0, Ta) ifyeS@, -, )
(3.1)

=0 fyeS@, -, x,)
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where y € &. Then it is easily seen that
PoX(S(xl: ) xﬂ)) = EoY{wY(xl PR xﬂ)}

where the expectation applies to the random variable Y with probability
measure P.

TueoreEM 3.1. A necessary and sufficient condition that S(xi, --+, x,) be a
distribution-free tolerance region is that there exist a sequence of real numbers
a1, ag, *+ such that

ioul(xl: 7xn)_a1; ("ul(xl, "'7xn)¢yz(xla 7xn)_0‘27 e

are respectively unbiased estimates of zero over X", ™, ... for the power product

measures of {P% |0 ¢ Q}. The sequence a1, oz, - -+ is the moment sequence for the
distribution of V.= P%(S(Xy, - -+, X.)), where the X; have measure P%.

Proor. A distribution-free tolerance region has the distribution function, say
Fy(v), independent of 6. Now, since a distribution function on a bounded interval
is uniquely determined by the corresponding moment sequence and conversely
(see [1]), it is equivalent to state that the moment sequence for Fy(v) is inde-
pendent of 6.

Letting o, be the rth moment of Fy(v), then

1
oy = [ Ur dFo(v)
Jo
= [ [PE(S G, -+, 2] TT dPhGed
=1
= [ B ertar, -, 2T TT AP
i=1
= fe [ feotor, - o ars | 1T Phted
= [ Teniar, -+ , ) TT aPGys) TT aPs(a.
i= 7= =
Therefore, [ [i-1 ¢y;(®1, -+, ©.) — @, is an unbiased estimate of zero over oLt
Thus, the statement that Fy(v) is independent of 6 is equivalent to the existence
of the sequence a;, az, - -+ such that the above expression is an unbiased esti-

mate of zero for all r.

For some theoretical developments it is convenient to have a definition of a
randomized tolerance region. Let Z be a random variable whose probability
measure is a measurable function of z;, + -+, x, .

DerintrioN 3.1. S(z:, - -, 2, ; 2) is a randomized distribution-free tolerance
region for {P% | 6 ¢ @} if the induced probability distribution of PY (S, -+,
Tn; 2)), corresponding to the measure P} over X" and the random variable Z
for 2, is independent of the parameter 6. It is assumed that S(zy, -+« , . ; 2)
is a measurable function of (z;, --- , x,, 2).

s
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As for the nonrandomized case, we define a function

(21, o, 2a32) =1 if SSx,"‘,xn;z
3.2) o ) e @ )
=0 ifyeS@, -,z ;2).

Taking the expectation with respect to Z, we define a related function

(33) ¢Ul"'llr(x1’ Tty xn) = E; {I_Il (I>w'(x1) ctty Tns Z)}
7=

a function which is characteristic of the tolerance region. Then we have the ex-
tension of Theorem 3.1:

TuaeoreM 3.2. A necessary and sufficient condition that S(xy, -+, %, ;2) be a
distribution-free randomized tolerance region is that there exist a sequence of real
numbers oy , az , ++ - such that ¢y, (1, +++ n) — o1, Cyrya(T1, <+, Tn) — a2, -
are respectively unbiased estimates of zero over X™*, x™**, . .. for the power product
measures of {P% | 6 € Q}. The sequence a1 , az , - -+ is the moment sequence for the
distribution of V.= P%(S(Xy, -+, Xn ; Z)) where the X; have the measure P& .

Proor. This follows the method of proof given for Theorem 3.1.

We give now some examples of the application of the above theorem for the
nonrandomized case.

ExampLE 3.1. Consider sampling from an arbitrary discrete distribution on
the real line. We have W = R", and the class of probability measures
is {P% | 6 ¢ 2}, where 6 here indexes the discrete distributions on R'. We estab-
lish that there do not exist distribution-free tolerance regions S(zi, -, ,)
symmetric in the «’s, other than the trivial tolerance region S = &£ or X.

Let S(z:, ---, z,) be a distribution-free tolerance region which is symmetric
in the z’s. We'show that either S(z;, -+- ,2,) = & or S(x1, -, 2,) = X"

If ¢ (x;, -+, x,) is the characteristic function of S(x1, -+, z.), then by
Theorem 3.1 we have the existence of a; , a2, « - - such that

(3'4) IIl (oyj(xl, ctty, xn) - Oy
7=

is an unbiased estimate of zero over X"

For samples from X" we define a statistic called the order statistic

t(xly "'7"”%) = {xly ""xn}°

This statistic gives the values of the z’s in the outcome (z1, - -, z,), but not
the order in which they occur in this outcome. Now it is easily shown that for
the class of power product measures over X" considered here, this statistic is
sufficient. Halmos [2] has shown that ¢(z;:, - - - , x,) is complete for the measures
above.

We have that (3.4) is an unbiased estimate of zero:

(3‘5) EO{I_II (oX,H_j(Xl y Ty Xn) - ar} = 0'
7=
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Since t(x1, - -+, Tayr) is a sufficient statistic, the expression

E{p oxn (Ko, oo Xo) = a | 40X = t}

is independent of 8, that is, it is a statistic. But (3.5) can be written as

EO{E{I;II ¢x,,+,~(X1’ e, X)) — a, t(}_{) = T}} =0,

where the first expectation operator applies to the induced distribution of
Hzy, -+, Tusr). From completeness over X", we have

(3.6) E{Ij; ex, i (X1, o0, Xn) — o [ HX) = t} =0

almost everywhere with respect to the induced measures of #(z1, ***, ZTnir)-
Since the class {P% | 6 £ Q} is the class of all discrete distributions, almost every-
where means everywhere.

We consider (3.6) with » = 1. The conditional distribution given the statistic
Hzy, -+, Tus1) gives equal probability to all permutations of (z1, +- -, Znt1).
Hence (3.6) with » = 1 becomes

1
(3.7) m ZP: ¢z.~”+l(xi1 y T xs’,,,) —a=0
everywhere; P designates summation with respect to all permutations ¢;, - -,
Tpg1 of (1, -+, n 4+ 1). Since S(z1, -+, z,) is symmetric in the 2’s, so also is
ey(x1, *++ , x,) symmetricin z;, - - - , . . Therefore (3.7) becomes

Ponir @1y * 0y Tn) F @a (1, 0 Tacty Taa) 0t en (@2, 0, Tasd)
= (n + Da,
and (3.8) holds forallz; , « -+ , Zp41 . Taking 2, = 2o = +++ = x,41 = 2z, we have
(mn+ Do (x, -+ ,2) = 0+ Loy

The quantity ¢, (z, ---, ) can be either zero or one. Hence (n + 1)a; = 0
or (n + 1); that is, &1 = 0 or = 1. Thus the first moment of a random variable
restricted to the interval 0, 1 is either zero or one. Obviously, the random variable
(the coverage of the tolerance region) takes the value zero or one with probabil-
ity one. Because the class of measures is the class of discrete distributions, this
means either that

(3.8)

S(xla ""xn) = f
or that
Sy, -+, x) = X.
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ExampLeE (3.2) Consider sampling from an arbitrary absolutely continuous
distribution on the real line. We have « = R and we let § in {P% | 6 ¢ @} in-
dex the absolutely continuous distributions. We find the form of distribution-
free upper tolerance limits in special cases. Suppose a distribution-free tolerance
region S(z;, -+ -, 7,) has the form
(39) S(xly"'yxn)':‘}" w,u(x1,~-~,x,,)].

(Intervals are open at the end where a reversed bracket appears, and closed
otherwise.) Then w(x1, -+, z,) is called a distribution-free upper tolerance
limit. We assume that u(z;, -- -, z,) is symmetricin z;, - -+, 2, .

For convenience we define L, to be the Lebesgue measure over R’. As in Ex-
ample 3.1, it can easily be shown that the order statistic is sufficient for the class
of absolutely continuous distributions. It has been proved complete by Lehmann
[3] and Fraser [4]. Following the argument in Example 3.1, we obtain from
Theorem 3.1 with » = 1 that

1
m ; ¢z‘n+1(xil U xi”) =a
almost everywhere (Lebesgue) over R™*. Since ¢,(21, + - , &,) is symmetric in
the z’s, we have

(310) ¢¢n+1(x1 y T xn) + -0+ ¢z1(x2 y x”+1) = (n + 1)0‘1
almost everywhere. Because ¢ is a characteristic function, (n + 1)ey is one of
the integers 0, 1, - - - , n,n + 1. We find the form of u(z, , - - - , z,) when (n + 1)a;
is0, 1, n,orn 4+ 1.
Consider the case (n + 1)as = 1. We shall prove that
‘Pu(xl"”’xn):l ifyéx(l)
=0 if Yy >z
almost everywhere in R™. In terms of u(z;, -+ , «,), this means that
U@L, <0+, Ta) = Ty

almost everywhere in R". Let zay , Z@) , - - * , Z(n) designate the numbers z; , - -
z, arranged in order of increasing magnitude: zqy < - = T(a) -

Suppose ¢, (X1, -+, z,) = 1 on a set of positive Lebesgue measure in the
region of R"*! for which y > 2, . From the properties of measure, it follows that
there exists a positive 6 such that ¢,(2;, -+, 2,) = 1 on a set of positive meas-
ure in the region ¥ > xq) + 6; call this set A. Divide the space R" of (1, « - , %»)
into “cubes’ having sides of length ¢, a typical set being

(3.11) (@, ) | mie<z; S mi+1)e GE=1,---,n)}.

We let, of course, m; for each 7 range over all real integers. There is a countable
number of such sets. Consider the following set B:

B = {(xl) "'1x”)|L1{yi(xl) ---,x,.,y)eA} >0}



168 D. A. S. FRASER AND IRWIN GUTTMAN

From the properties of measure, there exists at least one of the above-defined
cubes which intersects B on a set of positive measure. For a later purpose we
require ¢ < 4.

Now by choosing € sufficiently small we can ensure the existence of at least
one cube which intersects B on a set of positive measure and at the same time is
disjoint from each of the diagonal sets,

(312) {(xl y "t xn) I Ty = xf},
which have measure zero. Designate one of these cubes by C. We summarize the
results so far. For (z1, ---, x,) € B n C, we have ¢,(x1, ---, z,) = 1 at least

for y belonging to a set of positive measure in y > za) + 9.

From the definition of ¢,(z:, -- -, x,) we know it is monotone nonincreasing
in y and takes the values 0, 1. That is, if ¢ (1, ---, z,) = 1, then
oy(x1, -+, 2,) = Lfory < y* Now from the last statement in the above para-
graph, it follows that if (x1, ---, z,) € B n C, then ¢,(x1, -+, 2,) = 1 for
Yy = zo + 0

We now derive a contradiction to (3.10). Without loss of generality, let x; be
the smallest of the co-ordinates for points in C' (it will always be the same co-
ordinate because C' does not intersect the diagonal sets (3.12.)). Consider the
set D in R™*:

D = {(131, ---,:v,,+1)|(x1, ---,x,.)anB ) (xn+1’x2, "')xn) e Cn B}-

From the first condition defining D, we have ¢, ,(z1, -+, Z,) = 1for z,41 =
21 + 8. From the second condition defining D, we have ¢, (To41 , 2, -+ + , Tn) =
1 for 2y £ 2p41 + 8. But for (1, -+, Z,41) € D we have z; and ,41 both as

possible first co-ordinates for a point in C; hence |21 — Z,41] < &. Therefore
if (@, o, Tng1) €D, 05 (@1, 0+, Z0) = 1 = 05 (Tnga, T2, -+, ), since the
two conditions above are fulfilled by reason of our choice of ¢ < .
For (z1, -+, Zny1) € D we have the left-hand side of (3.10) equal to at least 2,
while the right-hand side of (3.10) by assumption was 1. This is a contradiction
if we show D has positive measure:

Let L, designate Lebesgue measure in R" and let ¢(z;, -- -, z,) be the char-
acteristic function of Bn ' in R".

n+1

Ln+l(D) = </;gn+l lP(xl, Tty xn)‘p(xn+l yLey, 20, xn) I—Il dLl(xt)

= ./;n—l /1; Y@, -, 2) dLy(zy) L:p(xzﬂ’ coe z,) dLy
(3.13) i
X (xn+l) :1[—12 dLl(x])

= Mz(l'z, cery, xn) H dLl(QIJ)
=3

RrRn—1
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But

L,(Bn(C) = fn Yy, -, ) fI dLy(x;)
(3.14) " -
= M(xg, -+ , ) H dLy(z;).

Rn—1 =2

Since L, (Bn C) > 0 by construction of Bn C, then by comparing (3.13) and
(3.14) we obtain L,;(D) > 0. This is the contradiction we worked toward.

Therefore our assumption that ¢,(2:, -, 2,) = 1 on a set of positive measure
in the region of R™* for which y > zq, was false.
We have that ¢,(z1, -, z.) = 1 on a set of positive measure only if that

set isin y < 2@ . Thus for z;;, < .-+ < x,,,, there is only one term of (3.10)
which can be 1 on a set of positive measure. However the right-hand side of

(3.10) by assumption was 1 almost everywhere over z;, < -+ < @;,,,. There-
fore ¢z, (s , * -+, %4,,,) = 1 almost everywhere when z;, < --- < z;,,,. That
is,

ey(@r, v, 2n) =1 ify < 2q

=0 ify>a2y,

and the distribution-free upper tolerance bound u(z:, - - -, z.) equals ).

Similarly if (n + 1)a; = n, then u(x1, -+, £,) = Zw , and by an almost
trivial argument u(z;, ---, 2,) = — o, + o according as (n + 1l)ay = 0,
n + 1.

4. 3-Content tolerance regions. Any tolerance region satisfying Definition
2.1 will produce a B-content tolerance region for suitably chosen C; for example,

C = 10n§ Pro{ P%(S(X3, -+, X.)) 2 B}.

Also, a distribution-free tolerance region will produce a B-content tolerance
region with a property of similarity. For if S(z;, ---, x,) satisfies Definition
2.2, then, letting C' equal the expression

Pro{ PX(8(X1, -+, X.) = B},

which does not depend on 6, we have a similar -content tolerance region given
by

Pro{ P%(S(X1, --+, X,) = 8} = C.

6. B-expectation tolerance regions. First we prove some general properties of
B-expectation tolerance regions. In Section 3 we defined by Formula 3.1 the
characteristic function ¢y(z1, -+-, @.) of a nonrandomized tolerance region,
and by Formula 3.3 with » = 1 we defined a characteristic function
ey(x1, -+, x,) of a randomized tolerance region. As a converse, we have the
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TureoreEm 5.1. If ¢,(x1, ---, %,) 18 a measurable function with 0 <
o(Ty, -+, 2,) = 1, then there exists a tolerance region S(x1, -+, x,) having
ey(x1, -+, x,) as s characteristic function.

Proor. Let Z be a random variable which has the uniform distribution on
[0, 1] and define a randomized tolerance region by ’

S,(xly "';xn;z) = {y|¢ﬂ(x19 "”xn) _Z.z}-

Now we calculate the characteristic function of S’(z1, ---, 2, ; 2) and using
(3.2) obtain

(0’(171, cee ’xn) = EZ{QI'I(xI’ *tty Tn ;Z)}
= Prz{py(z1, -+, 1) 2 2}

= @@L, -+, ).

This proves the theorem.
We also state a theorem on similar B-expectation tolerance regions.
TuEOREM 5.2. A necessary and sufficient condition that S(x1, -+, T, ;2) be a
similar B-expectation tolerance region is that oy(x1, - -+ , ,) — B be an unbiased
estimate of zero for the power product measure of P% over ™.

Proor. Let S(z1, ---, z,) be a tolerance region; then the expected content
is

(5.1) By {Px(8(X1, -+, Xa; Z))}.
From the definition of ¢ (21, - -, z,) this becomes
(5.2) Ewrle/(X1, -+, Xa)}.

Obviously, then, a necessary and sufficient condition that (5.1) be equal to 8
is that ¢ (21, -+, £.) — B be an unbiased estimate of zero.

To introduce the notion of a good tolerance region, we need a function which
gives us for each 6 in Q@ the relative merits of sets S in @. Let the ‘“‘desirability”
of a set S when the probability measure is P% be given by a probability measure
Qs(S) defined for all S £ G. Then for a tolerance region S we define the power

to be
(5.3) EW{Q(S(Xa, -+, X)) };

it is the average value of the “desirability” of the set S and in general is a func-
tion of 6. In terms of the characteristic function of S(z:, ---, z,), the B-ex-
A pectation condition is

(54) Jirean, -+ 2) dP) TT aPsGed < 6,

and the power is

(55) Jies et -+ ) dQuw) TT 4P,
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The problem of finding a good tolerance region is then to find a characteristic func-
tion satisfying the size condition (5.4) and having good properties for the power
(5.5). Obviously, this is equivalent to finding a good test function (21, - - - , Za)

for the hypothesis testing problem, over ",

Hypothesis: (P%, ---, P%,P%), 0¢eq;
(5.6) P * o

Alternative: (P%, ---,P2,Q), 0¢9;
(P%, ---, P%, Q), for example, designates the probability measure of
X1, -+, Xa, Y) over x"*" where X;, -+, X, Y are independent, each X;

has probability measure P%, and ¥ has probability measure Qs .

For the hypothesis testing problem there may exist a uniformly most powerful
test. In this case we would call the corresponding tolerance region most power-
ful. Failing the existence of a most powerful test, we could look for one yielding
a maximum value to the minimum power over the alternative. The correspond-
ing tolerance. region we would then call minimax.

6. B-expectation tolerance regions for normal distributions.
6.1. Univariate normal. Consider sampling from the univariate normal distri-
bution with density function

(2re”) ™" exp [—5‘—17—2 (x — u)z] s

where the parameter space Q is given by u € R, o* €10, « [. If a tolerance region
is desired which tends to cover the center of the distribution more than the tails,
then a reasonable choice of the measure @,,2(4) on the real line might be the
normal probability measure with mean u and variance aio® with 0 < a; < 1.
This measure obviously gives more measure to sets in the neighbourhood of
u and less to sets far from pu.

‘We now consider the analogous hypothesis testing problem. Let X, -+ , X, ,
Y be independent and let X; have a normal distribution with mean u and vari-
ance o° and Y have a normal distribution with mean g, variance o’s’. The hy-
pothesis testing problem is of the form

Hypothesis: a =1 , o) e Q;

6.1.1) ypore g 2)
Alternative: a = ay (u, 0°) € Q.
If we define & = n* D z;and 5 = (n — 1) > (z; — £)°, then it is easily
seen that this problem has the sufficient statistic (&, s, ¥).

We now apply the invariance method to the problem expressed in terms of
the sufficient statistic. Consider the group G of transformations induced by the
two groups

4

, =Z+4+a
(6.1.2) Gi=<|s =5 aeRY,
Y =y+a

3]]
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and
¥ =ck

6.3.1) Gy ={|sl=0{s|lcel0, o [p.
V=

Obviously, G; is a normal subgroup of G. For the group of transformations G,
a maximal invariant function is ((y — %), s). The group G: induces a group on
this maximal invariant, and it has maximal invariant T = (y — %)/s.. By a
theorem of Hunt and Stein [6] T is maximal invariant for G.

In accordance with the invariance principle we look for tests based on 7. Since
the variance of (y — %) is (a® 4+ 1/n) o*, then under the hypothesis T has the
distribution of (1 4+ 1/n)"* ¢, and under the alternative, the distribution of
(o + 1/n)"* £, where ¢ stands for a random variable with Student’s ¢-distribu-
tion having (n — 1) degrees of freedom. In terms of T, the hypothesis and al-
ternative are simple. To find the most powerful invariant test, we now apply the
Neyman-Pearson fundamental lemma. Lef ¢o = (1 4+ 1/n)"% ¢ = (o} + 1/n)"
(clearly co > c1). Then, the most powerful test function o(T) is based on the proba-

bility ratio
n
1 T <'2—> T2 “1—n/2

al(n — DaiP (n - 1> 1t am =1
T

2
1 T <g> r N
alln = api® <n - 1) R o=
r 2

or equivalently on |T|™. Hence the most powerful invariant test function is

(W) =1 |1 <as

6.1.4)
¢ =0 iflr>a

and to give the test size 8, agis (1 + 1/n)" #_g/2 , where £, is the point exceeded
with probability « using the Student (-distribution with (n — 1) degrees of
freedom.

Since the alternative in (6.1) is a set of the maximal invariant partition of the
parameter space, the envelope power function is constant valued over the al-
ternative. By the theorem of Hunt and Stein [5], there is, for any non-invariant
test, an invariant test for which the minimum power over the maximal invariant
partitions of the parameter space is no smaller. Hence our most powerful in-
variant test maximizes the minimum power over the alternative among size
a tests. Also, it is most stringent.
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From the definition of T and ¢(T) we have the test

< ag

f’u(xly"')xn):l ]f’y_x

S,

-0 if|¥=?

|>ag.

Thus, the minimax and most stringent tolerance region is
S@1, «++,xs) = [ — agss, T + apsa].

Values of ag are given in Table 1. It is interesting to note that the tolerance re-
gion does not depend on the value of oy, provided it is less than 1. Also, under
the hypothesis, the test statistic has a fixed distribution; hence the test and there-
fore the tolerance region are similar, and we have a §-expectation similar toler-
ance region.

If we are interested in having our tolerance region cover the left tail of the
distribution, we might choose Q.2 to be the normal distribution with mean
u — e and variance o’(e > 0). An analysis similar to the above shows that a
minimax and most stringent tolerance region is

S@1, s+, 2a) =] — o, %+ ars,]

where a’, may be found from Table 1 by using a = azy_1 .

If ¢* is known, our parameter space is given by u & R'. Using the same Q func-
tions with ¢* taking the given value, an analysis similar to that above shows that
for ability to pick up the center of the distribution, the minimax and most
stringent tolerance region is

S@1, o+, xa) = [& — bgo, T + bgo]

where bg = (1 4 1/n)"* 24_g2 and 2, is the point exceeded with probability o
using the normal distribution with mean 0 and variance 1. Values of bs are given
in Table 2. Also, the minimax and most stringent tolerance region of size y
which tends to pick up the left-hand tail of the distribution is

S(“’l’ ""xﬂ) =]—°°’a-7+b'lv‘7]

where values of b, may be found from Table 2 by using b7 = bgy_s .

If u is known, the parameter space is given by ¢° £ ] 0, « [. Using the same
Q functions as before with u taking the given value, a minimax and most stringent
size 8 tolerance region for picking up the center of the distribution is

’ 4
Sy, -+, %) = [0 — tapese, u + La_psa,
»

where s, is here defined to be n* D (z; — u)’; ta is the point exceeded with
probability « using Student’s f-distribution with n degrees of freedom. Also,
the minimax and most stringent size 8 tolerance region which tends to pick up
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TABLE 1

Tolerance factors ag for univariate mormal distributions with unknown mean,
unknown variance; sample size n

: 8
”
995 99 975 95 90 NH

2 155.9 77.96 31.17 15.56 7.733 2.957

3 16.27 11.46 7.165 4.968 3.372 1.852

4 8.333 6.530 4.669 3.558 2.631 1.501

5 6.132 5.044 3.829 3.041 2.335 1.473

6 5.156 4.355 3.417 2.777 2.176 1.405

7 4.615 3.963 3.174 2.616 2.077 1.361

8 4.274 3.712 3.014 2.508 2.010 1.330

9 4.040 3.537 2.900 2.431 1.960 1.307
10 3.870 3.408 2.816 2.373 1.923 1.290
11 3.741 3.310 2.751 2.327 1.893 1.276
12 3.639 3.233 2.699 2.291 1.869 1.264
13 3.568 3.170 2.657 2.261 1.850 1.255
14 3.491 3.118 2.621 2.236 1.833 1.246
15 3.435 3.074 2.592 2.215 1.819 1.239
16 3.387 3.037 2.567 2.197 1.807 1.234
17 3.346 3.005 2.545 2.181 1.797 1.228
18 . 3.311 2.978 2.525 2.168 1.787 1.224
19 3.280 2.953 2.509 2.155 1.779 1.220
20 3.252 2.932 2.494 2.145 1.772 1.216
21 3.228 2.912 2.480 2.135 1.765 1.213
22 3.206 2.895 2.468 2.126 1.759 1.210
23 3.186 2.879 2.457 2.119 1.754 1.207
24 3.168 2.865 2.447 2.111 1.749 1.2056
25 3.152 2.852 2.438 2.105 1.745 1.202
26 3.137 2.840 2.430 2.099 1.741 1.200
27 3.123 2.830 2.422 2.093 1.737 1.198
28 3.111 2.820 2.415 2.088 1.733 1.197
29 3.099 2.811 2.409 2.083 1.730 1.195
30 3.088 2.802 2.403 2.079 1.727 1.193
31 3.078 2.794 2.397 2.075 1.724 1.192
41 3.007 2.737 2.357 2.046 1.704 1.181
61 2.938 2.682 2.318 2.017 1.684 1.171
121 2.872 2.628 2.279 1.988 1.665 1.161
0 2.807 2.576 2.241 1.960 1.645 1.150

the left-hand tail is
S(xli e ’xn) = ] — O, u + t;—ﬁszl)

where # and s, are defined immediately above.
6.2 Multivariate normal. Consider sampling from a multivariate normal dis-
tribution for which the density function is

K exp [—3(w — w)A(w — p)'].
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Tolerance factors bg for univariate normal distributions with unknown mean,

known variance; sample size n

8

995

99

95

.90

.75

61
121

0

3.438
3.241
3.138
3.075
3.032
3.001
2.977

; 2.959

2.944
2.932
2.922
2.913
2.906
2.899
2.893
2.888
2.884
2.880
2.876
2.873
2.870
2.867
2.865
2.863
2.860
2.859
2.857
2.855
2.853

2.852
2.841
2.830
2.819
2.807

3.155
2.974
2.880
2.822
2.782
2.754
2.732
2.715
2.702
2.690
2.681
2.673
2.666
2.660
2.655
2.650
2.646
2.643
2.639
2.636
2.634
2.631
2.629
2.627
2.625
2.623
2.621
2.620
2.618

2.617
2.607
2.597
2.586
2.576

2.401
2.263
2.191
2.147
2.117
2.095
2.079
2.066
2.056
2.047
2.040
2.034
2.029
2.024
2.020
2.017
2.014
2.011
2.008
2.006
2.004
2.002
2.000
1.999
1.997
1.996
1.995
1.994
1.992

1.991
1.984
1.976
1.968
1.960

2.015
1.899
1.839
.802
777
.758
.745
734
725
718
712
707
.703
.699
.696
.693
.690
.688
.686
.684
.682
.680
.679
.677
.676
.675
.674
.673
1.672

Pt et et e et el ek ek et bt bt el e et ek et ek ek el e ek fed el et

1.671
1.665
1.658
1.652
1.645

Pt e el bl e el b el et bl et et bl et bl et e e b b et b ek ek el el el et

= bt et e

.409
.328
.286

.242
.230
.220
.213
206
.201
.197
.194
.191
.188
.186
.184
.182
.180
179
177
.176
175
174
173
172
171
171
.170
.169

.169

164
160

.155
.150

Let the parameter space © be given by u ¢ R* and A belonging to the space of
k X k symmetric positive definite matrices. If a tolerance region is wanted which
tends to cover the center of the distribution rather than the extremities, then
for the parameters u, A a reasonable choice for the Q,4(4) measure over R* is
the normal distribution with mean u and covariance matrix ofA™" with 0 <

Ol1<1.

We now formulate the hypothesis testing problém which corresponds to this
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problem in tolerance region construction. Let Wy, ---, W, , E be independent
and let each W, have a normal distribution u, A; and let = have a normal dis-
tribution u, @ *A. Then the problem is to find a best size 8 test for the problem

Hypothesis: « =1, (u, A) €9,

Alternative: a = ay, (u, A) £ Q.
Defining ® = n™" D sows and 4 = (n — 1) Y (we — w)’ (wa — w), we
have as sufficient statistic for this problem, (@, 4, £).

TABLE 3
Tolerance factors cg for bi-variate normal distributions with unknown means,

unknown variance-covariance matriz, sample size n

8
n
995 99 975 95 90 75

3 106, 667 26,664 4,264 1,064 264.0 40.00

4 746.2 371.2 146.2 71.25 33.75 11.25

5 159.4 98.61 51.34 30.57 17.48 7.295

6 76.66 52.50 31.06 20.25 12.61 5.833

7 50.23 36.41 23.13 15.87 10.37 5.082

8 38.18 28.68 19.06 13.50 9.091 4.626

9 31.50 24.25 16.61 12.03 8.273 4.320
10 27.33 21.41 15.00 11.04 7.705 4.101
1 24.50 19.45 13.85 10.32 7.288 3.936
12 22.47 18.02 13.00 9.778 6.970 3.807
13 20.94 16.93 12.35 9.357 6.719 3.705
14 19.75 16.08 11.83 9.019 6.516 3.620
15 18.81 15.40 11.41 8.743 6.348 3.550
16 18.04 14.83 11.06 8.513 6.208 3.491
17 17.39 14.36 10.76 8.318 6.088 3.440
18 16.85 13.97 10.51 8.151 5.985 3.395
19 16.39 13.62 10.30 8.006 5.895 3.356
20 15.99 13.33 10.11 7.879 5.816 3.322
21 15.64 13.07 9.941 7.768 5.747 3.292
22 15.34 12.84 9.795 7.668 5.685 3.265
23 15.07 12.64 9.663 7.580 5.629 3.240
24 14.82 12.46 9.546 7.500 5.579 3.218
25 14.61 12.29 9.440 7.427 5.533 3.198
26 14.41 12.14 9.343 7.362 5.492 3.179
27 14.23 12.01 9.256 7.302 5.454 3.162
28 14.07 11.89 9.176 7.247 5.419 3.147
29 13.92 11.78 9.102 7.197 5.387 3.133
30 13.79 11.67 9.034 7.150 5.357 3.119
31 13.66 11.58 8.971 7.107 5.330 3.107
32 13.54 11.49 8.913 7.067 5.304 3.095
42 12.73 10.87 8.502 6.783 5.122 3.013
62 11.97 10.28 8.110 6.509 4.945 2.931
122 11.26 9.732 7.736 6.246 4.773 2.851
© 10.60 9.210 7.378 5.991 4.605 2.773
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We apply the invariance method. Consider the group Gi of transformations

on the sample space R*"*";
w; = w,B + g-(a =
¢ - {(
¢ =tB+¢

1, .-+ ,n)\ | B belongs to the class of nonsing-
ular ¥ X matrices, and ¢ ¢ R*

These transformations leave the problem unchanged. The induced group on the

TABLE 4

Tolerance factors cg for tri-variate mormal distributions with unknown means,

unknown variance-covariance matriz, sample size n

B

995 99 975 95 .90 5
4 243,169 60,787 9,722 2,427 602.9 92.25
5 1,434 714.0 282.0 138.0 65.96 22.70
6 276.9 171.8 90.06 54.11 31.45 13.74
7 124.8 85.85 51.32 33.90 21.55 10.53
8 78.10 56.98 36.68 25.56 17.10 8.903
9 57.41 43.46 29.33 21.14 14.62 7.931
10 46.17 35.86 24.99 18.44 13.04 7.285
11 39.26 31.05 22.16 16.63 11.96 6.825
12 34.63 27.77 20.17 15.34 11.17 6.481
13 31.33 25.40 18.71 14.38 10.58 6.214
14 28.87 23.62 17.59 13.63 10.11 6.001
15 26.98 22.22 16.70 13.03 9.727 5.827
16 25.47 21.11 15.99 12.54 9.416 5.683
17 24.25 20.20 15.40 12.14 9.156 5.560
18 23.24 19.44 14.90 11.80 8.936 5.456
19 22.39 18.80 14.48 11.51 8.746 5.366
20 21.67 18.25 14.12 11.25 8.581 5.286
21 21.05 17.78 13.81 11.03 8.437 5.216
22 20.51 17.37 13.53 10.84 8.309 5.155
23 20.03 17.00 13.29 10.67 8.196 5.099
24 19.61 16.68 13.07 10.52 8.094 5.049
25 19.24 16.39 12.88 10.38 8.003 5.004
26 18.90 16.14 12.70 10.25 7.920 4.963
27 18.60 15.90 12.54 10.14 7.844 4.926
28 18.33 15.69 12.40 10.04 7.775 4.892
29 18.08 15.50 12.26 9.943 7.712 4.860
30 17.85 15.32 12.14 9.857 7.654 4.831
31 17.64 15.16 12.03 9.777 7.600 4.804
32 17.45 15.01 11.93 9.703 7.550 4.779
33 17.27 14.87 11.83 9.635 7.504 4.756
43 16.04 13.90 11.16 9.150 7.175 4.590
63 14.89 12.99 10.53 8.686 6.857 4.426
123 13.83 12.14 9.922 8.241 6.549 4.266
© 12.84 11.34 9.348 7.815 6.251 4.108
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space of the statistic (w, 4, £) is

W =wB+4Z
B nonsingular,
G=(| &£ =E+1 i
eR
A’ = B’AB

It is straightforward to show that a maximal invariant statistic is

Tolerance factors cs for quadri-variate normal distributions with unknown means,

=(¢-mA" ¢ - ).

TABLE 5

unknown variance-covariance malrix; sample size n

8

995 99 975 .95 .90 75

5 432,000 107,992 17,272 4,312 1,072 164.8
6 2,325 1,158 457.9 224.5 107.8 37.71
7 422.4 262.5 138.1 83.36 48.85 21.85
8 182.3 125.8 75.64 50.31 32.34 16.26
9 110.6 81.01 52.54 36.92 25.03 13.46
10 79.38 60.38 41.10 29.92 20.99 11.80
1 62.65 48.91 34.43 25.69 18.46 10.70
12 52.46 41.74 30.11 22.87 16.72 9.916
13 45.70 36.89 27.10 20.87 15.47 9.335
14 40.91 33.40 24.89 19.38 14.52 8.886
15 37.37 30.78 23.22 18.23 13.77 8.528
16 34.64 28.76 21.89 17.31 13.18 8.236
17 32.49 27.13 20.83 16.57 12.69 7.994
18 30.75 25.82 19.95 15.96 12.28 7.790
19 29.32 24.72 19.22 15.44 11.93 7.615
20 28.12 23.83 18.60 15.00 11.63 7.464
21 27.10 23.02 18.07 14.62 11.38 7.332
22 26.22 22.34 17.60 14.28 11.15 7.216
23 25.46 21.75 17.20 13.99 10.95 7.113
24 24.79 21.23 16.84 13.73 10.78 7.021
25 24.20 20.77 16.52 13.50 10.62 6.938
26 23.68 20.36 16.24 13.30 10.48 6.863
27 23.21 19.99 15.98 13.11 10.35 6.795
28 22.79 19.66 15.75 12.94 10.23 6.733
29 22.41 19.36 15.54 12.79 10.12 6.676
30 22.06 19.09 15.35 12.64 10.03 6.624
31 21.74 18.84 15.17 12.51 9.935 6.576
32 21.45 18.61 15.01 12.40 9.851 6.532
33 21.19 18.39 14.86 12.28 9.774 6.490
34 20.94 18.20 14.72 12.18 9.703 6.452
44 19.23 16.84 13.75 11.46 9.195 6.177
64 17.66 15.57 12.83 10.77 8.706 5.907
124 16.20 14.38 11.96 10.11 8.234 5.643
© 14.86 13.28 11.14 9.488 7.780 5.385
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The problem as interpreted for the induced distributions of the statistic T has
a simple hypothesis and a simple alternative. By applying the Neyman-Pearson
fundamental lemma, a short analysis shows that the most powerful invariant
test is

o =1 i1 <c
=0 ifT2>Cp.

Under the hypothesis, T* (1 + 1/n)™" has the distribution of Hotelling’s T*
with (n — 1) degrees of freedom. The probability density function of T? with
(n — 1) degrees of freedom is

r(z 2 k~2)/2
<2> (T°/n — 1)( )/ d(Tz/n — 1.

r(p)r(agt) Um0

But if we make the transformation 7% = (n — 1) k/(n — k) F, (6.2.1) is easily
seen to become the probability density function of Fisher’s F-distribution with
k, n — k degrees of freedom. Hence, to give the test and consequently the toler-
ance region size 8, we take

g =1+ 1/n) (n — 1) (k/n — k) F14,

where F, is the point exceeded with probability & using the F-distribution with
k, n — k degrees of freedom.

Now, by the same argument used for the univariate case, the minimax and
most stringent size 8 tolerance region for the k-variate normal distribution is the

ellipsoidal region given by
ElE-®) A7 ¢ — ) S o
Values of ¢g for k£ = 2, 3, 4 are given in Tables 3, 4, and 5.

(6.2.1)
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