ON THE CHARACTERISTICS OF THE GENERAL QUEUEING PROCESS,
WITH APPLICATIONS TO RANDOM WALK!

By J. Kierer anp J. WoLFOWITZ

Cornell University

Summary. The authors continue the study (initiated in [1]) of the general
queueing process (arbitrary distributions of service time and time between
successive arrivals, many servers) for the case (p < 1) where a limiting distribu-
tion exists. They discuss convergence with probability one of the mean waiting
time, mean queue length, mean busy period, etc. Necessary and sufficient .con-
ditions for the finiteness of various moments are given. These results have
consequences for the theory of random walk, some of which are pointed out.

This paper is self-contained and may be read independently of [1]; the neces-
sary results of [1] are quoted. No previous knowledge of the theory of queues
is required for reading either [1] or the present paper.

Introduction. We recapitulate very briefly some of the results obtained in [1]
in the notation of [1] to which we shall adhere without further mention.?

Let S be the totality of points (21, s, ---, x;) of Euclidean s-space such
that 0 < 2 < 22 < -+ £ x,. Let 2 and y be generic points of S. Occasionally
another letter will represent a point in S; it will always be clear from the con-
text when this is so; for example, O will frequently denote the origin in s-space.

For 7 = 1, let £; = # = 0 be the time of arrival of the 7th person at a system
of s = 1 machines, where he waits his turn until a machine is available to serve
him, say at time £; + w; = #; . This machine is then occupied by him for time
R; = 0. Let g; = t; — £;1. {R;} and {g;} are independent sequences of identi-
cally distributed and independent chance variables. An s-dimensional random
walk {w;}, with w,; its first component, is useful for the study of the theory of
queues. The random walk {w;} is constructed as follows: w; = (wa, - -, Wi)-
Unless the contrary is explicitly stated we have wy = 0. To obtain w;4; from
w; , reorder in ascending size the quantities

wa+Ri— gip)’,  wa—gi)t, Wis—gi)h, o, Wi — gi) ™
The resulting sequence is w;; . We have wy < we < --- £ w;, for all <. As
usual, a® = (a + |a|)/2. The times #; + w;; (1 < j < s) are easily seen to be
the earliest times after (or at) ¢; at which the s machines have finished serving
those of the first s — 1 arrivals which they serve.

Let F(FT) be the d.f. (distribution function) of ws(wa). It was shown in [1]
that F(z) = lim,..F;(x) exists and satisfies a certain integral equation (I.E.);
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148 J. KIEFER AND J. WOLFOWITZ

F*(z2) = lim;,.F7 (2) also exists. Assume p = ER; / sEg; exists. F and F* are
df’sif p < 1, and F is then the unique d.f. solution to the I.E. Except in the
trivial case where P{R; = sg;} = 1,if p = 1 then F = 0 = F* and the LE.
has no d.f. solution. Always F*(z) = F(z, «, ---, »). Results on the limiting
length of the line are also proved in [1].

Let Fi(z | y) be the d.f. of w;, given that w, = y;i.e.,

Fyz|y) = Plw; < z|w = y}.
It was proved in [1] that, forally ¢ S,
lim Fy(z | y) = F(z).

Throughout this paper we shall assume that p < 1. The case p = 1 has little
interest and was essentially disposed of in [1]; results proved in the present
paper are trivial when p = 1. Throughout this paper we shall assume that
Eg, < «.However, it can be shown, always easily and sometimes trivially, that
all the results of [1] and all the queueing results of the present paper except
Theorem 3 are valid also when Eg; = . In order to eliminate the completely
trivial we also assume, as was done in [1], that ER; > 0, Eg; > 0. Since p < 1
we have then 0 < ER; < «,0 < Eg; < «.

In two or three places below we shall cite the first paragraph of Section 3 of
[1]. To ease the reader’s task we now quote this paragraph in full:

Let ¢j(a, b, ¢), 7 = 1, .-+, s be the value of w(;y,; when w; = a, R; =
b, giy1 = c. If d is a point in s-space, we shall say that a < d if every coordinate
of a is not greater than the corresponding coordinate of d. If now a = d, then
obviously

¢j(a7 b’ C) = ?’J’(d’ b, C)

for 1 £ j < s. Applying this argument % times we obtain the following result:
Let Riyjo1 = biyia, givi = Civi,J = 1, , k. Let wiyx = €1 when w; = ay,
and let w;,x = e when w; = a». Then a; é a2 implies 1 < ez .

The results of [1] also imply that F(z) determines a stationary and metrically
transitive flow; this is the process {w} defined in Section 1, below, where the
relevant references to [1] are given.

1. Convergence of the mean waiting time. Let k be any positive number.
Define W, = D1 Wy . Since w,; is a nonnegative chance variable and F,(z) —
F(z), we easily have that

lim inf (Bund® 2 [ (20" dF(),
1.1 "
lim inf BW)* 2 [ @+ - + 2 dP@),

where, of course, the right members may be infinite. From the fact (proved in
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[1]) that F,(z) approaches F(z) from above for every z, we have that

B = [ @) dFG).
Hence

(1.2) lim E(w,)* = f @) dF @).

Let F7(z|y) be the d.f. of W, , given that w, = y(eS). Hence F7 (z]0) is
the d.f. of W, . Then

Fia@|0) = FiG|0) = [ FIG|y) - FIG| 0] dR).

It follows from the first paragraph of Section 3 of [1] that, if y ¢ S, the integrand
in the last integral is never positive for any z. Hence the left member in the last
equation is never positive for any z. Hence F7, (z | 0) approaches its limit (which
is a distribution function obtainable from F(z) in an obvious way) from above.
Consequently, as before,

Bw) < [ (g x..>'° dF ().

From this and (1.1) we obtain

8

liin EW)* = [ (E x;)k dF(z) = my (say).

i=1

The question as to when m; < « will be discussed in a later section. We define

m = [ @) aF@),

and
— 1 3 .. k
V'nk = ﬁ g:l (w‘ll) .

We now prove
TuaroREM 1. We have, for any positive k,

(13) P{hm Var = mk} = 1.

Proor. Let w! be an s-dimensional chance variable with the d.f. F(z), and
let wh 41 be obtained from w by using R, and g, in exactly the same manner
as one obtains w,41 from w, . Thus w) pertains at time ¢, . Then the process
{wh,n = 1,2, --- } is easily seen to be stationary, because F(z) satisfies the
integral equation derived in [1]. (see Section 3 of [1] for details). It is proved
in Section 8 of [1] that F(x) is the only d.f. which satisfies the integral equation.
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‘We shall show that this implies easily that there cannot be a Borel set B in
s-dimensional Euclidean space such that

0<de<1,
B

and w; ¢ B implies with probability one that w% ¢ B, n = 2. For let B be the
complement of B, and F(zx | B) and F(x | B) be, respectively, the conditional
distribution functions on B and B implied by F(z). Then F(x | B) satisfies
the integral equation. On a set of w} of probability one according to F(z | B),
w% & B for n = 2 with probability one, since otherwise P{ws, ¢ B} (when F is
the distribution function of wi) would not be independent of 7, contradicting
the stationarity of {w%}. Hence F(z | B) must also satisfy the integral equation.
Clearly, F(z | B) and F(x | B) are not identical, in contradiction to the fact
that F(x) is the only d.f. that satisfies the integral equation. From the fact
that there is no invariant set B such that 0 < [ dF < 1, the fact that w’
is & Markoff process, and Theorem 1.1, page 460 of [6] (which asserts that any
set in the space of the Markoffian chance variables w} , ws , - - - that is invariant
under a shift transformation differs from a set B by a set of probability zero),
we conclude that the process w) is metrically transitive. Hence, by the ergodic
theorem,

(14) P{lim V% = m} = 1,

n->o0

where
1 n
Ve = = 2 (wi)”,
n i=1

and of course w} is the first component of the vector wj .
From the argument in the first paragraph of Section 3 of [1], it follows that
always

(1.5) Ve S V.
Hence
(16) P{lim sup V. < my} = 1.

‘We shall prove that also
1.7 P{lim inf V,, = my} = 1.

This will prove the theorem.

We shall now deduce (1.7) from (1.4), and for this purpose divide the argu-
ment into consideration of the four cases of Section 8 of [1]. As there defined,
denote by [a, b] and [c¢, d] the smallest closed intervals for which

Pla =R b} =Plc=sg=2d} =1
Of course, b or d or both may be 4.
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Case 1: b > sc. Let ¢ be so large that the point T = (¢, ¢, - - , £) of S is such
that

fKT dF(z) > 0.

It follows from (1.4) that there exists in S a point z < T such that
(1.8) P{lim Vo = my | w? = 2} = 1.

n-»00

It is proved in [1] that there exists an integer r such that P{wey > T} > 0,
say =a. From this it follows that

1.9 P{w, > T for at least one n} = 1.

Let h be the smallest index n for which w, > T'; h < o with probability one.
Obviously R, Rat1, -+ and gat1 , grqe, - - - are distributed independently of
and w; , and have the same distributionas B, , Ry, -+ and ¢g2,gs, -+ . Conse-
quently, if we define, for n > h,

Vaulh) = (wn)* +(w(h+1).1);+ o+ ('wn.l)k’

we have, using (1.8) and the argument in the first paragraph of Section 3 of
[1], that

(1.10) P{lim inf V.u(h) = m} = 1.

Obviously from the definition of V,i(h) it follows that
(1.11) P{lim (Va(h) — V) = 0} = 1.

n->00

The desired result (1.7) follows from (1.10) and (1.11).
CasE 2: a < d. It is proved in Section 8 of [1] that, in this case,

(1.12) P{w) =0 forsomen = 1} = 1.

The desired result (1.3) follows from (1.4) and (1.12) by means of an argument

like that in Case 1.
CasE3:¢c=d £ a = b < sc. It is proved in [1] that in this case there is a

point in S, there called , such that
(1.13) P{w, = Wypp = +++ =W forsomen = 1} = 1.

The desired result (1.3) follows at once.
CasE 4:d £ a, b < sc, and either a < b or ¢ < d. It is proved in [1] that, in
this case, there exists an ¢ > 0 such that the set
T={ylyeSy=wY

where
— € € € €
B = (0, Us—1, Us—2, *** , U1)
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and
u; = max (0, b — jec — e),

has the following properties:

(a) P{w) e T* forsomen = 1} = 1.
(This implies at once that
(1.14) [ ar@ > 0)
Te
(b) P{w, > @} > 0.

(This implies, using the argument in the first paragraph of Section 3 of [1],
that

(1.15) P{w, > @ for at least onen > 1} = 1.)
The desired result now follows exactly as in Case 1, the place of T being taken
by w"°.

In exactly the same manner as that employed in this section we could have
proved that
(1.16) P{lim Ly = m,i} =1

n->o0 M i=1
and similar theorems about other moments.

2. Generalization of the lemma of Section 4 of [1]. We shall prove the fol-
lowing essential generalization of the fundamental lemma of Section 4 of [1]
both for its use as a tool in a subsequent section and for its intrinsic interest:

Lemma. If, for any positive k > 0,

2.1) ER™ < o,
then
2.2) sup E(w,, — wa)* < ©;

or, what is equivalent,
s—1 k
(2.3) sup E ((3 bl l)wns - Z; wni) < o,
n j=

ProoF. Define Y; exactly as in (4.5) of [1], i.e.,
Y: = max[(s — 1)R;, (s — 1)Ri:y — Ri, (s — DR — Rin — Ry, -+,
(s—1)Ri— Ry — --- — Ry
Then (4.6) of [1] is
Ly',n) =P{Y, 2y} =PRiShy,Re S h(Br+Y¥), -,
R, Zh(Bi+ -+ + Rua + 9},
where b = (s — 1) Let H(z) be the d.f. of Ry .

(2.4)
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Define L(y’, 0) = 1. Obviously L(y’, n) is nonincreasing in » and, for n = 0,
L(y'7 n) - L(y,; n + 1) = P{Yn é y’, Rn+l > h(Rl + e + Rn + y,)}

(2.5) S P{Roy1 > h(Ry + + -+ + Ra + ¥')}
< E{1 — HRR,+ -+ + R, + ¥')}.
Hence
- Ly, = X [0, i — D) - Ly, o)
(26) -

< _ZOE{I — HR[Ry + -+ + Ri + y'D}.
Let d be a small positive number and define

D,~=dwhenR.~g;—i

« = 0 otherwise.
We choose d so small that d < 1 and
p = P{D,=d} > 0.

(We have earlier excluded the trivial case where B; = 0 with probability one.)
Since R; = D;/h, if we replace the former by the latter in the right member of
(2.6) we do not diminish any term of this member. It is well known (e.g., [2],
p. 101) from approximations to the binomial distribution that, for suitable
positive ¢; , ¢z, we have

(2.7) P{D]l 4+ o4 D, < %’—d} < e

When k& = 1 we have, from (2.6),

B S k3 G+ D7PIY. > j)

<EN G+ VB — HRWE + -+ Ri + i)}

Jj=0 ¢=0
(28) <k 22+ DB - HDu + -+ D + )}
Sk2 2 G+ D*E{1 — H(D1 + -+ + Du)}

= g(j + 2)*E{1 — H(D: + --- + D))}.
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We have now, applying (2.7) to the right member of (2.8),
@) B saX(+2' e+ 3G+ 2 (1- 1 ().
j= j=

The first series on the right of (2.9) obviously converges. Now consider the
second. We have

Z(j+2>’°(1 - H(J—”-‘il» =G+ o {r > 24

=0 2 j=o 2 f

(2.10)
2\ b+
= | = ER, + 2
pd

In [1] (relation (4.5)) it is shown that
. s—1
((8 - l)wns - Z wnj> é Yn-l
j=1

Hence (2.3) and the lemma follow for & = 1. The proof for 0 < k < 1 is almost
the same; only a few obvious changes are needed in (2.8), (2.9), and (2.10).

3. Finiteness of my . Of great interest is the question of when m; is finite.
In this section we shall give a sufficient condition for m; to be finite (and hence
a fortiori for miy < my to be finite). We shall later see that this condition is
essentially necessary for my to be finite.

Tueorem 2. If k > 0, and

(3.1) ERT" < o,
then

(3.2) my < o,
and

3.3) mp < .

Proor. We assume that there exists a number T > 0 such that ¢g; < T with
probability one. When we bear in mind how w,4. is related to w,, it follows
immediately that, if Theorem 2 holds in this case, it a fortiori holds in general.

In order to carry out the proof we shall assume that mr = o and obtain a
contradiction. Let 4 be the set {x | z; < T'}. Then from (2.2) we obtain that

(34) sup f (z.)* dF.(z) < o,
n A
and hence

3.5) sip f (5 + - @) dFa(z) < o.
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From the manner in which we obtain w,1 from w, we have that

(36) Wn-l—l, =W, + B, — $gnta
if w, = T, and always we have
3.7 Warr S W, + R..

We now note the inequality (2.15.1) on page 39 of [7], which states that » > 1,
z =2 0,y = 0imply that

(3.8) -y S e — y).

Puttingr =k + 1,z = W,y1,y = W,, we have, from (3.6),

WL — W < (b + D(Wa + Ba — sgai)*(Ba — sgas)

3.9 — k
(39) = (k + 1)W’:.{(1 + 5ng"—*—‘> (Ra — sg,.ﬂ)}.

Consider the expression in brackets in the last expression of (3.9). By (3.1),
the boundedness of g.,1, and the independence of W, from g,41 and R, , the
conditional expected value of this bracketed expression, given W,, tends to
ER, — sgny1) < 0 as W, — «. Hence, if EW% — o (=m;) as n — «, (3.9)
implies that

(3.10) lim E{W5 — W5 w2 T} = — .

n->0

Similarly, puttingz = W, + R.,y = W, , and noting that (a + bk < 2*d* +
¥)if a, b, k = 0, (3.7) yields

WEL — WE < (W, + R — Wi < (6 + 1)(W, + R.)'Ra
< (k4 1)2"(WE + RHR. .

From (3.1), (3.5) and the independence of R, and W, , we conclude that there
is a number ¢ < « such that

(3.12) sup E{With — Wit |wa < T} <ec.

(3.11)

From (3.10), (3.12), and the fact that (3.5) and m; = o imply that A has
probability >e > 0 according to F, for all sufficiently large n, we conclude
that there is an integer Ny such that EWty < EWS for n = N, . Since, for
n < No, EWS' < E(Ry + -+ Ra,)*™ < o, we conclude that sup, EW%™" <
«, contradicting the assumption that my = . This completes the proof.

4. Necessity of the condition (3.1). The present section is devoted to the

proof of
TaroreMm 3. If, for any positive k,
(4.1) ' ERI" =

and Eg. < o, then
4.2) my = .
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It will easily be seen from our proof that Theorem 3 is a fortiori true if p = 1.
Only the case p < 1 requires proof and this is the case we shall consider.
Proor. Let m be so large that

fMdF(x)=a>0

where M is the set of all points (21, 2, ---, %,) in S such that z, < m. We
have already remarked in Section 1 that the process {w} there defined is sta-
tlonary and metrically transitive. Let »}, v, - -+ be the indices n for which

wh & M, and define
0 0 0
Mi = Vil = Vi

It follows from the ergodic theorem that
Eu? = }- < o,
a

Let {w5} be the process obtained from {w,} as follows: wi = w; = 0. There-
after w, = w, until the first index n, say »1 , such that w,; ¢ M; define wﬁ’, = 0.
We now obtain each successive wh.; from its predecessor ws by using R, and
g1 in exactly the same manner as w,4; is obtained from w,, until the next
index, say »; , for which w;; would be in M ; instead set w,, = 0. Continue in this
manner to define {w,}. Define pi = vy — vi. Then s, ps, - - - are independent,
identically distributed chance variables. It follows from the construction of the
process {wh} and the first paragraph of Section 3 of [1] that Eui < Eu}. Hence
Eui is finite. It follows from the strong law of large numbers that

(4.3) P{’{ijgliﬁ = E,,{} =1

We shall later show that
(4.4) {,1.1-1.2 nt E (wi)* = 00} = 1.
Since w, < w, it follows at once that
(4.5) “ {g ! E (wi)* = oo} =1
Hence
(4.6) {,lggn — }: (WoF = } 1.

Thé desired result (4.2) follows from (1.16) and (4.6).
It remains to prove (4.4). Let j(n) be defined for all integral » by

4 ’
Vi =N < Vi1 -
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We shall later prove that
4.7 E{(wi) + @) + - + (i)} = .
From this and the strong law of large numbers it follows that
vi(m
“8) P{lim G S iyt = w} -1
n->00 =1
From (4.3) and (4.8) we obtain that
’ ) ’
(4.9) P {hm @i~ : (wi)* = 00} =1
From (4.9) we have at once that
(4.10) P {hm i)™ z; (wi)* = 00} =1
Also
(4.11) P{lim P = 1} =1
n->c0 Vj(n)

From (4.10) and (4.11) we have the desired result (4.4).
It remains to prove (4.7). Let N be an integer so large that

(4.12) P{Z g. < 2nEg, foralln = N} >7>0
=1

The existence of such an N follows from the strong law of large numbers. We
may also assume N so large that 2NEg, > m. Let T = 4NEjg, . Suppose that
{ > T and the largest integer contained in (¢/4Eg) is ¢’. Then #/ = N, and
(4.12) implies that the conditional probability of the event 4.,

(4.13) Ay = {4t > ¢ and wh, > 20'Egy for2 < n < #'},

given that wj, = ¢, is greater than r. (u1 > # is implied by the other events
in (4.13).) When the event 4, occurs, we have

’ ’ o
(4.14) §5 Wi = 3 i)t > ¢@ER* = o
n=1 n=1

with ¢ > 0. From (4.1) and the construction of the process {wn} we have (by
considering (R — ¢2)7)**" on the set where g, < ¢ where ¢ < = is chosen so

that P{g, < ¢} > 0) that
(4.15) E(ws,)*™ = w.
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The desired result (4.7) follows from (4.14) and (4.15). This completes the
proof of Theorem 3.

The following theorem can be proved in essentially the same manner as
Theorem 3: .

THEOREM 4. If, for a positive integer N, an integer j (1 < j < s), and a posi-
tive k

(4.16) E(wy)""! = =,
then
(4.17) fmfw@=

Theorem 3 is a special case of Theorem 4 for the case N = 2, j = s. For then
(4.1) implies (4.16), and (4.17) implies (4.2). Let M; denote the ¢th smallest of
R:, ---, Rs, and suppose

(4.18) EM)*" = .,

Then (4.16) holds with N = s, j = 4. This also implies Theorem 3, for (4.1)
implies (4.18) for ¢ = s. Finally we remark that (4.18) with ¢ = 1 implies

(4.19) my = o,

6. Implications for the one-dimensional random walk. The results of the
preceding sections imply not only results on the behavior of queues in general,
but also results on the random walk in s-dimensional space. We shall content
ourselves with pointing out two of these implications for the one-dimensional
random walk, although the results for the s-dimensional walk obtained in
earlier sections are more general and usually more difficult to prove. Without
further remark all problems treated in this section are to be assumed to be
one-dimensional.

TaeoREM 5. Let uy, us, --- be independent, identically distributed chance

variables. Let S, = 2, u; , and define
1=1

v = sup(O, Sl,Sz,Sa,"‘).

If

(5.1) . —w = Pu <0,
and, for k > 0,

(5.2) Bu)™ < =,
then

(5.3) Ef < .
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Tueorem 6. With the definitions of Theorem 5, if

(5.4) —w < By, <0,
and, for k > 0,

(5.5) E@f)*" = o,
then

(5.6) B = .

Proor. Consider the process: wi = uf, why = (Wh + Unp)™, n = 1. Let

F%(2) be the d.f. of w% , and let

F*(z) = lim F}(2)

when the latter exists. It was shown in [3] and follows from the results of [1]
for the case s = 1 that, when 4, = R, — gnt1, F*(2) exists, is a distribution
function, and equals the limiting d.f. F(z) of w, . It was also shown in [3] that
the distribution function of v is then F*(z). An examination of the proofs of
these statements shows that they are valid for the process {w}} even when
%, is not of the form R, — gn41, provided only that (5.1) is satisfied. An ex-
amination of the proofs of Section 1 and Theorem 3 of the present paper shows
that they too hold even if u, is not of the form R, — gn.1 . But then Theorem 6
is simply a restatement of Theorem 3.

It is sufficient to prove Theorem 5 for chance variables {us}, where un =
max(u, , —T) and T > 0 is so large that Eus < 0. Butus = (un + T) — T
and is therefore of the form R, — gn41, With R, = (W% + T), gnys = T. Theorem
5 is then simply a restatement of Theorem 2.

While the results of the present paper on the queueing process and the cor-
responding s-dimensional random walk are new, Theorems 5 and 6 on the
one-dimensional random walk were also obtained by Darling, Erdos, and Kaku-
tani, to whom the problem was communicated by us. These writers also ob-
tained other related results, and they have informed us that many of these
results are implicit in [4]. In the course of the present work we have had inter-
esting discussions with Professor Shizuo Kakutani.

6. The mean queue length. As in [1], Section 9, let @; be the number of indi-
viduals in the queue waiting to be served, just before the service of the ith
individual begins. To avoid trivial circumlocutions we assume G(0) = 0 (G(x)
is the d.f. of g;). In [1] the limit D(z) of D,(z), the d.f. of @, , is shown to exist
and D(z) is explicitly given. We shall now be concerned with

Q-n= _liZ:lQi-

Let {w)} be the process defined in Section 1. We now construct a process
{'w?. , Q?.}, where Q) , Qs , -+ remain to be defined. Let ¢, = Z?_l g: . We define
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Q% to be equal to the number of indices 7 which satisfy

(6.1) ta < b: S by + wht.

It follows that the process {wy , Q%} is stationary and metrically transitive, so

that, by the ergodic theorem, Q) = n 2.1 Q) approaches a constant limit c,
c= f z dD(z),

with probability one. (It is easy to prove that ¢ is contained between Ewn/Egy —
1 and Ew?.l/Egl .) Since wa < wh, it follows from (6.1) that Q, < Q’ . Hence

(6.2) P{lim sup @, < ¢} = 1.
Just as in Section 1, one proves that

(6.3) P{lim inf @, = ¢} = 1.
Hence

(6.4) P{lim @, = ¢} = 1.

7. The duration of busy periods. A busy period is a closed time interval, say
' £t £ t”, such that all s servers are occupied throughout this interval, {” —
¢’ > 0, and the interval is maximal, ie.,if 7/ S ¢/ <" = ", 7" — ¢/ > ¢ — ¢,
then all s servers are not occupied for some time point in the interval (7', 7”).
The length of the busy period is #” — ¢, # is its beginning, and #” is its end.
Let B; be the sum of the lengths of all busy periods at or before ¢; ; if £; is in the
interior of a busy period, we count into B; the length of the interval from the
beginning of the period until ; .

It is easy to verify that whether or not any time point ¢ with ¢; < ¢ < 41
is in a busy interval depends only on w;, R;, and g;.1 . Since the value of B,
is unaffected by removing from busy periods any of the points £; (1 £ 7 < n)
contained in them, it follows that the process

{Bn)wn})n= 172)"'

is Markoffian.

Let {w} be the process defined in Section 1. Define B} = 0. Define B%, n = 2,
to be the same function of the process {w)} as B, is of the process {w,}. Since
wh = w, with probability one, it follows that B}, = B, with probability one.

Since the process {w)} is stationary and metrically transitive, so is the process

{Bhy — Ba},n=1,2,---.

Hence

H0
P{lim %’i = E(Bg)} = 1.
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In essentially the same manner as in Section 1 one proves easily that
P{lim 5. _ E(Bg)} -1
From this we obtain immediately that
. B. E(B3)
lim == = = 1.
P{ im P o 1

This gives the long-term average time spent in busy periods.

The limiting distribution of the length of a busy period can be obtained in
a very tedious but straightforward manner from the marginal distributions of
the process {w%}.
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