SYMMETRIC FUNCTIONS OF A TWO-WAY ARRAY!

By RoBerT HoOOKE?
Princeton University

1. Summary. A family of polynomials in the elements of a two-way array, or
matrix, is introduced. This family is an extension, from sets to matrices, of the
family of symmetric polynomials ki, ke, ki, ks, ki, etc., defined by Tukey
[6], christened “polykays” in [7], and which are a generalization of the family
k1, ke, etc., defined by R. A. Fisher [1]. The polynomials of the present paper,
called “bipolykays,” are symmetric functions in the sense that they are in-
variant under permutation of rows and/or columns of the matrix. This paper
defines the bipolykays, shows that they are inherited on the average, develops
the formulas for use in random pairing, and provides tables for conversion and
for multiplication. A description of applications (see [2], [3], and [4]) will be
postponed until a later paper. These applications include (a) finding expressions
for sampling moments of functions of the elements of a matrix which is a “bi-
sample” from a larger matrix, (b) finding expressions for sampling moments of
functions (such as estimates of variance components) associated with the analysis
of variance of a two-way table with systematic interactions, and (c¢) finding un-
biased estimators for the variances and covariances of estimated variance com-
ponents in a two-way table without interactions.

2. Introduction. Let z;(I = 1,2, ---, N) be any population of N numbers,
and let z;(z = 1, 2, - .- , n) represent elements of a sample of size n from this
population. Let f(n; :, - - -, x.) be a polynomial which is symmetric in the z;
and has coefficients which are functions of n. Such a function extends obviously
to a polynomial f(N; 21, - - - , zw), the corresponding symmetric polynomial in
the z;, with the coefficients changed only by replacing n by N. Writing “ave”

for the operation of averaging over all (]Z distinet samples of size n from the
population, we say that f(n; 2y, - - - , z,) is “inherited on the average” [6] if
(1) avef(n;x1,~--,:c,,)=f(N;:c1,--',xN).

The functions k; , ka2, ku, ete., defined in [6] and now called polykays, are
symmetric polynomials that are inherited on the average. Any symmetric poly-
nomial can be expressed as a linear combination of polykays, so that the average

value (or expected value, if the <JZ> distinct samples are assigned equal prob-

abilities) of the polynomial can be found simply by replacing each polykay in
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56 ROBERT HOOKE

this linear combination by the corresponding population polykay, i.e., by apply-
ing (1) to each term.
In order to use polykays in connection with a linear model, say

Yii = mi + eij,

one needs to find the polykays of the #’s in terms of those of the m’s and é’s.
The rules for doing this are called “pairing formulas” (Section 3), and an im-
portant advantage of polykays over most other symmetric polynomial functions
inherited on the average is the simplicity of their pairing formulas.

In this paper we shall consider a matrix population of numbers
2l =1,2,--- ,R;J =1,2, ..., C) from which a bisample (sample matrix)
is selected by taking a sample of r of the R rows and another sample of ¢ of the
C columns and forming the matrix whose elements are at the intersections of
these selected rows and columns. Symmetric polynomial functions of such
matrices (i.e., polynomial functions of the elements of a matrix which are in-
variant under permutation of rows and/or columns) will be considered. It will
be shown that any such function can be expressed as a linear combination of
bipolykays, which will be defined as a special family of functions that are in-
herited on the average and have simple pairing formulas. These properties make
the bipolykays useful in the determination of moments of moments, for example,
associated with a two-way classification.

The author wishes to express here his indebtedness to Prof. J. W. Tukey for
several helpful suggestions, and to Dr. Frederic Lord for posing the original
matrix sampling problem (see [2]) which started this investigation.

3. Polykays. Polykays are defined by examples in [6], and a general definition
may be found in [7], [8], or [9]. Since a different, though equivalent, definition
appears to be more suited to the extension to bipolykays, this section will be
devoted to a general definition of polykays and to the derivation of those proper-
ties which will be required in this paper. We begin with some notation and
terminology of [6] which will be used throughout.

The symbol 3_* will mean a sum over all subseripts that follow, but such that
subscripts represented by different letters must remain unequal throughout the
summation. For example,

2
Z" Ti%; = T1%e + X221,

i,y=1

A symmetric mean is a polynomial
1 a
il - P A

where the subscripts are summed from 1 to n (for samples) or from 1 to N (for
populations), the exponents are positive integers, and M is the number of terms
in the summation. When the sample (or population) size is given, the symmetric
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mean is specified by the exponents, and so is abbreviated by writing the ex-
ponents within brackets, as in

1 a b d
bd) = > xixiak.
When a symmetric mean is defined over a population, this fact is indicated by
a prime, as in
1
’— % a b d
(a bd) NN DO =9 Z TI%s Tk .

It is obvious that any symmetric polynomial function can be expressed as a
linear combination of symmetric means. Since symmetric means are inherited
on the average [6], they are sufficient for the problem of finding expressions for
sampling moments of moments of a single sample. However, in dealing with an
additive model, one works with numbers which are sums of numbers sampled
from different populations. To provide for this case, Tukey uses the notion of

“random pairing’’: this means taking two samples, (x1, - - - ,Z,) and (W1, - - ,¥s),
the order within each having been independently randomized, and adding the
two to obtain a new sample (21, - - -, 2,), where 2; = x; + y;. For symmetric

functions of the z’s one wants the average value (where the average is taken
with respect both to sampling and to randomization of order within samples)
expressed, by means of a “pairing formula”, in terms of symmetric functions of
the two original populations. Using “ave” as before, together with ‘‘aver”,
meaning “average over randomization”, and using one and two primes, respec-
tively, for the populations of z’s and y’s, we have the following example of a
pairing formula as applied to the symmetric mean (12) taken over the 2’s:

ave aver (12) = (12)’ 4+ (1Y (2)" + (2)' (1)"
4201y (11) 4 2011y (1) + (12)".

The polykays are linear combinations of symmetric means chosen, among
other reasons, because of their having simple pairing formulas. Those of degree
3 or less are defined as follows:

ko= (1), ’ b = (111),
(2) ku = (11), ke = (12) — (111),
ke = (2) — (11), ks = (3) — 8(12) + 2(111).
The pairing formula for k;» becomes, for example,
ave aver ki = kiz + kiks + keki + k12 .

The remainder of this section consists of a general definition of the polykays
and a derivation of the pairing formulas for symmetric means and polykays. A
new notation for symmetric means (to be extended later to polykays) will first
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be introduced. Henceforth the notation used in (2), above, will be referred to as
the primary notation, and that used in (3), below, as the secondary notation.

DerinrTioN. The entries a, b, - - - , d of a symmetric mean {ab - - - d) of degree
m form a partition of the integer m. It will be convenient to represent such a
partition in terms of m distinct symbols, so that the secondary notation for
{(ab --- d) will be

(3) <q1q2...qa’rlr2...rb’ "',3132°"sd>,

where commas are used to separate the parts of the partition, and the lengths
of the parts are the positive integers a, b, - - - , d, whose sum is m. Any use of the
word partition below will refer to an expression such as that enclosed in { )’s in
(3). Two partitions are equivalent (not distinct) if they are identical, except
possibly for the order of parts and the order of symbols within a part. Greek
letters will be used to represent arbitrary partitions. A partition g is a subparti-
tion of a partition « if o can be made equivalent to 8 merely by the insertion of
one or more commas. A dichofomy of a partition « is an ordered set {ai, a2} of
two partitions, ; and as , such that o; consists of some of the symbols comprising
a, and @, of the remaining ones, and such that any two symbols which both
occur in ey or both in a; belong there to the same part if and only if they belonged
to the same part of a. The null partition will be denoted by ¢, so that {¢, a}
and {a, ¢} are dichotomies of a. A simple dichotomy of « into {a; , @} has the
property that each part of « belongs entirely to a; or to az . The join of partitions
a1 and a2, having no symbols in common, is that partition « such that {a; , oz}
and {a, a1} are simple dichotomies of &. An expression such as {«), with brackets
enclosing a Greek letter, will denote a symmetric mean, not with just one entry,
but with entries which are the lengths of the parts of the partition «. The sym-
metric mean (¢) is defined to be 1.
TurorREM 1. The pairing formula for a symmetric mean {(a) is

ave aver (a) = > _{8) ()",

where the summation extends over all distinct dichotomies {B, v} of a.
Proor. We recall that (a) is a symmetric mean for a sample of numbers of the
form z; + y; . Hence if («) is of the form (3), we have ’

(@) = jll— 27 (i + ya) - (@ 4yl + y) - (@ + )]
co e+ wa) - (o W),

where there are a, b, and d equal factors within the first, second, and last pair
of square brackets, respectively. For a fixed choice of ¢, j, - - - , k, the product
following the >_* symbol expands to a sum of 9o+t 44 torms, each of the form

(4) X"vj'...,k Yivjv...,k,
where

A_B D
X«;,j ..... k= LiXj Tk,
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and
a—A_ b—B d—D

Yijo =¥i Yi Uk
Each term of the form (4) must be summed over the allowable sets of values of
i, j, -+, k, averaged over randomization, and divided by M; aver () is the

sum of these individual results, one for each split of @, b, --- ,dinto 4, B, --- , D
anda — A,b — B, ---,d — D. From the independence of the two randomiza-

tions, we have

(5) % aver E" X«;,j,...,k Y,',j,...,k = ]ill Z" aver Xi,j,...,k aver Y,',,',...,k.

But aver X,,j,...,r is simply
<q1 DRI qA’rl I rB’ LR ,sl LRI sa>* = <ﬁ>*’

where (8) is a symmetric mean of the type mentioned in the statement of the
theorem, the asterisk indicating that it at present refers only to the sample of
#’s in question. Similarly, aver Y ;,... r is {(y)**, v and 8 being related as in the
statement of the theorem. Hence

aver (@) = ]l_{f > > * aver Xi .o aVer Yi ok

1
- LS s
The M terms in the > * summation being equivalent, this reduces to

aver {a) = >_{(B)* {(y)**,

this last summation being as defined in the statement of the theorem. The final
step is to average over samples. Since the samples are chosen independently
from different populations, and since the symmetric means are inherited on the
average, we have the theorem, namely,

ave aver (a) = > (8) {(v)".
DerFNiTION. For partitions of a fixed number, m, of symbols, we say that
rank o < rank g

if (a) the number of parts in a exceeds the number of parts in v, or if (b) « and 8
have theé same number of parts; but when the parts are arranged in order of
increasing length, the first ¢ — 1 parts of « are equal in length to their corre-
sponding parts in 8, while the sth part of « is shorter than the ¢th part of 3.

Our definition of polykays will be in terms of the secondary notation, a polykay
being represented by (a) and distinguishable from a symmetric mean (in this
notation) only by the use of parentheses in place of { )’s.

DerniTION. The polykays of degree m are defined by the equations

(6) (@) = (@) + 22(8a),
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where there is one equation for each symmetric mean () of degree m, and where
the summation is over all distinct subpartitions 8, of a. [If there are S(m) sym-
metric means of degree m, the S(m) equations (6) of course define the S(m)
polykays that occur on the right if and only if the determinant of the coefficients
of the distinet polykays does not vanish. (Two polykays, or two symmetric
means, are equivalent, or not distinct, if the partitions representing them can
be made equivalent by renaming the symbols.) Since, in each equation of (6),
the rank of (a) is greater than that of any of the (8.), then when those (8.)
which may be equivalent are collected and results are ordered by descending rank,
the determinant has ones down the main diagonal and zeros below, so that its
value is 1.]

Since any symmetric polynomial function can be expressed as a linear com-
bination of symmetric means, it follows from the definition just given that it
can also be expressed as a linear combination of polykays.

ExampLe (m = 3). The symmetric means are (111), (12), and (3), expressed
in the primary notation, or (p, g, s), {p, ¢ 8), and {p ¢ s) in the secondary notation,
in order of ascending rank. The polykays are then defined by the equations

0, ¢, 8) = @, 9, 9),

(p,g8) = ,99) + (0,9 9),

(pgs) = @as)+ @,¢8)+ (& ps)+ (5,29 + (0,4 9).
These may be solved to give '

(9,8 = (D, ¢, 9),
@99 = (a8 — (P ¢,
(Pgs) =(pgs)—(p,qa8) —(@ps)— (520 + 2, q09),
or, in the primary notation,
Fan = (111),
ki = <12> - <111>>
ks = (38) — 3(12) + 2(111).
TuroreM 2. The pairing formula for a polykay (a) is
ave aver (a) = >,(8) ()",

where the summation extends now (in confrast with the similarly written summation
of Theorem 1) only over the distinct simple dichotomies {8, v} of the partition c.

Proor. We obtain the result by induction on rank for a fixed degree m. For the
lowest rank, i.e., for (11 --- 1) and ky...; (in the primary notation), the sym-
metric mean and polykay are identical; since all dichotomies in this case are
simple, Theorem 2 holds for this rank by virtue of Theorem 1. For other ranks,
we observe in equation (6) that

(7) ave aver {(a) = ave aver (a) + 2 ave aver (8.)
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and recall that the rank of each of the 8, is less than that of a. The induction
assumption then will be that the theorem has been proved for the (8.). Apply-
ing the theorem to any particular ave aver (8.) gives us the sum of

()’ (@)”

over all distinet simple dichotomies {v, 6} of 8. . None of these dichotomies can
arise from any of the other 8,, since any simple dichotomy determines the par-
tition from which it comes. Hence, since the various 8, are all the distinct sub-
partitions of «, it follows that

. ave aver (B) = D, (v)'(9)",

where the last sum extends over all > (y)’(8)” such that {vy, 8} is a simple

dichotomy of some subpartition of . This is the same as saying that the sum

extends over all (y)’(8)” such that the join of v and § is a subpartition of a.
Going to the left side of (7), we have, from Theorem 1,

ave aver (@) = 2, (\){u)”,

where the sum extends over all distinct dichotomies {\, u} of «. Each (A)’ and
{u)” can be expressed in terms of polykays by equations (6). Since two M’s
arising from distinct dichotomies of « cannot contain the same symbols,
> (A\Y{u)” must be equal to

2 ®@”

where this sum extends over all terms where £ and 5 are subpartitions of some
Mand g (or £ = X\ or 3 = u or both), respectively, {\, u} being a dichotomy of
a. This is evidently the same as the sum of all (£)'(y)” such that the join of £
and 7 is « or a subpartition of a.

The first and third of the three terms of (6) have now been specified, and
ave aver (o) is equal to their difference, which is the sum of all (£)’(y)” such that
the join of £ and 9 is a.

ExampLe. Consider the polykay k2, or (p, ¢ s). The simple dichotomies of
D, g § are

p,gs and ¢,
p and g¢s,
gs and »p,
¢ and p,g¢s,
so that
ave aver ki, = ave aver (p, ¢ 8)
= (0, ¢8)@®)" + () (@9)” + (¢ ®)" + @)(»,¢9)"
= ks + kil + kikY + ka2,
(¢) being 1.
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4. Bisamples and generalized symmetric means. We turn now to the problem
of the present paper. We suppose a population matrix

lzzsl, I=12--,RJ=12:,C
from which a bisample
ll:sl, 1=1,2,.+,r;5=12,---,¢

is selected as described in Section 2. Any polynomial symmetric in the z;; (in
the sense defined in section 2) is a linear combination of sums of the type

2Ryt
where the symbol »_%, for two-way arrays, will mean summation over all subse-
quent subscripts, with the restriction that row subscripts represented by differ-

ent letters must remain different throughout the summation, and the same for

column subscripts.
We define generalized symmetric means to be averages of monomial functions

over a matrix; i.e., a g.s.m. is a polynomial

(8) 74 L 27 ag e allt),

Doy 18t

where M is the number of terms in the summation. A g.s.m. is specified by the
exponents, together with information which tells which ones correspond to
elements that lie in the same row, and which ones correspond to elements that
lie in the same column. A convenient notation for g.s.m.’s is thus provided by
placing the exponents in a matrix within brackets in such a way that exponents
which affect elements in the same row of the matrix ||z;|| are entered in the same
row, and similarly for columns. Thus,’
a b 0] _ 1 o, a b d
[o 0 d] T relr — Die = D(c —2) 2.7 &l T,

Ordinarily the zeros will be replaced by dashes. Dashes will also be used to ex-
tend every matrix of entries to at least two rows and two columns to avoid con-
fusion with symmetric means and, when parentheses are later introduced, to
avoid confusion with binomial coefficients. Thus,

2 - _lvyw,
I _]—r—ch,,

[g :] rc(r re(r — 1) 27 i Ty

Evidently two g.s.m.’s are identical if the matrix of entries of one can be ob-
tained from that of the other by permuting rows and/or columns. The distinct
g.s.m.’s of degrees 1 and 2 are as follows:

s Square brackets are used, for convenience in printing, in place of ()’s for g.s.m.’s hav-
ing more than one row.
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1 -
Degree 1: | ~ _|-

R

The idea of random pairing for bisamples is a straightforward extension of
that described in Section 3 for samples: Given two r X ¢ matrices ||z;j]| and
lly:il, the order of rows and of columns is randomized in each, and a new r X ¢
matrix ||z;;]| is formed by matrix addition of the results.

The general term

Apq Gst
qu oo x“

(which specifies, as in (8), a g.s.m. of degree m) contains m factors, a,, of which
are equal to z,, , etc. To each of these factors we assign a different symbol, and
the resulting set of symbols may be partitioned in two ways—once by rows, and
once by columns. The secondary notation for the g.s.m. will then be an ordered
pair

(e/B)

of partitions @ and 3, each on the same set of symbols. Each part of « will con-
sist of those symbols which correspond to factors having a particular row sub-
script, and the parts of 8 are similarly determined by column subscripts. For
example,

2 1 1
|: 1] Z# xia LpsLis

- B re(r — 1)(c — 1)
becomes, in the secondary notation,
(abd,e/ab,de).
To establish the property of inheritance on the average, let

(@/BY = 32 X7 a8 - ol

represent any g.s.m. for an R X C population. This is the average, with equal

weights, of all terms B = x3%? - - - 25%". If (a/B) represents the same g.s.m. for

an r X ¢ bisample, one or more of the expansions of (a/8) over various bisamples

will contain any given term B. Hence ave (a/B) is a weighted average of all

terms B, and it follows from the symmetry of the set of all » X ¢ bisamples

that the weights in this average are also equal, so that ave (a/8) = (a/B)'.
TuEOREM 3. For any g.s.m. {e/B), the pairing formula is

ave aver {(a/8) = > (v/8Y(\/u)”,

where the summation extends over all distinct dichotomies {v, A} of o and {8, u} of
B, v and & consisting of the same symbols.
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The proof of this theorem, being virtually identical with that of Theorem 1,
will be omitted.

b. Definition of the bipolykays. In order to make the general definition of
bipolykays, we define a “dot-multiplication” for symmetric means as follows:

(@)-(8) = {a/B) if « and B consist of the same symbols
=0 otherwise.

This noncommutative multiplication can be extended by distributivity to pro-
vide dot-products of linear combinations of symmetric means.

DermirioN. The bipolykay (a/B), where « and B are partitions of the same set
of symbols, is

(a/B) = () (B),

it being understood that () and (8) are expressed as sums of symmetric means
(as in the example just before Theorem 2, Section 3) before the dot-product is
taken.

ExampLE. Consider the bipolykay (i }) (The primary notation for a bi-

polykay (a/8) is the same as that for the g.s.m. («/8), with ( )’s replaced by paren-
theses.) This becomes, in the secondary notation,

11
(_ 1) =®gs8/pq9)
=(pgq 9 (®qs) by the definition above

=[s, ) — (s, 2, D1 [p, ¢ 8) — (P, ¢, 9)]
by the example preceding Theorem 2

=(pq/D,q8) —(D,9/D,q8) — (/D¢ 8) + (s,0,0/D,98)

1- 1--
SIS
-1 --1
Since bipolykays are linear combinations (with constant coefficients) of the
g.s.m.’s, the bipolykays must also be inherited on the average. By means of
the device of ranking (as was done for polykays in Section 3), one can show
that the g.s.m.’s can in turn be expressed as linear combinations of bipolykays.
(This is done explicitly through degree 4 in Section 8.) Hence any polynomial
symmetric function of elements of a bisample can be expressed as a linear com-
bination of bipolykays.

6. Pairing formulas for bipolykays. The statement of pairing formulas for

bipolykays requires the following terminology:
DeriniTION. The bipolykay (a/8) is said to be decomposable if there exist simple
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dichotomies {1, o} and {81, B} of @ and B, respectively, such that «; and 6
consist of the same symbols, and neither a; nor oy is null. In this case, («/8)
may be written as a product

(@/B8) = (en, B1) X (az, B2),

where the commutative operation denoted by X is defined by this equation,
and (a1, B1) and (az, B2) are called components of (a/8). If any component is
similarly decomposable, the original bipolykay can be written as the X-product
of at least three components, and clearly any decomposable bipolykay can
finally be written as the X-product of indecomposable components where the
set of indecomposable components is unique except for order.

TueorEM 4. If a bipolykay (a/B) is indecomposable, its pairing. formula is
simply

ave aver (a/B) = (a/8) + («/B)".
If (@, B) is decomposable and is the X-product of indecomposable components
(ai/Bi), 1 = 1,2, -+, d, the pairing formula 1s
ave aver (a/B) = (o/B)' + (a/B)" + X (v/8)' (M w)",

where the summation extends over all expressions for which (v/8) is the X-product
of1,2,---,0rd — 1 of the (a;/B:) and (\/u) is the X-product of the remaining
ones.

ExAMPLES:

11
ave aver | _ | | = ave aver (pg,s/pq89)

Il

(Pg,s/p,as) + (pg,s/p,qs)" since this is inde-
composable

11) , (11

-( ) +(! )

11—)

ave aver -1

ave aver (p¢,s/p, ¢, s)

I

ave aver [(p ¢ / p, ) X (s/8)]

we,s/pa,8)+®es/p g9
+ @aq/p, 9 /s) + (s/9)(pa/p 9

(I Y
()

I
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(Note: A decomposable bipolykay in primary notation can easily be recognized,
as its matrix of entries can be put in the form
A | B

¢ |D

where A, B, C, D are matrices, with all elements of B and C zero.)

The remainder of this section will be given over to the proof of Theorem 4.
As before, asterisks will indicate bipolykays (or g.s.m.’s) for bisamples, and
primes will denote population values; if a certain population is indicated by n
primes, a bisample from that population will be indicated by n asterisks.

DEeriNiTION (EXTENDING THE DOT-MULTIPLICATION). In dealing with two
different populations, we define

[(e)*(8)**]- [(r)*(0)**] = [er)- n)I*(B) - (ON**,

and by extension this provides a meaning for any expression which is formally
written as a dot product of linear combinations of terms of the type {a)*{8)**.
Asterisks may be replaced by primes. (Note: Since we are dealing with matrices,
the terms ()*(8)** themselves have no meaning.)

LemMA 1. ave aver [{(«)-(8)] = [ave aver (a)]-[ave aver (8)], and ave aver
[(@)-(8)] = [ave aver (a)]-[ave aver (8)]. (Here {(a)-(8) = {(a/B) is a g.s.m. for
a sample formed by random pairing of two bisamples. The expressions ave aver
(a) and ave aver (8) are formal expressions of Theorem 1, their dot product
having meaning only from the definition just above. Similarly for the polykays,
which must be expressed as sums of g.s.m.’s before the above definition gives
them meaning.)

Proor. If o and B do not consist of the same symbols, the result is trivial.
If they do, then {(a)-(8) = {(a/B), and so

ave aver [(a)-(8)] = 2 (v/8Y(Nw)",

where v, 6, A\, u are as described in Theorem 3. Clearly, from Theorem 1,
[ave aver {a)]-[ave aver (8)] gives the same sum, so we may now go to the second
part of this lemma. In the case of polykays, we have, by their definition,

(@) = 2 aias),
8) = 22083,
where a; is « or a subpartition of «, and the 8; bear the same relation to 8. Hence
ave aver [(a)-(8)] = 2; 27, ad; ave aver [(a:)-(8,)],
and

[ave aver (a)]-[ave aver (8)] = Z,- > ab; [ave aver {a,)]-[ave aver (8,)].
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By the first part of the lemma these are the same, and so the second part is
proved.

Lemma 2. (2)'(8)"-(v)'(8)" = [(a)- (I'[(8)- (8)]". (Each side of this equation
has the meaning that ts provided by the above conventions after each polykay has
been written as a linear combination of symmetric means.)

Proo¥. As in Lemma 1, we write

(@) = Zi ai<ai>’,
B)" = 225 b(85)",
() = Zk Ck<7k>’,
@) = 2imdm(3m)”.
Then
(@) (B)"- () (0)" = 2o 205 adi{esy (B 2ok Dm & Amlye)’ (3m)”
/\ = D0 205 2t 2m @bick Am{as) (B5)" - (vi) (Om)”
by definition
= 2% 225 abil{es)- (vl 20k 2om (83} (3m)]”
= [(a)- MI(B)- (31",

proving Lemma 2.
To prove Theorem 4, we write

ave aver (a/B8) = ave aver [(a)-(8)] by definition

[ave aver (a)]-[ave aver (8)] by Lemma 1
= > (\a)'(#a)” 2, (\s)'(ug)” by Theorem 2,

where the first sum extends over all simple dichotomies {\., p«} of , and simi-
larly for the second sum. Hence

ave aver (a/B) = X 2 [(\a) - ) (1a)” - (8)"],

by Lemma 2. Now ), is a partition consisting of some of the parts of «, with no
other changes made, since {\,, u.} is a simple dichotomy of «. Similarly A\s con-
sists of some of the parts of 8. The expression (A.)’- (A\g)’ vanishes unless A\, and
A\s comprise exactly the same symbols. Thus the only nonvanishing terms arise
when

(a) A\ = a and A\g = B, producing the term

(M) () 1(#)" - ()] = (a/B),

¢ being null; or
(b) \e = A\s = ¢, producing the term (a/B)”; or
(c) Ae = Ngand po = pg and none of these is null.
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The last case cannot happen to an indecomposable bipolykay. If the bipolykay
is decomposable, case (c) gives exactly the various terms that correspond to the
splitting of the bipolykay into indecomposable components, and Theorem 4 is
established.

7. Pairing formulas for certain special cases. Various special cases and de-
generate cases arise in connection with pairing when applied to the analysis of
variance. In order to deal with some of these, we need first a lemma
about polykays and then a theorem:

LeMMA 3. If kuy...p ©s any polykay, the coeffictents in its expression as a linear
combination of symmetric means add to O unlessm = n = -+ = p = 1.

Proor. Consider a population, or sample, all of whose elements are equal to 1.
Then clearly every symmetric mean has the value 1, and the value of kps...p is
the sum of the coefficients in its expression as a linear combination of symmetric
means. We have only to show that in this case Lmy4..., = 0 unless

m=mn=--+=p=1,
Looking at equation (6), we see that, when all parts of « are of length 1,
(a) = (a), i.e.,
ku...l = <11 s 1>,
and, in the present case, each of these equals 1. If « has one part of length 2,
and all others are of length 1, then
1 ---12) = (11 --- 12) + (11 --- 1);

orl = (11 --- 12) + 1 in the present case, so that (11 - - - 12) is 0. We can now
prove the theorem by induction on rank, supposing that, for a given equation

of type (6),
(a> = (a) + E (Ba))

all polykays of rank less than that of (a) are 0 except for (11 - -- 1). This equa-
tion then becomes

1=(a) +1,

and (o) = 0.
TuroreM 5. Consider a bisample in which all elements in the same row are
equal, t.e.,
Tej = T; Jj=12---,¢
Over this matriz, a bipolykay (a/B) (2) is equal to the polykay (c), defined over the
set of x; , if all parts of the partition B are of length 1 (.e., ¢f, in the primary nota-

tion, all eniries are ones in different columns); or (b) ¢s equal fo O otherwise.
Obviously an analogous statement applies to a bisample with constant columns.
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Proor. In this case it is obvious that any g.s.m. («/8) is equal to (a), the latter
being defined over the set of z; . Now if (a/8) is any polykay, we can write

(a/B) = (a)-(B)
= 2 iaa) 255 bi(85) by definition
= D i D jadiai/B;)
= > Y.;abia:)), by remark at beginning of this paragraph.

This last expression vanishes unless ) b; > 0, i.e., unless (Lemma 3) all parts
of the partition 8 are of length 1. Hence 2 b, is 1 when it is not 0, and in this
case

(a/B) = 2 s aias)
= ().

The special cases which we now wish to consider are as follows:
Case 1 (ConstaNT Rows). Theorem 5 shows that in this case a bipolykay

(a/B) is given by
(/B) = kmn-.p if all parts of 8 are of length 1
=0 otherwise,

m, m, -+, p being the lengths of the parts of a.
Case II (ConstanT CoLumns). Here, of course,

(/8) = kmn...p, if all parts of  are of length 1
=0 otherwise.

Cask III (ConsTaNT Rows AND CoLumns). Here all elements of the bisample
are equal. It follows that

(a/B) = ku..a if all parts of « and 8 have length 1
=0 otherwise.

If d is the common value of the elements of the bisample, and m is the degree of
(a/B), then (a/B8) = d™ when it does not vanish.

These cases might arise, for example, in connection with a linear model such
as .

Uij = m + & + yi + 245,

where the z; can be thought of as a bisample from a matrix with constant rows,
the y; from a matrix with constant columns, m from a matrix with all elements
equal, and z;; from an arbitrary matrix representing “cell effects”. Using 0, 1, 2,
3, and 4 primes (asterisks) for the populations (bisamples) respectively associ-
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ated with u, m, z, y, and 2, we find the pairing formula for any indecomposable
bipolykay («/8), for example, to be

ave aver (a/) = (a/B)" + (a/B)" + (a/B8)"" + (/B)"",

and the cases above would tell us that some of these terms are zero and others.
are equivalent to polykays, depending on what bipolykay («/8) represents.

Instead of sampling from a matrix, one may wish to consider a degenerate
case in which the population consists only of rows, with no column designations;
i.e., an r X c bisample is chosen by a selection of r rows followed by a selection.
of ¢ elements from each of the r rows chosen. There is also the completely de-
generate case, with no rows or columns, so that an r X ¢ bisample is just an
ordinary sample, randomly arranged, of rc¢ elements from a set of numbers.
This case, which would apply, for example, to the 2’s in the linear model above
if they were regarded as independently sampled “random errors” instead of
fixed interactions, is designated as Case IV:

Cask IV. When pairing a bisample with a completely degenerate bisample,
we have only to notice that randomization in the latter is not restricted to rows.
and columns, so that we have, for the completely degenerate case, these results:

(a) All g.s.m.’s with the same entries (primary notation) have equal aver-
ages for randomization, e.g.,

22w ] e 23]
aver| =aver1_=aver_1.

(b) All bipolykays vanish on the average except those having only diagonal
elements (in secondary notation, this means those (a/8) such that « and 8 are
equivalent partitions). This statement can be verified for degrees <4 by ob-
serving that, in the relevant conversion formulas (Section 8), the coefficients of
g.s.m.’s with the same entries add to zero.

(¢) Bipolykays with only diagonal entries are equal, on the average, to the
corresponding polykays; e.g.,

aver (? I) = aver kg, ete.

8. Conversion formulas for g.s.m.’s and bipolykays. In this and the next
section, tables will be presented which make possible the use of bipolykays up
through degree 4, that is, up through variances of variances. The distinct g.s.m.’s
of degrees 1 and 2 were listed in Section 4. Those of degrees 3 and 4 pequire more
space (in either notation) and so will be denoted by #’s (for degree 3) and f’s
(for degree 4) with subscripts, even though this notation is less informative,

as follows:

1 --
Degree 3: h = [— 1 —J te = B ﬂ

--1



Degree 4:

A
fa
fs
Ja
o
fo

fr

s
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]_...

1- 21 - 3 1
f9= 1- f20=___1:| f31=_____

1_

(11 -] 2 - m3
f1o= 1-- f21= 1- f32= 1 -

[ - - 1] [ -1 - T

(-1 1] 211 4 =T
f1= 1 --— _f2= _f =

The following conversion formulas apply to the bipolykays of degrees 1
and 2:

Degree 1: 1) =@

Degree 2: (i I) = :i Ij
(-[1-[7]
()-[-[13]
C-L2-EH-0+ )

The bipolykays of degree 2 have been independently developed by H. Fair-
field Smith in [5].

For degrees 3 and 4 we use notation analogous to that used above for g.s.m.’s,
letting T”s stand for bipolykays of degree 3 and F’s for bipolykays of degree 4.

Thus
re-(111)

Fy = <E 1 i I>, ete.

The conversion formulas for bipolykays of degrees 3 and 4 become quite
long; but since they are linear, only the coefficients are of interest. These co-
efficients are found in Table 1 for degree 3 and in Table 2 for degree 4. The
nature of the formulas makes it possible for one table to present coefficients for
conversion in both directions. The coefficients for any desired expression are
found by reading over (or down) to and including the diagonal of ones. For
example, in Table 1,
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TABLE 1

For conversion of g.s.m.’s and bipolykays of degree 3

h 1 13 s ts ts 4 3 ty ho
T, 1 1 1 1 1 1 1 1 1 1
T, -1 1 3 1 1 3 1 3
T, -1 1 3 1 1 1 3 3
T, 2 -3 1 1 1
Ts 2 -3 1 1 1
Ts 1 -1 -1 1 2 2 6
T, 1 -1 —1 1 1 1 3
Ts -2 3 2 -1 —2 -1 1 3
Ty -2 2 3 -1 -2 -1 1 3
To 4 —6 —6 2 2 6 3 -3 -3 1

Te=th—1ts— b+,
bs=T1+3Ts+ Ts,
and similarly in Table 2.

9. Multiplication formulas for bipolykays. The usefulness of the property of
inheritance on the average is pretty well limited to the case where functions
having this property occur linearly. Any polynomial in bipolykays for one bi-
sample, however, can be expressed as a linear combination of bipolykays for that
bisample, given the proper multiplication formulas. We give below the multipli-
cation formulas for bipolykays, up to and including products of degree 4.

e(2) = C )+ D+ (1) ()

re (i :) (i —> = 2T7 4+ 2Ts + 2rT5 + 2¢Ts + rcTh,
1-\/11

re (_ _) (_ ) = 2Ts + 2rTs + ¢Ts + rcT,
1-\/1

re (_ _> (1 = 2T + 2¢Ts + rTs + rcTs,

)
)

= Tyw+ rTy + cTs + rcTy;

=3
o
VeumN
|
[
N——"

= 6F10 + 3F12 + 37‘F3 + 36F2 + TCFl,

3

<
o
N TN
LB B
|
1|
S
-

J

= 2Fy + Fis + Fis + 2Fy + r(2Fy + Fu) + ¢(Fs + Fg) + rcFy,
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1 T3 = 2F14+ Fls + Fm + 2F21+ r(F5+ F7) + 6(2F10+ Fn) + TCF;,

rc

N—"

rc

= 3Fy + 3rFy + cFs + fCFc,

—
[
N—"
s

rc =3F23+7‘F9+3CF13+7'CF7,

\
(
(
.
(
(

— —
[ o
S 3

= Fu+ Fu+ Fu+ Fos + r(Fu+ Fi) + ¢(Fis + Fis) + rcFyo,

rc

—
11
N———"
3

= Fou+ Fos + Fo1 + Fos + r(Fy + Fa1) + ¢(Fis + Fa) + rcFy,

[a—
[
N—"
o

= Fn + Fu + r(Fu + Fa) + cFan + rcFa,

rc

(L2

m(i :) Tw = F33 + rF3 + cF3 + rcFas.

—

Ty = F3 + Fg + rFy5 + c(Fy5 + Fos) + rcFy,

N—"

Products of bipolykays of degree 2 are more complicated. The coefficients
of the bipolykays of degree 4 in the expressions of these products are tabulated
below, using the following abbreviations:

a = 2/[rc(c — 1)] g=1/c
b = 2/[re(r — 1)] h=1/r
d = 2/[c(c — 1)] k= 1/(rc)

e =2/[r(r — 1)] p = 1/[re(r — 1)(c — 1)]

10. Variances of bipolykays of degree 2. The multiplication table of the pre-
ceding section enables us to find the variances, in taking bisamples from a popu-
lation matrix, of bipolykays of degree 1 or 2. For example, we have

var (1 2)" = avoaver {(f :)} ~ {ave aver (1 j)}

From Section 9 we have

and o w1 -G+ =)

wewrr{(1 VY = wwaer (Y # 1LY 1) (55))
- rlc(% :>/ + ;(i f) + %(i :)’ 4 (i I>’»
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Z::e aver C :)*}’ _ {(1 :>,}2
" =)+ RC Y G+ ()

w(t ) = (B ) + G- R + -5

Proceeding in the same way for the variances of bipolykays of degree 2, we
obtain the results given in Table 4, which table provides the coefficients of the
expressions of the indicated variances and covariances as linear combinations
of population bipolykays. In order to simplify the tabulation, the following
expressions are used:

1 1 11
A=7-% =7 EC

1 1 2 2
B=0-0 T=,(r—1)(c—1)—(1a—1)(0—1)

2 2 2 2
D=r—1—R—1 U=rc(r—1)—RC(R—1)

_ 2 2 yo_ 2 2

Te—1 C-1 " re(c—1) RC(C —1)

2 2 2 2
C=—D BEE=D " "G -De=1) CE-DC=D
2 2 2 2
H=c(c—1)"o(0—1) Y=r(r—1)(c—1)“R(R—1)(o—1)

po_2 __ 2 7 - 2 3 2
cr—1) C@R-1) re(r — 1)(c—1) RCR -1)(C —1)"

2 2
Q=r(c—1)_R(C'—1)

11. Conclusion. Any symmetric function of elements of a two-way array can
be expressed as a linear combination of bipolykays, using the multiplication
formulas of Section 9 where necessary. If there is a linear model involved, then
the average values of the bipolykays (and hence of the original symmetric func-
tion) can be found, by means of pairing formulas, in terms of polykays or bi-
polykays of the populations from which come the components of the linear
model. A later paper will illustrate the use of these procedures in finding un-
biased estimators for variance components, as well as the variances of these
estimators, etc.
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