A “MIXED MODEL” FOR THE ANALYSIS OF VARIANCE!

By HENRY SCHEFFE

Unaversity of California, Berkeley

1. Summary. A “mixed model” is proposed in which the problem of the
appropriate assumptions to make about the joint distribution of the random
main effects and interactions is solved by letting this joint distribution follow
from more basic and “natural” assumptions about the cell means. The expec-
tations of the mean squares ordinarily calculated turn out, with suitable defi-
nition of the variance components, to have the same values as those usually
found in more restrictive models, and some of the customary tests and con-
fidence intervals are justified, but some aspects appear to be novel. For example,
the over-all test found for the fixed main effects and the associated multiple-
comparison method require Hotelling’s 72

2. Introduction. We consider K replications of a two-way layout with I rows
and J columns (I > 1, J > 1, K = 1), the rows corresponding to levels of a
“Model I’ [4] factor A, whose effects we wish to regard as fixed effects, and the

columns corresponding to the levels of a ‘“Model II”’ factor B, whose effects we -

wish to regard as random effects. We let y;; denote the kth measurement in
the ¢, j cell (the intersection of the sth row and jth column). Throughout this
paper, 7 and 7', as subscripts or indices of summation, will range over the integers
from 1 to I;j, j/, and 77 will range from 1 to J, etc., unless otherwise indicated.
As an illustration, we may imagine an experiment involving I different makes
of machines and J workers regarded as a sample from a large population of
workers. Each worker is put on each machine for K days during the experiment
and ;5 is a measurement of the output of the jth worker the kth day he is on the
1th machine. It is customary in the analysis of variance to write
(1) Yise = u + a; + b; + cij + ein,
where the general mean u and the row effects {«.} are constants, about which we
may assume without loss of generality that Z,- a; = 0, and where the column
effects {b;}, interactions {c;;}, and “errors” {e;s} are random variables about
whose joint distribution certain assumptions are made. The usual assumption
that the set {e;;x} is statistically independent of the set {b;, c;;} seems acceptable
to the writer in many applications, but the further assumptions usually made on
the {b;} and {c;;} seem to him unsatisfactory,’ as being ad hoc, or too restrictive,
or not sufficiently complete. For example, the usual assumption that the {c;;}
are statistically independent of the {b;} is ad hoc, the frequent assumption that
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24 HENRY SCHEFFE

all the {c;;} are independent is too restrictive, and the additional assumptions
stated by those who take D_; ¢;; = 0 (all 7) are sometimes insufficient even to de-
termine the expected values of the mean squares usually employed.

3. The model. We propose to avoid the unpleasant assumptions as follows:
We will assume that
2 Yige = Mij + €ije
where the set of errors {e;x} is statistically independent of the set {m,;} of
“true” cell means.

About the set of errors {e;;x}, we assume that they are independently and
identically distributed with zero means and variance o:. (This assumption can
obviously be lightened without affecting the validity of the expected mean
squares and unbiased estimates derived in Section 5, which depends only on the
first and second moments of the set {m;, e;ix}, and for which it is sufficient that
the set {e:x} have zero means, zero correlations, and a common variance o)

The writer hopes that the assumptions about the joint distribution of the set
{m.;}, to be stated below, will be found acceptable. The main effects {b;} and
interactions {c;;} will then be defined in terms of the {m;;} in a natural way, and
the joint distribution of the set {b;, ¢;;} will thus be determined. Some parts of
this program and its implications have also been developed earlier by others, as
we shall be able to indicate more conveniently at the end of this paper.

Our basic assumption on the rectangular array of the {m} is that the J
columns are distributed independently like a vector random variable m with
I components, my, - -+, m;. Thus, in the above illustration of machines and
workers, for each worker in the population there is a vector whose I components
are his ‘““true means’’ on the I machines, and the random vector m has the dis-
tribution generated by this population of workers, idealized as an infinite popu-
lation. The J columns of the array {m.;} are the J vectors belonging to the J
workers in the experiment, assumed to be a random sample from the population
of workers.

About the components {m;} of the random vector m, we shall always assume
that the I variances are finite. Sometimes we shall also make the normality
assumption

(9t): The {m;} have a joint normal distribution, and the {e:;} are also jointly
normal. \

We shall also have occasion to refer to a symmetry assumption

(8): The {m;} have equal variances and equal covariances.

We will refer to the assumption (8) as a limiting case in which certain relations
become simpler or clearer, but we do nof recommend it in applications—where
there is usually no real symmetry corresponding to this assumption. Thus, in our
illustration, two machines might be very similar (perhaps of the same make and
model), but very different from the other machines. Further objections to
assuming (8) will arise when we consider below the finite analogue of the in-
finite population of vectors associated with the random vector m.
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4. Definition of effects and variance components. The “true” mean for the
tth level of the factor A (thereader may find it easier to substitute ¢ ‘true’ mean
for the 7th machine”) is defined to be

(3) M = E(mz’)’
and the ‘“true” general mean, to be
4) b=,

where the dot notation here and elsewhere signifies that the arithmetic average
has been taken over the subscript which the dot replaces, that is, u. = Z; wi /1.
The main effect of the 7th level of A, or the ith row effect, is defined to be

(5) O = Mi — M,

so that 2.; a; = 0. The “true” meae for the jth level of factor B (for the jth
worker in the experiment) is defined to be m.;, and the main effect of the jth
level of B, or the jth column effect, to be

(6) bj = M.; — W

Finally, the interaction effect, ¢;;, of the jth level of B with the ¢th level of 4
is defined to satisfy the equation

(7) mij = p + ;i + b; + ¢,
or
(8) Cij = Mij — M.j — ai,

so that D _; ¢;; = 0 (all j).

We see that the J vectors with I 4 1 components b;, ¢, -+, ¢r; are in-
dependently distributed like the random vector with components b, ¢1, -+« , ¢r
defined in terms of the basic vector m as follows:

9) b =m. — p,
(10) C; =My — M. — ;.

We note that b and the {c;} have zero means, and that their variances and co-
variances depend on the elements of the covariance matrix (o) of the vector
m in the following way:

(11) var (b) = o..,
(12) cov (C,’, C,") = 0t —™ 04 —™ Oy, + g..,
(13) cov (b, ¢;)) = 0i. — 0.

The main effects {b;} and interactions {c;;}'in (1) thus have zero means, and the
variances and covariances within a set {b;, ¢1j, ---, ¢1;} are given by (11),
(12), (13), while the covariance of any member of this set with any member of
the set {bj, c1, *++ , Crjv} is zero for j # j'.
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2We2 shall be led to the appropriate definitions of the ‘“variance components”
04,08, 048, Dy Way of the analogy with the “finite model”’, where the vector m
can take on only one of a finite number, @, of values, the gth having components,
say, pig, -+, prg - For the corresponding I X @ rectangular array, the usual
definitions, chosen to give the simplest formulas for the expectations of the mean
squares customarily computed, are

(14) oa = I = D73 (use — ),
(15) o5 = (Q — 1)”; (g — 1)
(16) das = (I — 1) (Q — 1)_12 ; (ig — Mie = pog + )

If we regard our previous infinite model as a limiting case of the finite model as
Q — «, we see that the analogues of the above formulas are to be found by
1eplacing pig , i 5 heg , e (@ — 1)7 2o by ms, ps, m. , u, E, respectively, and
we are led to the following definitions, which we shall adopt for the infinite
model:

(17) o= - 1)“‘20&,
(18) oy = var (b),
(19) dis = (I — 1) X var (ca).

The variance components oy and o5 may be expressed in terms of the elements
of the covariance matrix (o) of the vector m, from (11) and (12),

(20) or = o..,
(21) o = (I — 1)—1; (0435 — 0..).

We note that o3 = 0if and only if b = 0 (we omit the phrase “with probability
one”’ here and elsewhere where it obviously applies), that is, if and only if the
basic vector m has a degenerate distribution satisfying ».;m; = constant = Iu.
Also, ¢%s = 0 if and only if var (¢;) = 0 for all 4, or ¢; = O for all ¢, or m; =
m. 4+ a; ; that is, except for additive constants {e;}, the random variables m;
are tdentical (not just identically distributed). Some further insight into our
definitions of the random main and interaction effects and their variance com-
ponents may be obtained by considering the symmetric case (8) where ;v =
pa’ if { # 7', 6is = o". Then, from (20) and (21),

(22) oz = o [1 + p(I — DV/I,
(23) ohs = o’ (1 — p),

where —(I — 1)™ = p =< 1. These relations are shown graphically in Fig. 1.
The previously mentioned objection to assuming (8) in the infinite model is

Il
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that its analogue in the finite model is the fulfillment of the following
3I(I + 1)—2 conditions: If ¢g;» denotes

(24) Zq: (mig — wi-)(pirg — pers),

then all g;; are equal, and all g, with ¢ 5 7’ are equal. There would seem to be
nothing in most applications to justify this.

5. Expected mean squares and point estimates. We shall consider the custom-
ary sums of squares—namely, those for rows, columns, interaction, and error,
which we shall denote by (SS)., (S8)z, (SS)4z, (8S)., respectively—and the
corresponding mean squares,

(25) (M8)s = (I —1)7(88)a4,

(26) (M8)s = (J — 1)7(S8)s,

(27) M8)as = (I — 1)7H(J = 1)7(88)4s,
(28) M8), = I"'T YK — 1)7(S8).,

where

(30) (88)s = IK; (y.. — y...)%

(31) (SS\AB = K; E] (yi,z - Yo — Y.je + y...)z,
(32) (88, = Z ; ; Wi — ?/i.‘i~)2'

In addition, we shall need the contribution to (8:8)4s from the sth row,
(33) (SS)AB,{ = KJZ (y;,-. — Yo — Y.j. + y...)z,
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and its mean square
(34) (MS)AB,i = (J - 1)_1(88)43,,'.

In deriving the expected mean squares we will utilize the following three
formulas for a set of independently and identically distributed random vari-

. . 2
ables, 2, +++, oy, With variance o; :
1 2

(35) var (z.) = 0z,

(36) var (x, — x.) = (1 — N o2,

37 Zn:E(x,, - 2) = (N — 1)oi.
It is convenient to define now

(38) @ = Yiee — Your s

We have from (1),

(39) & = a; + ¢ + ei. — e...,

since ¢.; = 0 and hence ¢.. = 0. It follows that

(40) E@) =

and

(41) var (&;) = var (c;.) + var (e;.. — e...)

= J ' var (¢;) + (1 — I'?) var (es..),
from (35) and (36). Again from (35),

(42) var (&) = J ' [var (c;) + K (1 — I'Y)oll.
Writing

(43) (88). = JK Y 4%,

we may substitute (42) in

(44) E(88)a = JK 2 [var (&) + of]

to get

(45) E(88)s = KX var (¢) + (I — 1) o& + JKD o

Using the definitions (17) and (19), we then find that

(46) EMS8)s = JKoi + Kdis + ot
After substituting (1) into (30) we have

47 (88)s = IK; (b; = b + ej — e,
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and so from (37),
(48) E(88)s = IK(J — 1) var (bj + e.j.)
= IK(J — 1)(¢% + 'K 's3);

hence
(49) EMS)s = IKsy + o.
Substitution of (1) in (33) gives
(50) (88)azi = K Z (cis = €i + €ij. — €5 — €4 + €..);
J
whence

(51) E(SS)az: = K; E(cij — ¢i.)* + K; E(esj. — es. — e, + e...)"%

Call the last term a; . It isclear that the value of a; does not depend on 7, and it is
known from Model I theory that » . a; = (I — 1)(J — 1)o:. Thus,
a; = (1 — I'N(J — 1)d5. By (37), the first term on the right of (51) may be
written K(J — 1) var (c;). Hence,

(52) E(88)4s,: = (J — IK var (c)) + (1 — I")al],
(53) BQM8) 455 = K var (e) + (1 — Tl
Summing (52) over ¢ and dividing by (I — 1)(J — 1), we get
(54) E(MS)4s = Kos + o .

Finally, if we rewrite (32) as
(55) (88)s = ; ; ; (e — €)'’
we see that for K > 1
(56) EMS), = o, .

We shall use the noun ‘“estimate’” always to mean ‘“unbiased estimate.” The
above formulas for the expected mean squares lead to the following estimates of
ox, o4n , o , respectively, if K > 1:

(57) &3 = (IK)[(M8)s — (M8).],
(58) #is = K'(M8)as — (M8)d,
(59) & = (MS)..

An estimate of «; is the &; defined by (38); an estimate of its variance (42) is
JKY(M 8)45.: . An estimate of u; = u + «; is ¥... ; an estimate of its variance
is J'#;;, where #; is defined by (62) below. An estimate of a; — ag is
Y. — Yo.. ; an estimate of its variance is
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(60) Sw = J'(J — 1)_1; Wi — Yoio — Yi + Yo

In order to estimate the covariance matrix (o) of the basic vector m, we note
that the J columns of cell means {y;;.} are distributed independently like a
random vector 4 = m -+ v, where v is statistically independent of m and has the
distribution of the vector with components ej;., -+, er;. (which distribution
does not depend on 7). It follows that the covariance matrix of u is (#:»), where

(61) T = ow + 8wwK 7ol

and 8;» = 1if ¢ = ¢/, 0 if 4 5 ¢’. An estimate of 7, is the sample covariance of
the ¢th row of cell means {y;;.} with the ¢’-th row,

(62) P = (J — 1)—1; Wi — Yi) Yirge — Yire.),

and hence if K > 1, an estimate of o is
(63) 3';‘:" = *ii' - 3¢¢'K_13'§ .

We remark that if we estimate o» and o5 by substituting the estimates (63) in
(20) and (21), we get the same estimates as before in (57) and (58).

6. Distribution theory under the normality assumption. Under the normality
assumption (9t) of Section 3, the four sums of squares (SS8)4, (S8)s, (SS)4s,
(88). are pairwise independent, except for the pair (SS8)s, (SS)4s. We shall
prove this for the pair (8S)4, (SS)4s ; the independence of the other pairs may
be verified similarly.

Let us write
(64) (88)4 = JKZ L,
(65) (88)4s = K3 Z Li,
where
(66) Ly = Ay + Bw,
(67) Lij = Ay + Bij,
(68) Ay = ap + cor.
(69) By = ep.. — e...,
(70) A= cij — Ci\ '
(71) B = e;5. — ei.. — e.;. + e....

Then it suffices because of the joint normality of the set {Ls , Li;} to prove
cov (L , Li;) = 0 for all ¢, 4, j. Now, any B just defined is independent of any
A because of our assumption that the set {e;s} is independent of the set {m.;}.
Furthermore, By and B;; are orthogonal by the familiar Model I theory. Hence,
it remains only to show cov (4, 4;;) = O:
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(72) cov (Ai, 45) = Elcy.(ci; — ¢i.)] = E'[J_lzj;lc,-/,»(ci,- - J! 2,: cijr)l
=J _l; E(coyei) — I 2; ;E(Ci'i’cii")
= J'E(coc;) — J'E(cics) = 0,

since E(cijcer ) = 8;E(cica).

The above proof shows also that &; is statistically independent of (SS)4s.:,
since &4 = L;and (SS)AB.i = KZj Lf, .

From (55) it follows that (SS), is distributed as o. times x* with IJ(K — 1)
d.f. To see that (SS); is distributed as E(MS)s times x° with J — 1 d.f., write
fi = b; + e.;. in (47), so that (S8)s = IKY ; (f; — f.)}, where the set {f,}
are independently N(0, ¢7) (normal with mean 0 and variance ¢7) with oF =

% + I’ K%, and hence (88); is IKq} times x* with J — 1 d.f. Similarly,
puttmg gi = ¢i; + e — e.;. in (50), we find (S8)as,; is E(MS)as,; times x°
with J — 1 d.f. It may be shown that for I > 2, (SS)4 and (SS).s are not, in
general, distributed as a constant times noncentral (which includes central) x’.
However, under the hypothesis H4p that ¢%5 = 0, all ¢;; = 0, so (S8)4s be-
comes simply

(73) Kz; Z]: (es5. — €s. — €5 + e..),

which is known from Model I theory to be distributed as o> times x*
with (I — 1)(J — 1) d.f.

The obvious consequence of our assumptions, that the J columns of cell
means {y;;.} are independently distributed like an I-variate normal vector with
means uy, - -+, ur and covariance matrix (r;») given by (61), we shall utilize
in the next section.

7. Tests and confidence intervals. Suppose first that K > 1. Then the x?*-
distribution of (SS8)./s. affords confidence intervals for o7 in the usual way.

Since the quotient of (MS8)s/(IK o5 + o2) by (MS)./o: has the F-distri-
bution with J — 1 and IJ(K — 1) d.f., confidence intervals for o3 /c> are avail-
able as well as tests of the hypothesis that o5 = 0, or, more generally, that
o%/or < ¢, a given constant. The test at the a level of significance consists of
rejecting the hypothesis if and only if (M8)s/(MS). = (IKc + 1)F,, where
F, is the upper « point of the F-distribution. The power of the test can be ex-
pressed in terms of the (central) F-distribution.

The hypothesis H,5 : 045 = 0 may be tested with the statistic (MS)as/
(MS)., which, under H,5, has the F-distribution with (I — 1)(J — 1) and
IJ(K — 1) d{. Since this statistic is distributed as the quotient of a linear com-
bination (with coefficients in general unequal) of independent x° variables by
another independent x* variable, the power of the test is not expressible in terms
of the noncentral F-distribution, but it could be approximated by use of a central
F-distribution by using methods of Box [2].

We now drop the restriction K > 1. Even through (MS8), and (M 8),s are
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statistically independent and under the hypothesis H,: all @; = 0 have the
same expected values, their quotient does not, in general, have the F-distri-
bution under H, . A test of H, based on Hotelling’s T statistic is given in the
next paragraph. However, confidence intervals for a particular «;, a particular
Wi, or a particular difference a; — a (none of these selected according to the
outcome of the experiment) can be based on the s-distribution with J — 1
d.f. of the respective quotients

(74) Jllsz(&i - ai)/(MS)}ilg,i,
(75) J Py — /P2
(76) [(&i — &o) — (2 — aw))/SiF,

where the denominators are defined by (34), (62), and (60).

We assume now that J = I. To calculate Hotelling’s T” statistic for H,,
and, in case we find it significant, to make multiple comparisons, we construct
a rectangular table with E = I — 1 rows and J columns, the entry in the rth
row and jth column being

(77) drj = Yrj. — Yr1j. ,

and we compute the R means {d,.} and the $R(R + 1) sums of products (which,
divided by J(J — 1), are estimates of the covariances of the {d,.})

(78) Qe = D (drj — @) (drs — dp.) = 2 drsrj — Jdrdp. .
J J

The T* statistic is (except for a constant factor)
(79) F=JJ-I+1)I-1)7Q,
where @ is the quadratic form

(80) Q=> Ea"’d,.d,,.,

and (@) is the matrix inverse to (a,~). It is not necessary actually to compute
the inverse matrix, since  may be written in a form given by Rao [10] in terms
of two determinants of order R calculated from (@),

= Ian" + dr.dr’.l -1
o]

The statistic F in (79) has under H , the F-distribution with/ — land J — I 4 1
df., so that if F. denotes the upper « point of the F-distribution with these
numbers of d.f., H 4 is rejected at the a level of significance if and only if F > F..

The above form of the 7" test appears to lack symmetry, since the Ith row
plays a distinguished role. It is easy to see that if instead of the {d..}, any basis
is used for the (I — 1)-dimensional space spanned by the differences {y:.. — ys..},
the same test would be obtained. A symmetric form of @ (and of the noncen-
trality parameter 82 below) was given by Hsu [7], but this form would involve
more numerical calculation.

(81) Q
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The power of the T” test of H, may be expressed [7] in terms of the noncentral
F-distribution: The statistic (79) is distributed as noncentral F with I — 1
and J — I + 1 d.f. and noncentrality parameter 6°, whose value will be given
below, that is, as

I—-1 J -1
(82 0= 00 =14+ )@t o+ 2 (Ea)
y=! ve=]

where the {z,} are independently N(0, 1). The noncentrality parameter §° has
the value

(83) &= o 8.

where (o) is the matrix inverse to that with elements

(84) oyt = COV (dT ’ d"") = J—I(Trr' — Trr — TrI + TIX))
and

(85) 8r=ar'—al=ﬂr—ﬂr.

In his paper in 1931 on the 7? test, Hotelling [6] gave an associated confidence
ellipsoid. Recently, the writer [11] published a method of multiple comparison
derived from the confidence ellipsoid associated with the F-test for equality of
means in Model I. The same method, when based on Hotelling’s confidence
ellipsoid, tells us the following: Let 6 be any contrast among the {a;} or {u.},
0 = D ihi; = D ;hui, where {h;} is any set of known constants satisfying
>~ hi = 0. Let 6 be the estimate § = > ; hyi.. = 2. hd,. , 50 that its variance
o8 = 2w w hehpay is estimated by

(86) 8 =70 = L 3 bt

Then, for the totality of contrasts {6}, the probability is 1 — o that they simul-
taneously satisfy

(87) 60— 865 <0=6+ Sé4,

where the constant S is calculated from F , the upper « point of the F-distribu-
tionwith I — land J — I 4+ 1df,, by

(88) S =0T-1)J—-1J -1+ 1)"F..

Whenever the T” test rejects H, at significance level «, there will exist contrasts
6 for which the interval (87) does not cover zero (and conversely). However, it
may occasionally happen in applications that none of the contrasts thus found
to be “significantly different from zero” is of any practical interest.

An interesting interpretation of the quantities 44 needed in (87), which yields
an alternative way of calculating them not requiring calculation of the {a,} or
{d,;}, is the following®: Let §; be the estimate of 6 from the jth column, §; =
> i hiyii., 508 = b, ; then

3 Pointed out to me by Professor J. W, Tukey.
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(89) F=J -T2 @G- 0
7

However, if the calculations for the 7™ test of H, have already been made, use
of (87) may be faster.

8. Concluding remarks. The T2 test of H, and the associated method of
multiple comparison are valid under less restrictive assumptions about the errors
{eis}. For instance, it would be sufficient that they be independently N (0, ¢%),
or, more generally, that the J vectors with components ej;., -+, e;;. be in-
dependently distributed like a normal random vector with zero means and an
arbitrary covariance matrix. The test and comparison method should be fairly
insensitive to violation of the normality assumption (91), from consideration
of the asymptotic distribution when J — .

A common practice in the analysis of variance is to employ as statistic to test
a hypothesis the quotient of two independent mean squares whose expected
values are equal under the hypothesis, and to refer this statistic to the F-tables
with the numbers of d.f. equal to the ranks of the quadratic forms in the mean
squares. According to this practice, (MS8)./(MS)sz would be treated as
though it had the F-distribution with I — 1 and (/ — 1)(J — 1) d.f. under
H, . A justification of this would be welcomed by the practitioner, because the
computations are simpler and more familiar than those with Hotelling’s T%, but
until numerical investigations are made which indicate the errors involved are
tolerable, the practice should be suspect in the present case. The exact distribu-
tion of the statistic under H, depends on unknown parameters. The distribution
has been treated by McCarthy [8], but in a form that does not seem useful for
I > 3. Some general theory for the distribution of ratios of statistically inde-
pendent quadratic forms in jointly normal variables has recently been given by
Box [2], and the above distribution falls under an application he made to another
problem ([3] pp. 489-490), where he approximates it by an F-distribution with
reduced numbers of d.f. However, these numbers of d.f. would depend on the
covariance matrix (r;;) whose elements are defined by (61), and if we were to
estimate these numbers from the data—with somewhat questionable effects
on the resulting test and multiple comparisons method—it would require com-
putation of the whole estimated covariance matrix (#;;) defined by (62). The
amount of numerical work involved would then be comparable to that for the
above exact methods utilizing the 7" statistic.

An interesting practical conclusion from the present model is that the number
J of levels of the Model II factor should be at least a few more than the number
I of levels of the Model I factor, since the F statistic for the 7” test has J — I
+ 1 d.f. in the denominator.

The writer acknowledges his inspiration from a paper by Tukey [13] in which
the expected mean squares in the mixed model fall out as limiting cases of those
obtained in sampling a finite model similar to the above with sampling of both
rows and columns, as the population number of columns becomes infinite, and
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with the population number of rows equal to the sample number. The effect of
sampling the rows is to make all permutations of the rows equally probable and
thus impose the symmetry condition (8). However, this does not affect the ex-
pected mean squares we derived for A, B, AB, and e, since the formulas for the
corresponding sums of squares are invariant under permutation of the rows.
Wilk and Kempthorne [14] have recently calculated expected mean squares for a
model somewhat resembling Tukey’s, closer to the above in that only columns
are sampled, but differing more in that the error term is generated solely by the
actual randomization used to assign the ‘“treatment combinations” to experi-
mental units from a finite population, with the consequent introduction of
treatment-unit interactions: If these are neglected the expected mean squares of
Wilk and Kempthorne agree with Tukey’s.

A multivariate normal model* for randomized blocks was studied by Mec-
Carthy [8] as an approximation to Neyman’s [9] more realistic model reflecting
the randomization actually used in the assignment of the varieties to the plots
in each block. A test, implicitly assuming such a multivariate normal model for
randomized blocks, and employing Hotelling’s 7" was recently proposed by
Graybill [5]. A multivariate model for the analysis of variance was also con-
sidered by Box [1] in a different situation where the condition () was tenable,
and he included among other tests one of (8). The application of Hotelling’s
T? statistic to test the equality of the components of the vector of means in
samples from a multivariate normal population is due to Hsu [7].
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