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1. Summary. The problem of plotting on probability paper is extended to
continuous distributions which are completely specified except for scale and
location parameters. Necessary and sufficient conditions are given to ensure
that the plot which is optimal for estimating the scale parameter is also optimal
for estimating each of the percentiles.

2. Introduction. In a previous paper [2], the question of how to plot a sample
from a normal population on normal probability paper was raised. The main pur-
pose of that paper was to illustrate that the optimal construction of a graph de-
pends on the use to which the graph would be put. In particular, the best plot
for estimating the mean and standard deviation was discussed. Although the
proposed method of plotting was considered to be merely an illustration of the
above-mentioned principle, considerable comment about its usefulness was
aroused. Therefore, it was decided to extend the problem to a general continuous
distribution with finite variance which is specified except for a location and scale
parameter. Special examples of interest are the exponential and extreme-value
distributions.

The optimization methods used in this paper are applications of the method of
Lagrange multipliers, and they essentially reproduce some of the results given
by Downton [4][5], Godwin [7], Lloyd [11], and Sarhan [12][13].

3. Preliminaries. Let z,, s, - -+ , ©, be the ordered observations on a con-
tinuous chance variable X, where
(1) X =u+ oY

and where Y has mean 0 and variance 1. By a suitable monotonic transformation
of the vertical scale, it is possible to transform the c.d.f. of ¥ and of all linear func-
tions of Y to straight lines. In fact, this is accomplished by plotting the p per-
centile at a distance » = F'(p) above the z-axis where F is the c.d.f. of Y.
We shall use the term “plot’’ to represent a choice of n numbers p;, p2, « -+ , P»
(or the corresponding v’s, v1, vz, - -+ , v,) Which are attached toz; , 72, -+ , 2,
respectively. It will be understood that the use of a “plot” corresponds to the
plotting of the points (1, p1), (T2, P2), -+, (®n, pn). Three examples of such
plots are (z1, 1/n), (22, 2/n), -+, (@, n/n); (21, 1/(n + 1)), (22, 2/(n + 1)),
ooy (@, n/(n + 1)); and (21, 1/2n), (22, 3/2n), -+, (@, @n — 1)/2n). It
will frequently be more convenient to consider the points in the linear scale, i.e.,
the points (21, v1), (@2, v2), -+ , (T, va). In the first example mentioned above,
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GENERALIZED PROBABILITY PAPER 807

the plot in the linear scale is represented by (z1, F*(1/n)), (22, F7(2/n)), - - -,
(xa, F'(n/n)). Since there is no obvious rationale for choosing a plot, there
arises the problem of selecting an ‘“optimum’ plot.

- A “plot” is to be used to estimate the scale parameter or the percentiles of
the X distribution in the following fashion. Visually fit a straight line through
the n points. We shall assume that this fitted straight line is a good approxi-
mation to the line which would be obtained by minimizing the sum of the
squares of the horizontal deviations of the points to the line. We take horizontal
deviations because the z; are the random variables. Suppose that this fitted

straight line is given by
(2) x=a-+ b

An estimate of the standard deviation, o, is given by b. If it is desired to estimate
the po percentile, we may use xp = a + by, where vy = F*(po). Graphically,
these procedures are described as follows. To estimate o, take the differences of
the abscissas on two points of the line where the ordinates are the c.d.f. values
corresponding to u and u + o. Since these c.d.f. values are F(0) and F(1), the
ordinates in the » scale are 0 and 1. To estimate the p, percentile, take that value
of z where the line has ordinate po (2o in the linear scale).

The problem of estimating u may be regarded as that of estimating the py
percentile, where po = F(0). One can treat the mode or other location parameters
similarly.

To each plot there are associated estimates of ¢ and the percentiles. If we as-
sume that the visually fitted straight line is actually the least-squares line, these
estimates are of a special type. In fact,

n

2 2o — 9)
® b=b=—,
; (i — )"
4) a =& — by,
ixi(vi - 7)
(5) fo=F+ @ —1?)

2 (v; — 9)° .

il
The estimate of o is a contrast in the ordered observations (i.e., a linear function
of the z; , the sum of whose coefficients is zero). The estimate of x, is a weighted
average of the ordered observations. Let

U; = _—‘“*——,‘(vi i) ’
Zx (v: — 9)°
(6) wi = (Vo — D)us,

(M B: = E(y.),
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where y; is 7th ordered observation of a sample of n observations on Y, and let

@®) oi; = E{(y: — B)(y; — B))}.
Let u, w, 8, and z be column vectors whose elements are u;, w;, 8; and z;,
respectively. Let 2 = || ¢;; || and let e be the column vector, all of whose ele-

ments are 1/n.
Then we may write

(9) & = u'z,
(10) £ = (e + w)'z.

Note that the definition of » imposes the sole restriction e = 0 on u. Similarly,
the definition of w imposes the sole restriction e'w = 0 on w unless v — & = 0,
in which case w = 0.

The following relations hold:

(11) E(x) = nue + o8,
(12) B'e = 0,

/ — l — /
(13) e'Te = Z=¢e

o U _ (o — Dw;
(14) A v e
We may also remark that = is positive definite.

4. Estimation of o. In this section we derive the plots which yield the minimum
variance unbiased estimate of ¢, and the estimate of ¢ with the minimum second
moment about o. For the first we minimize

(US.D.1)° E@G — o)’ = ' [u/Zu]

i

subject to the restrictions

B'u =1, eu = 0.

We obtain
ZUu = MG + Nee
or
(US8.D.2) u=MZT8 + a2,

2 In Section 4 all the equations that are prefixed by U.S.D. indicate that they are appli-
cable to the case of unbiased estimation of the standard deviation. All the equations that are
prefixed by B.S.D. indicate that they are applicable to the case of biased estimation of the
standard deviation.
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where \; and )., the Lagrange multipliers determined by the above restrictions,
are

Jv—1
(USD3) =42
A
-1
(USD4) N = “ﬁ'AE e
(15) A= (BZ7B) (=) — (8= 7).
Thus,
E@G — o) = W2Zu) = ' (MB + Me) = o°\y,
or
27 11
(USD.5) EG — o) = "_(G%_i).

Now let us derive the equations for the plot which yields the estimate of o
that has the minimum second moment about ¢. We minimize

(B.S.D.1) B — o) = o[w2u + (Bu — 1)

subject to the restriction ¢'v = 0. We have Zu 4+ (' — 1)8 = \e, where A is
the Lagrange multiplier. It then follows that «'Zu + (8« — 1)8'w = 0, whence
E{@ — o)}/’ = wZu + Bu — 1)’ = 1 — f'u. Now,

u =27+ (1 — fu)=78,
A2 + (1 — Bu)e’=7'8 = 0,
M2+ (1 = BupZ8=pu=1~— 10— gu),

—ez7'8 , PO
A C
(16) A* = A + &2,
(BSD2) u= % (€27'0)="'8 — (¢=78)= .
and
e’z
(BSD3) E{(¢ — o)}} = -

It might be noted that the w vectors for the unbiased and biased estimates are
proportional. In fact, the biased estimates could easily be derived from the un-
biased by the same arguments as those used by the authors in [2] and by Good-
man in [8].

It should be noted that the value of 7 was immaterial. Geometrically, this
means merely that raising or lowering the line does not change its slope.
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6. Estimation of the p, percentile. In this section we shall discuss the plot
which furnishes the minimum variance unbiased estimate of the po percentile,
To, and also the plot which furnishes the estimate with the minimum second
moment about o .

For the first problem we minimize

(UP.1) E{(4 — 20)’} = o’(e + w)'Z(e + w)
subject to the restrictions

edw =0, B'w = 9.

We have

Z(e + w) = MB + Aee
or
(U.P. 2) w= M8+ M2 — ¢,

where \; and \; are the Lagrange multiplier given by

2=l — 1 g’z
n

(UP3) M=

A
and
Lozs — we'zs
(UP4) N =2
A
Thus,
E{(@# — 20)} = o’(e + w)’ (B + Me) = " (\wo + Ao/n)
or
. , ,
(UP.5) E{(-’iio - 100)2} = % (g et 7)06) 2-1 (% - er>.

For the problem of minimizing the second moment of £, about z, we mini-
mize
(B.P.1) Ef{(# — 20)°} = o’[(e + w)'Z(e + w) + (8w — w)’]
subject to ¢w = 0. We have
Z(e + w) + (B'w — vo)B = Ne,
(e + w)Z(e + w) + (Bw — v)(B'w) = N/n,

3 In Sections 5 and 6 all the equations that are prefixed by U.P. indicate that they are
applicable to the case of unbiased estimation of the po percentile. All the equations that
are prefixed by B.P. indicate that they are applicable to the case of biased estimation of the
po percentile.

]
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whence
E{(& — z0)"} = o’[(e + w)'Z(e + w) + (Bw — n)’]
= o'[\/n + v(ve — B'w)].
Now,
(B.P.2) e+ w =227+ (0 — Bw)Z7B,
Azl 4+ (vo — Bw)e’=278 = 1/n,
A2 7% + (vo — BW)B'ZTB = B'w = vp — (vo — B'w),
w (@270 = - (8'27%)
(B.P.3) v — B'w = A*n ’
11
@_2%} — ue'Z7'
(B.P4) A= =
Thus,
2 11 y—1
(BPS) E((t — )} = &5 [ﬁ 2P D Py ien — 2 (B’E"le)]
or

(BP6) E{(& — o)) = Aii [(g - voe)' 3 (% - voe) + ;21—2]

In each of these problems the value of 7 is not determined. Geometrically,
this means that if the »y — v; are multiplied by a factor, the position where the
fitted line has ordinate v, will not be affected. Since # is the only undetermined
element of the optimal plot, it follows that the optimal weighted average of the
ordered observations for estimating x, is unique for both the biased and unbiased

cases.

6. Invariance. In this section we shall study the conditions which imply that
the optimal plot' does not depend on the percentile being estimated. In fact, we
shall call a plot an snvariant optimal plot if for each z, it yields an estimate &,
which minimizes E{(# — w0)’}. We shall call a plot an snvariant optimal un-
biased plot if for each z, it yields an unbiased estimate &, which minimizes

E[(%0 — x0)’].

We shall use the terms optimal weighied average for xo and optimal unbiased
weighted average for xo similarly.
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LemMa 1. If there are real numbers ¢ and k such that Ze = ce + kB, it follows
that

(17) | o Ze = e + kB,

(18) B’z e = —kp'="'8,
(19) ¢x7e = L+ K27,
(20) A =Lgsg,
. n
(21) a* =1y g [1 + kz]‘
n n

Proor. We apply
eZe = ¢ée
to obtain ¢ = 1. Premultiplying
e=2""¢e+ k=8

by 8 and ¢’, we obtain (18) and (19). The remaining equations follow by sub-

stltutlon

TuroreM 1. There is an invariant optimal unbiased plot if and only if Ze =
e + kB. In that case the invariant optimal plot 1s unique, has 5 = 0, and is optimal
for the unbiased estimation of o. Also,

2 2
(UP6) Bld — o) = 02{(1 + nwok) + ,B’;)LB}'

n

Proor. Suppose that there is an invariant optimal unbiased plot. Then (see
(U.P. 2, 3, and 4)), :

w= (v — Bw” + w®

where
ro—1 rs—1
w® = ez ez”‘g _ €2 .Bz—le
A
and :
3’z 7%) — 'z"e % B8 — we/'="'8
w® = X 278 + A e —e.

Applying (14), we have

n N ' (1) - U)z
Z (v; — ) = [0 = D)0® w7 oo — Nw® + w®]°

1=1
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A necessary and sufficient condition that the plot be invariant is that w® =0,
which is equivalent to Ze = ce + kB8 or Ze = ¢ 4+ kB by Lemma 1. But then

L@z — w7
A =

1 or 7=0

and the plot is unique and coincides (see (U.S.D. 2, 3, and 4)) with one which is
optimal for the unbiased estimation of ¢. Now suppose only that Ze = ¢ + &8.
Let 3 = 0. Then, w® = 0 and ‘

_fez=Te T8
(U.P7) w~vo{A T8 — A e

furnishes an invariant optimal unbiased plot. Substituting in (U.P. 5), we ob-
tain (U.P. 6).

TuroreM 2. There 1s an tnvariant optimal biased plot if and only of Ze = e + kB.
In that case the invariant optimal plot is unique, has = k, and is optimal for the
esttmation of ¢. Also,

2 2
[(ﬂ'z* 8) (l + kvo> FRL —151
2 n n n

(8'z7p) <1 + kﬂ) +1
n n

(B.P.7) | El# — )’} = o

Proor. As in the proof of Theorem 1, we find that a necessary and sufficient
condition that a plot be invariant is that w® = 0, where now

2

22 ) — L (z7p)
w® — n

A*
r—1
Fz B+l ﬁ Tl sess

=78

J'e — e.

+ G

Hence, if a plot is invariant, Ze = ce + kB = e + kB. But if w, = 0,
1l '
gz B+1 '8

n =1 or 7=k,

A*

and the plot is unique and coincides (see (B.S.D. 2)) with one which is optimal
for the estimation of o. Now suppose Z¢ = ¢ + k8. Let # = k. Then, w® = 0
and

12 —i ’ rs—1
(BP8 w = _(vo — k) [e,i* ¢ =78 — ¢ i*ﬁ E'—'le]

furnishes an invariant optimal plot. Substituting in (B.P.6), we obtain (B.P.7).
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CoOROLLARY 1. A necessary and sufficient condition that & 1s the optimal unbiased
weighted average for estimating u is that Ze = ¢ + kB.

Proor. The sufficiency is trivial. For the necessity, we note that if Z is opti-
mal, w = 0 and hence Ze = A\ -+ Aee, and by Lemma 1, Ze = e + k8.

COROLLARY 2. A necessary and sufficient condition that  is the optimal weighted
average for estimating the po = F(vo) percentile is that Ze = e + v,8.

The proof is similar to that of Corollary 1 and is omitted. Note that as a par-
ticular case, £ is optimal for estimating g if and only if Ze = e.

The following corollaries are of some interest because they relate notions like
sufficiency, completeness, and min-max estimates with the covariance matrix
of the ordered observations. On the other hand they may not yield many appli-
cations even if they were refined in the more or less obvious ways.

CoROLLARY 3. If £ is a function of a sufficient statistic for (u, ¢) whose family
of distributions is complete, then Ze = ¢ + kB.

Proor. Under the above assumptions, it follows that £ is a minimum variance
unbiased estimate of u. (See [1] and [10].) By Corollary 1, the result follows.

CoOROLLARY 4. If for fized o, & s a min-max estimate of u with respect to the
quadratic loss function, then Ze = e.

Proor. Let t be a weighted average of the ordered observations. Its risk is
given by

ro = B{(t — w)'} = aw’,

where a, is independent of 4 and o. Similarly,

re = B{(& — w)?} = %az.

If & is min-max, we must have a, = 1/n. Corollary 2 then yields our result.
This proof would apply equally well if it were given that Z is a min-max esti-
mate among invariant estimates with respect to the loss function (¢ — u)’/ o
Results similar to the above corollaries have been obtained by Lloyd [11] for
the special case of symmetric distributions. In that case if Ze = e + k8, k is

necessarily zero.

7. Examples.

ExampLe 1. The exponential distribution. Let us derive the means and co-
variances of the order statistics of a sample of n independent observations
with density

fle) = ¢~ forz = 0,
(22)
=0 for z < 0.

Following the method of Epstein and Sobel [6], we note first that if Z has the
above exponential density, then the conditional density of Z — a, given Z = aq,
also has this density. If we let z; be the 7th order statistic from a sample of size
n, it follows that

z‘ln—zln,z3n—zln7"’,znn"zln
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have the same joint distribution as the order statistics from a sample of size
n — 1 and are independent of z;, . Then we might write

2in = 21n + Zitna fori =2,3.---,m,
where ;1,1 is independent of 2z, . Also
Efzin} = E{aia} + E{2ianal fori =2,8,---,n,
Oarnzin = Tsinzin fors =2,3, .- ,m,
and

Ozintin = Ooinern T Ozitmorzjotmey 10T, J = 2,3, -+, n.
Now, ‘

Plzi, > a} = P{Z > al" =¢ ™,
which implies that E{z1,} = 1/n and o2, = 1/n’. It follows that

1 1 1
Blew) = 14—+ o g
and
_ 1 1 1 .
o =gt ot e o tES

The chance variable Z has mean 1 and variance 1. We normalizeto Y = Z — 1
and it follows that

1 1

—1 e -
1 1 1 . .
(24) aij_ﬁ+m+...+(n—i+l)é’ 1 < 7,
and therefore
1
(25) Ee-e+ﬁﬁ.

It follows from our results of the preceding section that there are invariant
optimal plots for both the biased and unbiased estimation problems, that &
is the minimum variance unbiased estimate of x among the weighted averages
of the ordered observations, and that & is not the optimal weighted average for
estimating w if bias is permitted. In fact, £ is the optimal weighted average for
estimating the 1 — ¢ "™ percentile.

In this particular problem it is easy to show that

(26) elz-l = (n7 07 O) 0o .- ) 0),
27 gt =01 -2"1,1,1,---,1).
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For the optimal unbiased plot, we have

o8) A (I
n n’'n n

(29) po= (1= — AW | mBUmL )y
80) E{(E — o)’} = o*/(n — 1),
and

On the other hand, for the optimal biased plot,
&2 vl:(%_l’%+nil’i+n—l—1’“"%+n-1—1>’
33) P = (1 —Vn 1 — g UHUMHIGD] g —0HUm D)y
(34) E{(6 — o)’} = o*/n,
and
(35) Bl = 20 = [ @+ wr - CE20 4 L],

In this somewhat extraordinary example all order statistics except the first
are plotted at the same probability level. Of course, this property, imposed by
our criteria for graphing, makes the graph useless for the purpose of testing
whether the distribution is exponential. In this case there seems little to be gained
by using the above plots instead of algebra.

From another point of view, it is not surprising that these results appeared.
In fact for the exponential distributions with unknown scale and location param-
eter, a sufficient statistic for (u, o) is given by (21, ). It is not surprising, then,
that the above plots lump all except the first observation at one level.

In fact, it can be shown that the family of distributions of (x; , £) is complete,
and then Corollary 3 gives us the fact that Ze = ¢ + k8.

ExampLE 2. The normal distribution. It is known [14] that Z is a min-max esti-
mate of u. It follows that Ze = e. Since the normal distribution is symmetric,
e = e can also be inferred from Lloyd’s paper [11]. It is of interest to note that
the result was also obtained by Jones [9] by a method which resembles this
approach in that it uses the fact that Z is a good weighted average of the ordered
observations for estimating u. This result can also be obtained as follows. The
differences of unordered observations are independent of £ and z; — z; is a func-
tion of these differences. Therefore, Z is uncorrelated with (z; — z;) and

Og;g — Ogzjz = (1/%) 2;;1 (O':c,':c,- - U'zjx,.) = 0

The sum of the elements of rows of the covariance matrix are the same for each
row. Hence this sum is one and, finally, Ze = e.
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Tables have been presented in [2] for the optimal plots using normal probabil-
ity papers for sample sizes up to n = 10. Thes will be extended [3] to n = 20.

Note that Ze = e implies that /= ""¢ = 8¢ = 0. Hence the v; for the optimal
biased and unbiased plots are proportional to =™'8. This relation also implies
that e is a characteristic vector of = corresponding to characteristic value 1.
Furthermore, since all the elements of = are positive, 1 is the largest characteris-
tic value of Z.

8. Concluding Remarks. The problems treated in this paper have been rela-
tively simple, There are a number of questions which are more difficult and are
as yet unsolved.

First, it would be very interesting to know under what conditions one can be
insured that the optimal v; are increasing. It would be embarrassing to propose
that the smallest observation be plotted at a higher p-level than the second
smallest. One conjecture is that Ze = ¢ 4+ kB implies the desired result.

Second, for distributions which correspond to chance variables which are
bounded, the range of v corresponding to values of p between 0 and 1 is similarly
bounded. Under what conditions will the optimal plot involve only values of v
which correspond to values of p between 0 and 1?

Third, what is the class of continuous distributions for which Ze = e for all
n? For n = 2, all symmetric distributions have this property. Could it be that
only the normal distribution has this property for all n or even for any n > 2?

Fourth, what are the asymptotic properties of the optimal plots as n — o ?

Finally, the important question of how to plot in order to furnish a test that
the distribution is in the given family is still untreated.

We conclude with the following remark. Suppose that instead of fitting the
least-squares line to the plotted points, we fitted a modified least-squares line
where the points had specified weights not all equal. Then it can be shown that
there is a one-to-one correspondence of plots such that equivalent estimates are
obtained by the two methods.
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