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the common value being

ur 1 1 1
traceCo—v—:T(l ——[7—?]_,-{-_(_]_(.]7),

= a, say.
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It therefore follows that for designs in which heterogeneity is eliminated in
two directions, the efficiency factor is maximum if

1 ,.,,1 .
U,LL +UMM is of the form
pPeq---4q
gpg-qf
999 "D

It should be observed that, for a Youden Square (where the rows are com-
plete blocks and columns form a symmetrical balanced incomplete block de-

sign),

and
L_Em;
and
AN N
mar = |02
AAN--- T

and LL'/U’ + MM'/U is of the required form. Consequently, among designs
in which heterogeneity is eliminated in two directions, a Youden Square, if it
exists, has maximum efficiency.
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ON A MINIMAX PROPERTY OF A BALANCED INCOMPLETE
BLOCK DESIGN
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Summary. It is shown that for a given set of parameters (b blocks, k plots per
block and v treatments), among the class of connected incomplete block designs,
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a balanced incomplete block design (if it exists) is the design which maximizes
the minimum efficiency, efficiency being defined as

Variance of an estimated treatment contrast in a randomized block
Variance of the estimated treatment contrast in the incomplete block

The proof will be preceded by a lemma.

Notation. Capital letters will be used to denote matrices and boldface small
letters to denote vectors. At times a matrix of m rows and # columns will be
denoted by A(m X n).

Lemma. If B(p X p) ts real symmetric and at least positive semidefinite of rank
r(=p), then:

(i) The stationary values of

a’(1 X p)B(p X palp X 1)
a'a

under the variation of a (over all non-null a excepting the solutions of Ba = 0) are
the characteristic roots of B.

(ii) In particular the largest and the smallest values of a’Ba/a’a (under the
variation of all non-null a excepting the solutions of Ba = 0), are the largest and
the smallest non-zero characteristic roots of B.

(iii) a’Ba/a’a attains its maximum (or minimum) value if and only if a is a
latent vector corresponding to the maximum (or minimum) latent roots of B.

For a proof of this lemma we refer to S. N. Roy [3] and H. W. Turnbull and
A. C. Aitken [4].
Let us adopt the following notation:

Ai. = number of blocks in which the ¢th and the ath treatments appear to-

gether.
r; = number of blocks in which the ¢th treatment appears.

f—”c"“z';éa;z‘= 1,2, va=12" -,n

Cia =
1r,-<1—%>,i=a.

T: = total yield of the 7th treatment.

B; = total yield of the jth block.

o {1 if the ¢th treatment appears in the jth block,
Y 7 10 otherwise.

1 b
Qi = Ti—EZnﬁBj.

Finally let
QU Xv) =(@QQ:---Q,).

In any connected incomplete block design the adjusted normal equations



912 V. L. MOTE

are given by
Ct=0Q
where
C = (cia) i=1,2 -, a=12--,0.
It is well known that C is symmetric positive semidefinite of rank v — 1 and
that the only independent non-trivial solution of the equations Cx = 0 is
x’(l Xv) = (1) L., 1)'

Let m’(1 X v) = (mymz, --- , m,) be a non-null vector such that > mi = 0.
It is well known (e.g., see R. C. Bose and S. Ehrenfeld) that the variance of

the “best estimate’’ of m’t is given by ¢’Cps” where g is a solution of C6 = m.
We shall now show that

!
0'Co 1
su =
mtg m'm  Amin

where M is the class of all non-null vectorsm’(1 X v) = (my;, ma, ---, m,) such

that D im; = 0 and Amin is the smallest of the v — 1 non-zero characteristic
roots of C.

Since C is real symmetric, it follows that there exists an orthogonal matrix
P(v X v) such that

PP = [
01 X (v — 1)] 0

where Dy, is a diagonal matrix; the diagonal elements being Ay, As, <<+, Aoty
the non-zero latent roots of C. Let

P=[PlbX @—-1 q@X1)
Then C = P.DyPy .
It can be easily shown that

@) PP +qd =1,
(3) PP =1,
and that the rank of Pyis» — 1 and

Dylo—1)X @—-1] 0l —1) X 1]:|

(4) q'(1 X v) =\%(1, 1, -, 1).

It can be seen that
o = [P.Dy/Pim
is a solution of C6 = m, and

¢'Co _m'P,Di'Pim
m'm m’m '
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Hence by virtue of the lemma stated earlier we have
’ —1p/
Sup m (PI-D,X,'Pl)m = __]:_.
meM mm Amin
The variance of the “best estimate’’ of m’t in a randomized block is
(1/b)m’ms”.

Hence,

m’'m

. 1
efficiency = (-—) —
VN6 gce
where p is a solution of C6 = m. Now

inf [n} m] = 1 7 = Anmin-
meM O C@ Sup 9_61_9_

mesr MM

Hence, minimum efficiency = Amin/b. It can be shown that for any connected
design Amin = M/k, where
_bk(k — 1)
T = 1)

Now if we can show that, Amin = Mv/k if and only if the design is a balanced
incomplete block design, then our problem is solved. If the design is a balanced
incomplete block design, then, Amin = M/k, since Av/k is a latent root of multi-
plicity » — 1 for the C corresponding to the given design. The next thing we
have to show is that if Amin = M/k, then the design is a balanced incomplete
block design. Since Amin = M/k, it follows that all of the remaining v — 2 roots
must be exactly Av/k. Hence

C = P,Dy,P, = %”PIP{.

A

By virtue of equations (2) and (4) we have
PPy =1- %J

where J is a matrix of dimensions » X » in which every element is unity. Hence

PV 1
C = % [I - J ]
Thus Ai. = A for all 7 % « hence, the result.
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A CHARACTERIZATION OF THE NORMAL DISTRIBUTION'

By J. N. K. Rao

Forest Research Institute, Dehra Dun, India

1. Introduction. Using characteristic functions Lukacs [3] has shown that a
necessary and sufficient condition for the independence of the sample mean and
variance is that the parent population be normal. Geisser [2] has derived a simi-
lar theorem concerning the sample mean and the first order mean square suc-
cessive difference. In section 2 of this note a general theorem of which Lukacs’
and Geisser’s results are particular cases has been proved.

Lukacs [3] has extended his theorem to the multivariate case, namely, that a
necessary and sufficient condition that the sample mean vector is distributed
independently of the variance-covariance matrix is that the parent population
be multivariate normal. In section 3, the general theorem of section 2 is ex-
tended to the multivariate population of which Lukacs’ theorem for the multi-
variate population is a particular case. To prove the necessity of this theorem,
we extend, to the multivariate case, Daly’s [1] result that if f(z) is the normal
density, then the sample mean and g(z; - - - z,) are independently distributed
where g(z, - - z.) = g1 + @, - -+ , o + a).

2. Univariate case. Let 2, , - - - , z, be independent and identically distributed
with density function f(z) and mean u and variance o°.

Let,
2.1 ; i=n’1§x,~;--
and
(2.2) & = (fi ; l%,-)—l g (s + -+ + lnz)’, m =1
where

Zl¢j=0 for t=1,---,m.

=1

The following theorem is proved.
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