STEP-DOWN PROCEDURE IN MULTIVARIATE ANALYSIS!
By J. Roy

University of North Carolina

1. Introduction and summary. Test criteria for (i) multivariate analysis of
variance, (ii) comparison of variance-covariance matrices, and (iii) multiple
independence of groups of variates when the parent population is multivariate
normal are usually derived either from the likelihood-ratio principle [6] or from the
“union-intersection” principle [2]. An alternative procedure, called the “step-
down” procedure, has been recently used by Roy and Bargmann [5] in devising
a test for problem (iii). In this paper the step-down procedure is applied to
problems (i) and (ii) in deriving new tests of significance and simultaneous
confidence-bounds on a number of “deviation-parameters.”

The essential point of the step-down procedure in multivariate analysis is
that the variates are supposed to be arranged in descending order of importance.
‘The hypothesis concerning the multivariate distribution is then decomposed into
a number of hypotheses—the first hypothesis concerning the marginal uni-
variate distribution of the first variate, the second hypothesis concerning the
conditional univariate distribution of the second variate given the first variate,
the third hypothesis concerning the conditional univariate distribution. of the
third variate given the first two variates, and so on. For each of these component
hypotheses concerning univariate distributions, well known test procedures
with good properties are usually available, and these are made use of in testing
the compound hypothesis on the multivariate distribution. The compound
hypothesis is accepted if and only if each of the univariate hypotheses are ac-
cepted. It so turns out that the component univariate tests are independent, if
the compound hypothesis is true. It is therefore possible to determine the level
of significance of the compound test in terms of the levels of significance of the
component univariate tests and to derive simultaneous confidence-bounds on
certain meaningful parametric functions on the lines of [3] and [4].

The step-down procedure obviously is not invariant under a permutation of
the variates and should be used only when the variates can be arranged on a
priori grounds. Some advantages of the step-down procedure are (i) the procedure
uses widely known statistics like the variance-ratio, (ii) the test is carried out in
successive stages and if significance is established at a certain stage, one can
stop at that stage and no further computations are needed, and (iii) it leads to
sithultaneous confidence-bounds on certain meaningful parametric functions.

1.1 Notations. The operator & applied to a matrix of random variables is used
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to generate the matrix of expected values of the corresponding random variables.
The form of a matrix is denoted by a subscript; thus 4, x » indicates that the
matrix A has n rows and m columns. The maximum latent root of a square
matrix B is denoted by Amax(B). Given a vector a = (a,, a2, -+, a;)’ and a
subset T of the natural numbers 1, 2, --- , ¢, say T = (j1, J2, -, Ju) Where
J1 <Jj2 <+ ju, the notation T[a] will be used to denote the positive quantity:

Tla] = + {a%, + a}, + -+ + a7}

Tla] w111 be called the T-norm of @. Similarly, given a matrix B; x ¢, we shall
write Bz for the u X » submatrix formed by taking the jith, jith, - -, j.th
rows and columns of B. We shall call B(z) the T-submatrix of B.

.

2. Step-down procedure in multivariate analysis of variance.

2.1 General linear hypothesis in univariate analysis. Let the elements of ¥, x 1
be one-dimensional random variables distributed independently and normally
with the same variance ¢* and expectations given by

0 &y = A6+ X8

where elements of 8., » 1 and 8, x 1 are unknown parameters; A, x » and X, x , are
matrices of known constants with rank (4) = r and rank (4:X) = r + ¢, with
n > (r+ q).

A set of ¢ linearly independent linear functions ¢; x 1 = B: x =8, where B is a
given matrix of rank ¢, is said to be estimable if for each element of ¢ there exists
an unbiassed estimate linear in y, for all values of 6 and 8. If ¢ is estimable,
there exists an estimator ¢; x 1 of ¢, the elements of which are linear in y and
minimum variance unbiassed estimators of the corresponding elements in ¢.
Denote the variance-covariance matrix of by C-o’,where C; x . isa positive-defi-
nite matrix. Let s*/ (n— g —r) denote theusual error mean square with(n—q—r)
degrees of freedom giving an unbiassed estimator of ¢°. Then it is well known
that the statistics u = (¢ — ¢)’C"(¢ — ¢)/o" and v = s°/¢* are distributed
‘independently aschi-squareswith ¢ and (n — ¢ — r) degrees of freedom respectively,
so that

_ (3 —¢yC(d — ¢)/t
@ F="n=q-»

is distributed as a variance-ratio with ¢ and (n — ¢ — r) degrees of freedom.

Let a be a preassigned constant, 0 < & < 1, and f the upper 100« per cent
point of the variance-ratio distribution with ¢ and (n — ¢ — r) degrees of freedom.
Setting £ = #f/(n — q¢ — r) we then have

®) (6 —¢)C( — ¢) S I
with probability (1 — «).

Now, the left-hand side of (3) is a positive definite quadratic form in (¢ — )
and consequently, we have

4) (6 —)'C($—¢) 2 (3 — 9)( — 6)/Mux(0).
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We thus have
(5) (@ — ¢)' (¢ — ¢) < 178" Auax(C)

with probability not less than (1 — ).
Now, let T be any subset of the natural numbers 1, 2, -- - , ¢ and consider the
T-norms T[¢] of ¢ and T[¢] of ¢. Then (3) implies that

(6) T[@] — fs Miex(Cmy) < Td] < TI] + b5 MlZ(Cimy)

for all subsets T of (1,2, - - - , £), where Cr is the T-submatrix of C. Thestatement
(6) thus provides simultaneous confidence-bounds on the parameters T[¢] for all
T with probability not less than (1 — a). We note that there are in all (2° — 1)
parameters of the type 7T[¢] and these in a sense measure the deviations from
the hypothesis 3C, that ¢ = 0. The analysis of variance test for 3¢ at level of
significance «, of course, is given by the rule

. $CTe/t ,
o accept JCo if Fn—qg=1 = f;

otherwise reject 3C,.

However, simultaneous confidence-bounds of the type (6) are more interesting
than the test (7) itself, because the direction of departure from the null hypothesis
is indicated.

2.2 Customary tests in multivariate analysis of variance. We have a matrix
Y. x » of random variables, such that the rows are distributed independently,
each row having a p-variate normal distribution with the same variance-covar-
iance matrix 2, « , which is positive-definite. The expected values are given by

8) 8Y = 460,

where A, x » is a matrix of known constants of rank r, r < (n — p), and 0, x »
is a matrix of unknown parameters. As before, a set of linear parametric functions
®; w1p = B¢ x w0 is said to be estimable if, for all 9, there exist unbiassed estimates
of @ linear in Y. If @ is estimable, customary tests for the hypothesis

3:®=0
are based on two p X p matrices of random variables
(9) S,=YEY and S, = YHY,

called respectively the sum of products matrix due to error and the sum of

products matrix due to hypothesis. Here £ and H are n X n symmetric idempo-

tent matrices with non-stochastic elements, E of rank (n — r) and H of rank ¢,

E being a function of A, and H of both A and B. The likelihood-ratio test [6] is
| S|

aceept e if L = ——— > ¢,
(10) P IS, + S

otherwise reject 3¢,
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where ¢ is a preassigned constant depending on the level of significance. The test
based on the largest latent root [3] is

accept 3o if Amax (S S;7) < d,

otherwise reject 3¢ ,

(11)

where d is a constant depending on the level of significance. Simultaneous con-
fidence-bounds on certain meaningful parametric functions have been derived
by the largest (or the largest-smallest roots) procedure, [3] [4], whereas no such
bounds are available as of now from the likelihood-ratio procedure.

2.3 The step-down procedure. We shall denote the 7th columns of the matrices ¥
and © in section 2.2 by y; and 6; respectively and write ¥; = [y y» - -+ ] and
©; = [0, 6, - - - 6;]. Further, we shall denote the top left-hand 7 X ¢ submatrix
of 2= ((0‘.’,‘)) by Z.

Then, under the condition that Y; is fixed, the n elements of the vector y:y1
are distributed independently and normally each with the same variance oin
and expectations given by

(12) &Yinn = Anin + Yibi,
where 8; is a vector of the form ¢ X 1 given by
01,41
(13) o=z ML g =,
04,41

amd 7;41 is a vector of the form m X 1 given by

(14) Niy1 = 01 — 6:6;
and
[2;
(15) gin = ,—;‘l—'
with the understanding that | 2| = 1sothatef = on,7 =0,1,2,---, (p — 1).

The elements of the vectors 8;, ;41 may then be regarded as unknown param-
eters. We shall call 8; the ¢th order step-down regression coefficient and o7 the
7th order step-down residual variance.

Let us now consider linear functions

(16) ) i = Bﬂi (7' = 1’ 2; Tt p)'

If Y. is fixed, (12) is of the same form as (1). Let us now, with an easily under-
stood notation similar to that used in Section 2.1, construct the statistics

A ~17 2
b — ¢)'Ci (i — ¢)'/t (=12 -

st/n—r—7+1) = ©,P)

tY)) F; = (
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Obviously, when Y., is fixed, the statistic F; is distributed as a variance ratio
with tand (n — r — 7 + 1) degrees of freedom (¢ = 2, 3, - - - , p). Finally, we note
that in its functional form F; involvesonly Y; (s = 1,2, --- , p and that the
conditional distribution of F;, given Y;; doesnotinvolve Y, , (¢ = 2,3, --- , p)
and hence F;_;, - -+, Fy . Also, F; is marginally distributed as a variance-ratio
with ¢ and (n — r) degrees of freedom. Therefore the statistics Fy, Fy, -+, F,
are independent. This can be verified in a straight-forward manner by using the
transformation to rectangular coordinates as in [5] or any other set of step-down
variates, or even otherwise.

For a preassigned constant a;, 0 < a; < 1, let f; denote the upper 100«; per
cent point of the variance-ratio distribution with £ and {(n — r — 7 + 1) degrees
of freedom. Then the probability P that simultaneously

(18) F;sfs, t=1,2--,p,
is given by

b4
(19) P ="I]1: 1 — ay).
Therefore, for any subset T of the natural numbers 1, 2, - - - , { writing as in (6),
Tl¢:] and T[é:] for the T-norms of ¢; and é; respectively, and setting
(20) E=ti/n—r—i+1)

and writing C;r) for the T-submatrix of C; , we have the simultaneous confidence
bounds

21) T[] — £isi hmme(Cicny) < Tl < Tldi] + bisi Mix(Ciemy)

for all subsets T of (1,2, --- ,¢t)and Z = 1,2, --- | p with probability greater
than P.

To derive a test of the hypothesis 3¢, that ® = 0, we note that 3¢, is true if
and only if the hypothesis 3¢; that ¢; = 0 holds for all 7 = 1, 2, --- , p. Using
the result (17), we set up the following procedure for testing 3¢, :

Al 1 2
accept 3¢ if u; = s%/(nﬁc; f'/:+ D =i forallz = },2, cee L

(22)
otherwise reject 3¢ .

Obviously, the level of significance for this test is 1 — P where P is given by
(19). The arbitrariness in determining the f’s when the level of significance is
preassigned may be removed by stipulating that &s = @z = -+ = a,. From
the fact that the variance-ratio test (7) is uniformly unbiassed, it can be seen
after a little consideration, that the test procedure (22) is also uniformly un-
biassed.

To carry out the test one should first compute %, . If u; > fi, 3Co is rejected
and no further computations are needed. If u; < f; , the next step is to compute
us . If us > fo , 3¢ is rejected and no further computations are needed. If u; < f,,
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one proceeds to compute 3 and so on. This way one need compute u; if and only
if u; < fiforj = 1,2, ---,7 — 1. Much computational labor is saved thereby.

It is well known that the likelihood-ratio statistic L given by (10) can be
expressed as

7 m—r—1i4+1)
(23) L_Et+(n—r—i+l)ui
and this has been utilized [1] to obtain the moments of L when 3¢, is true. How-
ever, thg step-down procedure based on the individual u.’s rather thdan on a
single function L, is advantageous from the point of view of (i) setting up simul-
taneous confidence bounds and (ii) saving computational labor, specially in the
situation indicated in the introduction.

3. Step-down procedure for variance-covariance matrices. Let S, x, =
((s:)) be a symmetric matrix of random variables, distributed in Wishart’s form
with n degrees of freedom, » > p, so that S/n provides an unbiassed estimate for
the variance-covariance matrix = of a p-variate normal population. In the same
way as in Section 2.3, we shall write S; for the ¢ X ¢ top left-hand submatrix
of S and let

81,441

(24) b= S b=,
8i,i41
S.

(25) S§+1= ||,§H|l’ s§=8u,

fori=1,2, ---,p— 1. Let s and ¢; be defined by (13) and (15) for 7 =
1,2, -+, p. Then it is well known that when S; is fixed, the distribution of bs
is independent of the distribution of 241 ; the distribution of b; is ¢-variate
normal with expectation B; and variance-covariance matrix or4 S7', and
$341/0341 has the chi-square distribution with (n — ¢) degrees of freedom,
i=12 ---,(p — 1). Finally si/o} has the chi-square distribution with n
degrees of freedom.

When more than one variance-covariance matrix is involved, we shall dis-
tinguish them by a superscript under parentheses. Thus with a number of popu-
lation variance-covariance matrices = and the corresponding Wishart matrices
S, the quantities 8, o, b¢?, s{?, ete., will be defined in the same way as in
(13), (15), (24), and (25) forj = 1, 2, --- , ete.

3.1 One variance-covariance matriz. On the basis of a matrix S distributed in
Wishart’s form with n degrees of freedom, with S/n providing an unbiassed
estimate for Z, it is possible to set up simultaneous confidence-bounds on param-
eters which are functions of the elements of = by the step-down procedure as
follows.

When S; is fixed, the statistics u = (b; — 8:)'S: (bs — B:)/oi4 and v =
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8iy1/0i41 are distributed independently as chi-squares, u with ¢ degrees of
freedom and » with n — ¢ degrees of freedom. Therefore, given pre-assigned

positive constants a; , ¢i41 , and di1 , where ¢i11 < diy1 , the probability P;,; that
(b; — B:)'Si(b; — B:)/st1 < ai,
cin1 S Sin/oiy S dip

(26)

holds for fixed S;, is a constant depending only on =, 7, a;, ¢;y1, and d;; . As
a matter of fact,

di 41
(27) Py = f G»(af x)gn—z(x) dx (7: =12 -, p— 1))
where
(28) 6@ = [ 0.0 at
0

and

—z 3v—1

. e

(20) @) = gorees

Also, given preassigned positive constants by, ¢(bi, < ¢1), the marginal prob-
ability P; that

(30) a = 83/& <d
is given by

dy
(31) P, = f gn(x) dx.

1
By an argument similar to that which follows (17) in section 2.3, we obtain
the probability P that simultaneously

c,-Ss%/a%édi (7;':1:2;"'}1))}

(32) . . .
(bi — B:)' Si(bi — Bi)/sim=<ai (GE=12---,p—1)
as
D
p=]]P..
=1
Now, as in Section 2.3, for a given subset 7'; of the integers 1, 2, - - - , 7, writing

T[8:] and T'[bi] for the T'-norms of B; and b; respectively, and writing Uy, for
the T;-submatrix of S77,

si/d; < o7 £ si/c fori =1,2,---,p,

33
(#8) Tidbd — asizdmex(Uirp) = TdB] = Tib] + ai8i+1>\xln/3x(Ui(T,-;)
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for all subsets T'; 0of (1,2, -+ ,7)and 7 = 1,2, - - -, p — 1. The statement (33) thus
provides simultaneous confidence-bounds on p parameters of the type o and
(2° — p) parameters of the form T[8;] with probability not less than P.

It is to be noted that to set up simultaneous confidence bounds of the type
(32), one has to evaluate the integral (27) which is not usually available in
tabulated form. Another meaningful procedure, which, incidentally, avoids this
difficulty, is to set up separate sets of simultaneous confidence bounds: one on
ot , -+, 05, using the chi-square distribution for si/o?, with a preassigned
probability and another set on the step-down regressions 8; , using the variance-
ratio distribution for (b; — B8,)'Si(b: — B8:)/si+1, and with a probability not
less than a preassigned level.

We suggest a slightly different procedure for testing the hypothesis 3¢, that Z
has a specified value ;. This hypothesis may be reformulated in terms of the
step-down regression-coefficients and residual variances as follows: the hypothe-
sis 3Gy is true if and only if each of the hypotheses

sci1:0'3=02io, 1=12,--,p,
:K:‘iz:Bi:BiO’ 1:::1’2’.“’1)—17

is true, where o% , B:0 are derived from =, the same way as o} , 8; are derived from
2. The test procedure suggested is:

accept JC if
¢ < si/ak < ds (t=12---,p),
(b" - Bw)'st(bt - Bio)/a'?+l,0 = 6% (7: = ]-a 2; LD 1);

otherwise reject 3C .

(34)

The level of significance a for this procedure is given by
D »p—1
(35) a=1 —{II PS}{H P"}
=1 =1

where
’ 'd'.
P; = f gn—ir1(z) dz,
cq

P :‘, = G,(Gf)

For a given a, the ¢; , d; , e’s are not uniquely determined. The arbitrariness may
be removed, for instance, by the further stipulation that

P;=P;= .« =P;=P’1, =P;’ == e e =P,3,;_.1='3(S&y)
and that (c;, d;) are the locally unbiassed partitioning of the 100 (1 — ) per
cent critical region based on the chi-square distribution with n — 7 4 1 degrees

of freedom. With this choice of the constants ¢;, d;, e;, the test procedure is

locally unbiassed.
3.2 T'wo variance-covariance mairices. With two population variance-covariance
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matrices ¥, 2® and two matrices of random variables S®, 8® distributed
independently in Wishart’s form with n, and n, degrees of freedom respectively,
so that 8 /n; provides an unbiassed estimate for =*?, we can use the step-down
procedure for testing the hypothesis 3¢, that the two variance-covariance matrices
are identical or, in symbols,

Gco > (6] =3 (2)

and also set up simultaneous confidence bounds for parameters measuring

deviations from 3¢ .

Let us introduce the two sets of step-down regression-coefficients and residual
variances: 85, oi”, b{?, and s{”. The hypothesis 3¢, may be reformulated in
terms of the step-down parameters as follows: 3¢ is true if and only if the hy-

potheses

i tof = o, 1=1,2,---,p,
(36) W _ o _

R 1B = Bi7, "'—1’2"":p_1’
are simultaneously true. We may take p; = o /e and T8 as measures of
deviation from 3¢, where 8; = 8" — B, T is a subset of (1, 2, --- , 1) and

T.5:] denotes the T;-norm of §; . In thls case it has not been pos31ble to set-up
confidence bounds on all these parameters simultaneously. However, one may
proceed as follows. Given pre-assigned positive constants ¢;, d; ; ¢; < d;, and

writing

Y (SR o A NG
@ o= (BTEED Ve,
we find the probability that
(38) ri/d; £ pt £ 1i/es, i=1,2--,p,
should hold simultaneously is given by
P

(39) P= IIl P,
where

dg .
(40) Pi= [ arntitie),

in which F7(z) stands for the distribution-function of the variance-ratio statistic
with m degrees of freedom for the numerator and n degrees of freedom for the
denominator. Therefore, (38) provides simultaneous confidence-bounds on p}
¢t=12---,p) w1th probability P.

Let us now write 8 = b{® — b{® and note that if S and S are fixed, 5; is
distributed in an ¢-variate normal form with expected value §; and variance-

covariance matrix

(P SPY + (o (8P
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distributed independently of s}y and s{%y . If 3C;4y; is true, we have oip; =
o = oiy1, say. In that case, if S and 8 are fixed, §; is distributed in an
i-variate normal form with expected value §; and dispersion matrix C;. s}, where

(41) Ci = {8} 4+ {817
Also, 3; is distributed independently of u; and u; where
(42) uj = (si0)"/otn G=12)

and wu; is distributed as a chi-square with (n; — %) degrees of freedom. Conse-
quently, writing

(43) sin = (8" + ()’
we find that if 3¢;,1 1 is true and S,” are fixed (7 = 1, 2) the statistics
(44) (6 — 8.)CTM(8: — 85) /st
and
. (1) \2
Ng — 1 (841
(45) m— (T)

are distributed independently as variance-ratios, (44) with ¢ and (n; + ny — 27)
degrees of freedom, and (45) with (n, — ©)-and (n: — %) degrees of freedom.
Therefore, given pre-assigned positive quantities e; the probability P’ that

(46) @i —8)Ci' i —0)/sinsel, i=1,2---,p—1,
should hold simultaneously is equal to

(a7) p=117,

where )

(48) Pi = Fiysny2i(ed)

provided 3¢, is true for ¢ = 2, 3, - -+ , p. From (45), we get the following simul-
taneous confidence-bounds (49) on the T';-norms of §; where T; is a subset of
(1,2, - - ,4) (under the highly restrictive condition that 3¢; is true) for ¢+ = 2,

3, -+, p:
(49) T — esipme(Cicry) £ Tido < Tf8] + eiSizhtax(Cicry))
with probability not less than P’, where C;(z,) is the T';-submatrix of C; .
To test the hypothesis 3¢ , the step-down procedure suggested is:
accept 3Co if
(6 — 8:)'C7'6: — 8)/stu=<e, i=1,2---,p—1,

i 1s®
(50) PP Bl b3 P i=1,2-,p,

S =it 1sPo

and, otherwise, reject 3¢ ,
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where €} , ¢;, di(c; < d;) are pre-assigned positive constants. The level of sig-
nificance « is given by

) p—1
(51) a=1- {II1 J.D}{H1 PE},
where P; is given by (40) and P; by (48). For a pre-assigned value of o, the
constants ¢; , d;, e: are uniquely determined if we stipulate that

P1=P2=...=PP=P;=P;=-~'=P;—1=5, say,

and that (c;, d:) gives an unbiassed partitioning of the 100(1 — 8) per cent
critical region of the variance-ratio distribution with ¢ and n; + ne — 27 degrees
of freedom. With this choice the step-down test is locally unbiassed.
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