SIGNIFICANCE LEVEL AND POWER!

By E. L. LEEMANN

University of California, Berkeley

1. Summary and introduction. Significance testing, as described in most
textbooks, consists in fixing a standard significance level « such as .01 or .05
and rejecting the hypothesis § = 6, if a suitable statistic ¥ exceeds C' where
Py, {Y > C} = a. Such a procedure controls the probability of false rejection
(error of the first kind) at the desired level a but leaves the power of the test and
hence the probability of an error of the second kind to the mercy of the experi-
ment. It seems more natural when deciding on a significance level (and this
suggestion is certainly not new) to take into account also what power can be
achieved with the given experiment. In Section 3 a specific suggestion will be
made as to how to balance « against the power 3 obtainable against the alterna-
tives of interest.

The adoption of this or some similar rule for choosing a significance level has
important consequences for the theory of testing composite hypotheses, where
nuisance parameters are present. Since the quantity « is then potentially a
function of the nuisance parameter 3¢, the classical rule of a fixed significance
level leads to the condition that the tests be exact or simslar, that is, that a(s)
equal the preassigned value o for all #. On the other hand, the power 8 that
can be attained against any alternative § = 6, frequently depends on &. The
requirement that a(3) and 8(#) be in a certain balance thus leads to tests which
are not similar and hence do not agree with the standard solutions.

To obtain a suitable setting for this discussion, we consider first a minimal
complete class of tests for testing the hypothesis H:6 < 6 in a multiparameter
exponential family (Section 2). The proposed a, B-relation is discussed in Section
3, and in Section 4 is applied to the exponential family. Section 5 gives some
illustrations of the theory.

2. A complete class theorem. Many standard testing problems concern an
exponential family of distributions, which has probability densities of the form

0 peste) = €0, ) exp [ 00() + E 0.7 | hGo)

with respect to a o-finite measure u, where 6, U, the ¢; and T'; are real-valued
and where ¢ = (41, --+ , ). In this family, the statistics U and T =
(Ty, ---, T,) constitute a set of sufficient statistics for (6, &).

The problem of testing the hypothesis H:6 < 6, against the one-sided al-
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1168 E. L. LEHMANN

ternatives § > 6, has been treated by many authors (usually in the formulation
6 = 6 against 6 > 6,). The solution of this testing problem according to the
Neyman-Pearson theory is the uniformly most powerful unbiased test; this
depends only on U and T and is given by the critical function®

1if w > C(),
) o(u, t) = @ if u = C(2),

0ifu < CQ),
where the functions C and y are determined by the conditions Eg,[¢(U, T) | T =
{] = aand Es[Us(U, T) |T = ] = a Eg[U|T = {] for all £. The condition
of unbiasedness

Eo06(U, T) é a as 0 § 6o,
and that of similarity
Eo0p(U,T) =  foralld

which it implies and: which by itself is sufficient to justify the test, are not in-
herent in the problem but are imposed, at least in part, to facilitate the solution.
Before proposing an alternative approach, it is interesting to see how far the
problem can be reduced without the introduction of extraneous principles. This
can be done by viewing it within the framework of decision theory.

Let dy and d; denote the decisions of accepting and rejecting the hypothesis H,
and denote by L:(6, &) the loss resulting from decision d; when (6, ) are the true
parameter values. Then for fixed ¢, the function Lo(6, #) typically will be zero
for 6 £ 6 and increasing for 6 = 6, , while L,(6, #) will be decreasing for 8§ < 6,
and zero for § = 6, . In particular, the difference then satisfies

(3) Ly(6,9) — Lo(6,9) 20 a5 05 6.

The risk function of a test ¢, which is the expected loss resulting from its use
considered as a function of the parameters, is

Be0,9) = [ (oUW, T@)L(6, 9)
+ [1 — o(U(®), T(x))1Lo(8, 3)}po,s(z) du(z),

Let @ be the class of all tests satisfying (2) for some functions C and v. For
all loss functions satisfying (3) it was shown by Truax [13] that € is essentially
complete; that is, given any ¢ there exists ¢’ £ € such that

5) R, (0,9) = R,(6, ) for all (6, &).

We shall now prove that among essentially complete classes, € is minimal in
the sense that if (5) holds for two tests ¢, ¢’ in @, then ¢ = ¢’ a.e. u.*

(4)

2 See for example [7].
* Recently I learned that this result has been obtained also by D. L. Burkholder. His
results are sketched in Abstract 18, Ann. Math. Stat., Vol. 29 (1958), p. 616.
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Let ¢ and ¢’ belong to € and let
(6) a(") = Eoo-" ("(U7 T)’ a,(',) = Eoo-" ¢’(U: T)'

(i) If the functions & and &’ do not agree for all ¢, suppose without loss of gen-
erality that there exists ¢ such that a(d) < o'(d). Since for 3 = ¥, the ex-
pected values of ¢ and ¢’ are continuous functions of 6, there exist 6, < 6, < 6;
such that

) Eo,oo(o(U, T) < Eo,oo)¢'(U, T) for = 6,and 6 = 6.

Then Ry(6, , %) < Ry4/(61, %o) and By(6,, 39) > Ry: (82, o), and hence neither
of the procedures ¢ and ¢’ is uniformly better than the other. (ii) Suppose on
the other hand that a(#) = o/(¢). The standard proof showing a similar test
satisfying (2) to be uniformly most powerful similar also shows that a test ¢o
satisfying (2) and

8) Eo 500U, T) = a(8)- foralld

is uniformly most powerful among all tests satisfying (8). The tests ¢ and ¢’ are
therefore both uniformly most powerful within this class and hence

Eys¢(U, T) = Eps¢'(U, T) for all 6 > 6, and all &.

Since the family of distributions of the sufficient statistics (U, T) is complete,
it follows that ¢(u, t)= ¢'(u, {) a.e., as was to be proved.

3. Significance level and power. It follows from the result of the preceding
section that the class @ of tests (2) represents the maximum reduction that can
be achieved by comparing only tests of which one has a uniformly better risk
function than the other. The selection of a specific test from @, involves two
difficulties. It requires the adoption of some principle (Bayes, minimax, etc.)
leading to a definite choice;’ in addition, it requires knowledge of the loss func-
tions Lo and L, . An alternative approach, utilizing the fortunate circumstance
that the complete class is independent of the actual loss functions (subject only
to their satisfying (3)), consists in making the choice by some simple rule of
thumb, which does not require (the usually unavailable) knowledge of thes
losses. :

Consider the simplest case of the family (1) with » = 0, which involves no
nuisance parameters. The family of tests (2) is then a one-parameter family, one
test corresponding to each value of

a = Ey¢(X), 0sa=s1

A simple method of choice consists in specifying a value of ao and selecting the
test corresponding to this value. This need not be a purely formal or arbitrary

3 Particular proposals of this kind that have been made in the literature include those
of Jeffreys [5] involving considerations of a priors probabilities, and of Lindley [8] based on
his concept of unlikelihood.
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procedure since ag as the maximum probability of false rejection is of course an
important quantity in its own right.

Nevertheless, as was pointed out in Section 1, the above rule appears to neglect
too many aspects of the problem. In particular, suppose that the alternatives of
primary interest, for which it is important to reject the hypothesis, are those
satisfying 6 = 6; (6y < 6,). Since the power function of any test (2) is increasing
in @, the probability 8: of rejection when § = 6, is the minimum power against
these alternatives. It seems then reasonable that the choice of test should involve
at least 8 in addition to ag .

The quantities ap and a; = 1 — B, are the error probabilities associated with
the problem of testing the simple hypothesis 6 = 6, against the simple alterna-
tive 6 = 6; . The attainable pairs (ao , ;) form a convex set, the lower boundary
of which corresponds to the admissible tests (2). This lower boundary is a convex
curve S connecting the points (0, 1) and (1, 0), and what is needed is a reasonable
way of selecting a point on each such curve. One possible approach to this ques-
tion is in terms of indifference curves. Suppose that a system of curves could be
specified in the (o, a1)-plane such that any two points lying on the same curve
are equally desirable, with the curves closer to the origin being more desirable
than those further away. The optimum test would then be given by that point
of S lying on the indifference curve closest to the origin (Fig. 1).

It seems likely that even this approach is too complex for most applications.
To obtain an even simpler formulation, consider once more the rule of fixing the
significance level without regard to power. If the level is «, this means restricting
attention to the points (ao, 1) lying on the vertical line segment L:ay = o,
0 = a1 £ 1 — a. The test then corresponds to the point (ao, a1), which is the

a,

INDIFFERENCE
CURVES —

Fig. 1
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Fig. 2

intersection of S and L. This procedure is commonly justified on the grounds
that the error of the first kind is of a higher order of importance, and should
therefore be controlled at the prescribed level. However, if the curve S is suf-
ficiently close to the ao- and oy-axis, as will always be the case if the sample size
is sufficiently large, then «; is much smaller than oy, which is inconsistent with
the assumed relative importance of the two errors.

A more reasonable solution is obtained if one replaces the vertical line segment
L by a curve C:ay = f(a) where f is a continuous strictly increasing function
with f(0) = 0. A particularly simple choice for f is a linear function

(9) a = kao .

Since ag £ 1 — oy for all admissible tests, one has ay < 1/(k + 1) so that
1/(k + 1) is an upper bound for ao. As an example, consider (9) with &k = 9.
If B, = 1 — a; denotes the power of a test against thealternative 6; , some typical
pairs of values of (a, B1) are

.1 .05 .04 .03 .02 .01 .005

2]

. B I .1 .55 .64 .73 .82 .91 .955

with .1 being an upper bound for ao .

One would of course hope to avoid cases such as ap = .1, 81 = .1 or even
o = .05, 81 = .55. When no nuisance parameters are present, this can be achieved
by taking a sample of sufficient size. In the composite case, on the other hand,
it can frequently not be achieved by samples of fixed size no matter how large,
but only by resorting to sequential experimentation.

To avoid misunderstandings, it should be emphasized that (9) is not being
proposed as a logically convincing rule, nor as one fitting all occasions. Actually,
it seems clear that no rule satisfying these requirements exists, except the Bayes
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solution when sufficient knowledge concerning losses and @ prior: probabilities is
available. In the absence of this knowledge it may be convenient to employ a
simple rule of thumb. Such a rule is in fact being used in much of present practice:
It consists in choosing « to be .05 or .01 depending on the seriousness attached
to the committing of an error of the first kind. To this, (9) is suggested as an
alternative which appears to be more reasonable in many cases.

It so happens that (9) is the minimax solution if the loss for rejecting H: 6 < 6,
is @y when H is true, and the loss is a; for accepting H when § = 6, , where the
constant k of (9) is then given by k = a¢/a; . However, this is not the basis for
the present suggestion of (9), and the minimax property does not carry over to
the application to be made in the next section to composite hypotheses.

4. Conditional tests. We return now to the composite case of the exponential
family (1) with r > 0. The minimal complete class € is then more complex than
in the preceding section, its members being characterized by the function a(#)
instead of the single number ay . Given any function a(¢), which is the expecta-
tion of some critical function ¢, there exists a unique member of € whose ex-
pectation function for 8 = 6, is also «(#). This uniformly minimizes the risk (and
maximizes the power) among all critical functions having this expectation.

If the alternatives of interest are as before those satisfying 6 = 6, let (&)
denote the power function of a test against the alternative (6, , #). The proposal
made in the preceding section suggests selecting that member of € which satisfies

(10) 1 — B(@®) = ka(¥) for all 4.

However, this relationship depends on the particular parametrization chosen,
and we shall not discuss it here. Instead an alternative approach will be proposed
in which this difficulty does not arise.

Consider once more the case of the similar test with a(4) = «. Since T is a
complete sufficient statistic for & when 8 = 6, the functions C and v of (2) are
determined by the requirement that the conditional probability of rejection

a*(t) = Po,{U > C() | 8} +v(OPe,{U = C(®) | ¢}

be equal to « for all ¢.* However, the-conditional power 8*(t) = Py, {rejecting
H |t} of the test against the alternative 8 = 6,, typically depends on ¢. The
question then arises: Suppose that g8*(f) is quite small for the observed ¢, or
quite high; is this value not more relevant to the case in hand than the average
value 3(8)?

Without entering into the difficulties raised by this question, there is an
alternative and simpler justification for considering g*(f). The actual power g
against the alternative 8 = 6, generally depends on the nuisance parameter &
and is therefore unknown. It can however be estimated from the observations,

4 This method of constructing exact tests was originated by Bartlett [1] and Neyman [9].
That in the present case it provides the totality of such tests has been noted by many
authors. For a recent discussion and references see [7].
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and B*(T) is the unbiased estimate with (uniformly) minimum variance. That it
is unbiased is clear since B(¢) = Ej, ¢6*(T). The minimum variance property
is an immediate consequence of the completeness of the sufficient statistic T’ for
(6; , ) and of Theorem 5.1 of [7].

Analogous remarks apply in the more general case, in which the tests are not
required to be exact. If the relevant frame of reference is obtained by considering'
t as fixed, the error probabilities of interest are the conditional probabilities
as () = Py, (vejecting H | £) and ar(f) = Ps, (accepting H | ), and the quantities
C(t) and ¥(t) can therefore be determined from the relation

(11) ar(t) = ko (t).

The resulting test will of course not be similar. However, since ao(f) =<
1/(k + 1) forall ¢, the quantity 1/(k + 1) isan upper bound also for the average-
probability ao(¥#) of an error of the first kind.

The above discussion applies only to problems in which the parameter of
interest is one of the “natural’’ parameters of the exponential distribution (1).
As was pointed out in [7], any parameter of the form 6 + Y a:; is natural for a
suitable definition of U, the T”s and #’s. When the parameter of interest is not
of this form, related methods may be applicable as is indicated by the following
example.

If X;, -+, X, are a sample from a normal distribution N (£, ¢°), neither the
parameter ¢ nor £/c are of this form. The problem of testing ¢/ < 8 against
£/c 2 & can be reduced by invariance considerations to the statistic
X/ [E(X X)%}, the distribution of which depends on the single parameter
d=t/o.Mai= Ps{X > C2(X: — X) 1"}, the quantity C can be determined
so that oy = kao. The problem of testing ¢ < & against § = £, appears to.be
more difficult; a possible approach may be that of [4], Section 3.

6. Examples. We shall now briefly indicate some examples in which the
natural parameter 6 is the relevant one so that the method of the preceding
sections is applicable. Of these, Examples 1, 2, 3 have been treated by the same
method (but from a different point of view) by Tocher [12}, and Examples 2, 3 by
Sverdrup [11].

ExampLE 1. Let X, Y be independent Poisson variables with E(X) =
E(Y) = u, and consider the problem of testing p/A = ao against p/A = @
The joint distribution of X, ¥ forms an exponential family with T = X + Y,
U =Y, 0 = log(u/\) and & = log \. The conditional distribution of ¥ given
X 4+ Y = tis a binomial distribution corresponding to the success probability
p = p/(\ + p) and number of trials equal to ¢. In terms of p, the hypothesis
and class of alternatives becomes p < ao/(ao+ 1) and p = a1/(a1 + 1) s0
that the test satisfying (2) and (11) can be determined from a table of the
binomial distribution.

Exampire 2. If X, Y are independent variables with binomial distributions
b(p1 , m) and b(p; , n), their joint distribution has the exponential form (1) with
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T=X+4+Y,U-=Y,0 = log (po/q2: + m/q0) and ¢ = log (p/q1). The
method is therefore applicable to the problem of testing ps/¢: < ao(pi1/q1), and
in particular p, < p/ by letting ay = 1, against the alternatives ps/q. =
a(pi1/qi). Putting p = (p2/q:) = (p1/q1), the conditional distribution of ¥
given ¢ is
(12) PV =ylX+ Y =t} = C(o) <t Ty) <Z> F =01,
which for p = 1 reduces to the hypergeometric distribution.

ExaMpLE 3. In a2 X 2 table representing the results of classifying a sample of
size s according to two characteristics A and B, the joint distribution of the
numbers X, Y, Y’ in the

A A
B X X' M
B Y Y’ N
T ™ | 8

categories AB, AB and AB constitute an exponential family with U = Y,
T'=X+Y,To=Y + Y and 6 = log (p4spis/Paspis). Putting A = (paspis/
Paspis) one finds

A A

1—-A 1—-A
Pak = PaPs — A PapPaB; Pip = PipPs — A PiBPak

A
PiBPak

A
PisPak; piz = pips +

DPap = PaPs +

where p4p denotes the probability of having the characteristics A and B, pa =
Pas + pas the probability of having the characteristic 4, etc. The quantity A is
therefore a measure of the degree of dependence,’” A = 1 corresponding to
independence, A < 1 to negative and A > 1 to positive dependence. The method
of the preceding section is applicable to testing A < 1 or more generally A < A
against the alternatives A = A;. The conditional distribution of Y given
X+Y=tY+ Y = nisgiven by (12) with A in place of p.

ExampLE 4. Consider a number of paired comparisons (U, Vi) where only
the sign of the differences Wi = V; — Uy are observed for each pair k = 1,-- -, n.
If the probability of a positive, negative and zero observation are p,. , p— and po
in each case and if the comparisons are independent, the joint distribution of the
numbers X, ¥ and Z of positive, ﬁegative and zero cases is the multinomial-
distribution

nl g oy .
W 2

5 A is equivalent to Yule’s measure of association, which is @ = (1 — A)/(1 + A). For a
discussion of this and related measures, see [2].
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This is an exponential family with U = ¥, T = Z, 6 = log (p+/p-) and ¢ =
log (po/p-). The test of p+ < p_ (or p4+ < acp_) against p, = ap_ is therefore
performed conditionally given Z = ¢. Since the conditional distribution of ¥
given Z = ¢ is the binomial distribution b(p;/(p4+ + p_), n — {), the constants
C(t) and () for which the test satisfies (2) and (11) can be obtained from the
binomia] tables.®

ExampLE 5. Let Yy, -+, Yy be independently distributed according to the
binomial distributions b(p;, n:;) ¢ = 1, --- , N where

pi = 1/[1 4 ¢ @)

This is the model frequently assumed in bioassay, where x; denotes the dose or
some function of the dose such as its logarithm, of a drug given to n; experi-
mental subjects and where Y; is the number among these subjects which respond
to the drug at level ;. Here the x; are known, and a and 8 are unknown param-
eters. The joint distribution of the ¥’s is

N N e—(a+ﬂx,~) ng
(13) eaZyi‘Fﬂ}::c,‘u; H i
=i \Yi/ L1 + (et | 7

which is an exponential family with the parameters a, 8 and sufficient statistics
Y., inY,-. The method is therefore applicable to testing @ < ap against
aZ aorf = Boagainst B = B; . It is interesting to note that for the particular
case z; = t¢ and H:8 = 0, the conditional test given ¥ = ¢ is a form of the
Wilcoxon test in a setting similar to that discussed by Haldane and Smith [3].

As a last example we mention without going into details the comparison of two
distributions of type (13). If the parameters in these are «, 8 and o/, 8’ the dif-
ferences @’ — « and 3’ — B are natural paratheters of the resulting exponential
families, and can therefore be tested by the method discussed here.
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