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1, Statement of the problem and the results obtained. Consider a Markov
chain X(n),n = 0, 1, 2, .- -, with a finite number of states 1, - - - , m and sta-
tionary transition probability matrix P = (ps;)

pt1=P[X(n+1)=jIX(n)=1:]g0, iaj':l""sm’
2P = L.

The probability structure of the chain is determined by P and the initial prob-
ability distribution vector p = (p;)

p,=P[X(O)=’L]§0, i=17""m)
@
Zipi: 1.

Suppose the experimenter does not observe the process X(n) but rather a de-
rived process Y(n) = f(X(n)) where f is a given function on 1, - - -, m. The
states ¢ of the original process X(n) on which f equals some fixed constant are
collapsed into a single state of the new process Y(n). Call these collapsed sets
of states S;,2 = 1, --- , r,7 < m. A natural question that arises is as to whether
or not the new process is Markovian. It is clear that this is not generally the
case.

Let us restrict ourselves to a process X(n) with its initial probability distribu-
tion a left invariant vector of the matrix P, that is, pP = p. Further assume that
all the components of p are positive (all transient states are thrown out). Let
D be the diagonal matrix with its sth diagonal entry p;. The process is said to
be reversible if

€Y

DP = P'D

(P’ is the transpose of P). The following result is obtained:
TaroreM 1. Let X(n) be a stationary reversible process with p; > 0 for all 1.
Then Y (n) s Markovian if and only if for any fizxed 3 = 1, --- , r
3 § pii = P[X(n + 1) € 83| X(n) = 4] = Cs, .5,
JESE
has the same value for all © in any given collapsed set of states Se, @ = 1, -+« , 1.
A slightly different problem can be phrased in the following way. Let

2

w= (w),w;: >0,1=1,---,m
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be any initial probability distribution. Consider the Markov process X(n)
generated by initial distribution w and transition probability matrix P. Again
consider Y(n) = f(X(n)) and require that Y(n) be Markovian whatever the
initial distribution w.

CoroLLARY 1. A sufficient condition that Y(n) be Markovian whatever the
initial distribution w of X(n) is given by (3). Nonetheless, condition (3) is not
generally necessary if the collapsed process is to be Markovian even in the
‘problem covered in Corollary 1.

THEOREM 2. Let f be a function that collapses only one class of states S. Y(n)
18 Markovian whatever the initial distribution w of X (n) if and only if one of the
Sollowing two conditions is satisfied:

@ @ z‘:' Dkt Pru = Pr,s Cu
for all u 2 S and all k;

(5) (i) pis =0 forall 7g8.
Here

Prs = 2 v = PX(+ 1) e 81 Xw) = K
An example of a Markov chain satisfying (4) but not (3) is given in the body
of the paper.
Condition (4) naturally suggests the condition given in Corollary 2.
CoROLLARY 2. A sufficient condition that Y (n) be Markovian, whatever the ini-
tial distribution w of X(n), ¢s given by

4) 2 Pu D185 = Dk,s, Cs,.85

for all k, a, B.

Suppose we now go back and consider the class of stationary Markov chains
X(n) with p; > 0,2 = 1, --- , m, such that Y(n) = f(X(n)) is Markovian for
any many-one transformation f.

TraeOREM 3. Let X(n) be a stationary Markov chain withp; > 02 =1, .-+, m.
f(X(n)) is Markovian for every many-one transformation f if and only if the transi-
tion probability matriz P of X(n) ¢s of the form

(6) P=ol+ (1 - &)U,

where U s a matrix with identical rows and a is a real number.

It is interesting to note that when one goes to the case of a decent continuous
parameter Markov chain with a finite number of states, the analogue of (3)
becomes almost necessary for Y(t) to be Markovian, whatever the initial prob-
ability distribution w of X(f).

TueoreM 4. Let X(¢), 0 < t < «, bea Markov chain with a finite number of
states 1 = 1, --- , m and stationary transition probability function

P(t) = (pii(1))
piit) = PIX(t + ) = 7| X(r) = 1]
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continuous in t.. Assume that

lim P(f) = L.
ty0
Clearly
P@t)P(s) = P(t + s), t, s> 0.

Let the initial probability distribution of X(t) be w, w; > 0,¢ = 1, «-- , m. Then
Y() = f(X(@®) s Markovian, whatever the initial distribution w of X(t), ¢f and
only if for each B = 1, ---, r separately either

o () D@ =0 forall 228 or
() pis,(t) = Csps,(t) forevery 78 andall v =1,.--,r

Part of the interest in the proofs of Theorems 1 and 4 lies in the fact that
they show that if the collapsed processes in these cases satisfy the Chapman-
Kolmogorov equations, they are Markovian. '

Condition (3) can be reworded in the case of a Markov process X(f), 0 <
t < o, with stationary transition probabilities and values in an abstract space.
Let @ be a space of points z and B(2) a Borel field on Q. Further let the sets
() be elements of B(2). Consider a function

P(t;z, A), A eB(Q)
satisfying

(i) P(t; z, A) is a Baire function of z for fixed ¢, 4 ;
(ii) P(t; =, A) is a probability measure in 4 & B(Q) for fixed ¢, z;
(iii) P(t; =, A) satisfies the Chapman-Kolmogorov equation

P(t + 750, A) = fn P(t; y, A)P(r; @, dy), 4> 0.

Let X(¢) be a Markov chain with P(¢; x, A) as its transition probability func-
tion. Let f be a function from @ onto another space of points @’. The function
f induces a Borel field of sets B(Q') = f(B(2)) on @'. This consists of sets of the
formfA = (yeQ |y = f(x), x ¢ A), A ¢ B(2). Now consider the inverse images
of sets in f(B(Q)). The class of sets of this form we call ff(B(Q)) and it is a
subBorel field of B(2) consisting of sets of the form

{zeQ|z = ff(x),ze A}, A eB(Q).
The analogﬁe of condition (3) is simply that
@®) P(t;z, 4), - Aef f(B@)

be a Baire function of # with respect to f~ lf(B(Q)) for fixed ¢, A.
CoroLLARY 3. Y(t) = f(X(t)) is a Markov process, whatever the initial prob-
ability distribution of X (t), if condstion (8) s satisfied. Condition (8) is discussed
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in a paper of B. Rankin [4] as a sufficient condition for a collapsed Markovian
process to be Markovian.

2. The stationary case. Let the assumptions of Theorem 1 be satisfied. The
matrix of n-step transition probabilities of the process Y(n) is of the form

9) Q™ = AP"B = (¢\3) = (PIX(t + n) & S5 | X(2) & S.]),

where A, B are r X m and m X r matrices respectively. The elements of B are
of the form

1 if 7¢8 J
b.'j =
0 otherwise;
while
(10) A = (B'DB)"'B'D,

where D is the diagonal matrix introduced above. If the new process is Marko-
vian, the Chapman-Kolmogonov equation must be satisfied by the Q™, that is,

(11) Q™ = AP"B = [Q"]" = (APB)", n=23- .
This condition can be reworded in an equivalent form

(12) AP"BAPB = AP™"'B, n=123- .
Note that

(13) BAPB = PB

implies that (12) is satisfied. Condition (13) is just condition (3) expressed in
matrix form when the assumptions of Theorem 1 are satisfied. We first verify
that (3) implies that Y(n) is Markovian. (To facilitate printing we sometimes
write a(¢) in place of «;.) Clearly

P[Y(O) & Sa(ﬂ) » " Y(n) & Sa(ﬂ)] = E E Pio Pigiy® * " Din_1in

J=0 ije8q(4)
= ( E p")cﬂa(o).ﬂau) C‘sa(n-l):sa(n)

£e8q (0)

and it is easily seen that
Cs,.5s = PIY(n 4+ 1) £ 8| Y(n) € Sal.

The sufficiency of condition (3) is thus verified. Note that the sufficiency argu-
ment given above holds for the case of any initial distribution w and without
the condition of reversibility. We thus have Corollary 1.

Let us now consider the necessity of condition (3) when X(n) is reversible.
If Y(n) is Markovian the Chapman-Kolmogorov equations are satisfied by the
Q™ and we must have

Q¥ = [@F
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or
AP(I — BA)PB = 0.

But this implies that
B'DP(I — BA)PB = 0.

Because of reversibility, this can be written as
B'P'D(I — BA)PB = 0.
Now D(I — BA) is positive definite so that
D(I — BA) = R'R
for some m X m matrix R. Thus
(RPB)(RPB) =0

and
RPB = 0.
But then
R'RPB = D(I — BA)PB'=0
and hence

(I — BA)PB = 0.

It is worth while noting that the problems we consider are related to issues of
aggregation and consolidation in multisector models of mathematical economics
(see [5]). There one has a stochastic matrix P and an invariant vector

»,pP = p.

One asks for the types of aggregation under which the aggregated invariant
vector is an invariant vector of the aggregated matrix. The aggregated matrix
Q = APB where B is defined as before and A = (B'D,B)"B'D, . Here D, is
the diagonal matrix with its sth diagonal element »; . The aggregation is de-
termined by the sets of states S; and the vector v = (v;). The aggregated vector
is pB. The question is then for what aggregation schemes the relation

pBQ = pB(B'D,B)"'B'D,PB = pB

is valid. Conditions (3) and (6) turn out to be crucial in some of the results ob-
tained in [5].

3. Any initial distribution. Let the assumptions of Theorem 2 be satisfied.
We first show that (4) is sufficient. It is enough to show that

PX(n) =2, X(n+ 1) eS8, -, X(n+h)eS, X(n+h+1) =j]
= P[X(n) = i]P[X(n + 1) £ 8| X(n) = 1]
- PX(n+h) e8| X(n+h—1)¢e8]
PX(n+h+1) =j| X(n + h) & 8]
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for any j £ S and any <, since then ¥Y(n) is clearly Markovian. Note that (4)
implies that

(14) g Dri P1,8 = Dk,s Cs

for all k. By making use of (4) and (14) the following relation is obtained
PXn+h+1)=4X(n+he8 -, X(n+1) eS| X(n) = 1]

h
= kgl ikEgs Diiy Piyig® " Diney,in Pinas
= pi,s(Cs)h_lCi .
But
Ci=PX(n+1)=j|X(n)eS], je8,
and
Cs = P[X(n+ 1) e8| X(n) ¢ 8.

An Argument paralleling the one given above indicates that (4’) implies that
Y (n) is Markovian so that we have Corollary 2. Y(n) is obviously Markovian
if (5) is satisfied. ‘

Now consider the necessity of (4). Since Y(n) is Markovian whatever the
initial distribution w of X(n), the transition probabilities of ¥ (n) satisfy the
Chapman-Kolmogorov equation. It may be that p;s = 0 for all 7. Then (4) is
obviously satisfied. Suppose now that there is an 7 such that p;s ¥ 0. The Chap-
man-Kolmogorov equation then tells us that

Z E Wk Prr Pru
leS &k

iR~ = Dit Pu
Dis ; —— £ 1 Pi

for all 2, u £ 8. If k is such that p,s # 0 then
(15) Pi,s g Dt P = Dr,s uzs Pit Puu

as is seen by letting wx — 1 and w; — 0, I £ k. And if p,s = 0 (15) is obvi-
ously satisfied. Thus (15) holds for all £ and all ¢ £ S. If there is an ¢ £ S such
that p:s # 0 (15) is satisfied for all £ and 7. But this implies relation (4). There
is still the possibility that p;s = 0 for all 7 £ S, namely condition (5).

In the context of Theorem 2 condition (3) implies that condition (4) is satis-
fied. However, the converse is not true. Consider the transition probability
matrix

~

]
QO BIH - ol ool
B R O ol ol
QO Wi Rl ol ool
[N O Ol o= O
Bl R e ol ©
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Collapse the states 1, 2, 3 into a set S and leave the states 4, 5 alone. Note
that (3) is not satisfied. But (4) is satisfied since

Z Dkt Diu
les
Dx.s

[

for all u £ S and all k.

4. Any function f. The answer obtained to the question posed in Theorem 3
is the same as the answer obtained ih a similar problem posed by
Bush, Mosteller and others [1]. The structure of interest in Bush and Mosteller’s
problem is not Markovian. Note that in our case we ask that f(X(n)) have the
same structure (a Markovian structure) as X(n) for any f and a specific initial
probability vector, a left invariant vector p of P. Bush and Mosteller ask that
f(X(n)) have the same structure as X(n) for any f and any initial probability
vector w. '

Let us now prove Theorem 3. The condition imposed on the process will not
be used in full strength. Just consider a consolidation in which two states 7, k&
are consolidated into a set S and all other states are left the same. Let 7, [ be
any indices distinct from j, k. Since the consolidated process is Markovian, its
transition probabilities satisfy the Chapman-Kolmogorov equation and hence

(16) P = 21 Div Put = % Diu Pur + (Di; + pir) PiPar + PrPu .
U= u

pi + i
Equation (16) can be reduced to the following convenient form
17) (Pipe — Pup;)(Pir — Prr) = 0.
Further, (17) implies that
(18) [(ppis + Pipe)Pr — @Pie + Pip)Pl(Ps — pir) = O.

First consider the case in which for all ¢ p;;px = paup; for all 5, k £ <. But
then ‘

pii = (1 — N)p;, 1 #J,
_ Dii — i
=R

so that P is of the form
P=A+ (- AT,
where A is a diagonal matrix with diagonal elements A; and U is a matrix
with identical rows (p1, - - -, p.). If
(19) (Pipii + Pepri)Pe = (PP + DiDee)P,

for some pair of indices 7, k it follows that A\; = ;. If (19) does not hold for
the pair j, k, (18) implies that p;; = pi: for all I 5 j, k. But then A; = X\ . Thus
it follows that in thiscase Ay = Ng = -+- = \,.
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Now on the contrary assume there is a row ¢ for which p;jpr = pap; does
not hold for all j, k¥ # 4. Given any j # ¢ consider all k¥ for which we can find
a sequence ji, * * - , ja Such that

DijPs; = DiiPi, PinPis = PiisPiy» 5 PiiaPk = DikPi, -
There is a maximal set of such indices & (including j of course). There are at

least two such sets. The collection of all such maximal sets are disjoint. Given
any j in one such maximal set and any 5/ in another we must have

(20) Pit = Pin
for all I # 7, 7/ and
(21) Py + Pij — Pyri — Pyry = 0.

For convenience let us assume 7 = 1. Keeping (20) and (21) in mind, it is clear
that for any fixed j > 1 the p;’s must be equal for all £ = 1, 5. Call this com-
mon value u; . Thus all rows except possibly for the first must be of the form

Prj = )\51”' + Uj .
There are now two possibilities. Either p;jpr = puap; for all ¢ # 1 and all
N ER
or this is not the case. If not we must have p;; = \;; + u; for all . Since p is
an invariant vector u; = (1 — A\)p;. On the other hand if p;jpr — pup; = 0
forall ¢ ¢ 1 and 7, k # ¢ then u; = (1 — A)p;. The elements of the first row

are as yet unknown. But again making use of the fact that p is a stationary
distribution we see that p;; = No1; + (1 — N)p; .

6. Finite state space and continuous time. The proof of the sufficiency of
condition (7) in the case of Theorem 4 parallels the proof of Corollary 1.

We now show that (7) is necessary. A transition probability matrix-valued
function P(f) satisfying the regularity conditions posed in the assumptions in
Theorem 4 is of the form (see [2])

P(t) = exp (Gb),
where G = (g,;) is such that
gi; = 0, t # J,
Z gij = —@Gii .
J=1

i

Let w = (w:), w; > 0 be the initial distribution of X(¢). A necessary condition
that the collapsed process be Markovian for an initial vector can be written
down conveniently in matrix notation. As before, let

¥ = (B'D,B)"'B’'D,P(t)B
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denote the ¢-step transition probability matrix (from time zero to time ¢) for
the collapsed process Y(f) when the initial probability distribution vector of
the original process X(¢) is w. If the collapsed process Y (¢) is Markovian Q%
must satisfy the Chapman-Kolmogorov equation and thus

(22) QLQw = QY™ t >0,

for all w, w; > 0. It is clear that the w.’s only have to satisfy w; > 0 and that
the condition D_ w; = 1 needn’t be imposed. On differentiating relationship
(22) with respect to 7 at 7 = 0 we obtain

(23) QY (B'DywryB) 'B'DypyGB = (B'D.B)"B’'D,P(t)GB.
Let us now differentiate (23) with respect to ¢ at £ = 0. We then have
B'D.,GB(B'D,B)"'B'D,GB — (B'D,B)"B’'D,¢BB'D,GB + B'D,.GB

= B'D.G'B.
This can be written more conveniently as
(24) B'[D.,G — Gul[B(B'D,B)™(B'D,) — IIGB = 0.
Let

Gi8. = Z Gis .
Condition (24) can be written down elementwise as

Z szgzsa'ws, Ewtgzsg '—Z Zwagtkgks,g

1684 ¥ 1€8y i£8y

—‘Z:'wiyi,sa Zw.g,«,+2wzz Gix Jr,s5 = 0.

168y

(25)

If we set w; = wh, 7 € Sa, in (25) and then let 4 | 0, the following relation is
obtained since the first two terms drop out

- Z wigi,saug.;l gs: Ui Gi,84 +E sz Gik Jr.8g = 0.

t#Sa o i$Sq

But this is valid if and only if
Gis, Usy D WiGi,sy = Ig ik G5

168y

for all ¢ £ 8, . Further, since this holds for all u,,
(26) 9,8, §i.3g = ?_:, Gk G.sp
for all 7 £ S, and all j ¢ S, . There are only two alternatives that arise. If

gis, =0
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for all ¢ £ S, relationship (26) is obviously satisfied (we then say that S, satis-
fies (i)). Otherwise g;,5, % 0 for some 7 £ S, in which case gi.s, for each B is a
constant for all j ¢ S, , that is,

(27) 9is = Ks, .5

foralljeS.,8 =1, -, r (we then say that S, satisfies (ii)). The matrix G
is said to satisfy (7) if for each a separately S, satisfies either (i) or (ii). Note
that if @ satisfies (7) the nth power of G, G* = (g!}), satisfies (7) in a con-
sistent manner, that is, S, satisfies (i) for G if and only if S, satisfies (i) for G.
Since

P() = exp(GY) = lﬁ G**/k!

P(t) satisfies (7). It should be noted that our proof has shown that the condi-
tion that the Chapman-Kolmogorov equation be satisfied by the collapsed
process is enough to imply that the new process be Markovian. P. Levy [3] has
shown that this is generally not the case.

6. Abstract state space. Consider a Markov process X (f) with initial prob-
ability distribution
P[X(0) e A] = P(4), A eB©®)
and transition probability function
P(t;x, A)

satisfying the assumptions of Corollary 3. Then Y (¢) = f(X(t)) is a Markovian
process with initial distribution

P[Y(0) e Al = P[X(0) ef7(A")] = Q(4A")
A’ £ f(B(©)), and transition probability function
Qt; v, A) = PIY(t + 1) e 4" | Y(r) = 4]
PIX(t + 7) ef (A" X(7) ef ()]
P(t;z, f(A), y e ¥, A’ £ f(B()),

where z is such that y = f(z). This follows immediately from condition (8).

It is interesting to note that one can generate new Markovian processes from
old ones by setting up f so that it is consistent with the symmetries of the transi-
tion probability mechanism of the old process. Consider X (f) Brownian motion
on the line. Here the transition probability density is

P(tz,y) = (2at) "2 exp(— %Z(x - y)z), t>0.

If we set
f@) = z — dlz/al, a>0,
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where [z] is the greatest integer less than or equal to z, the new Markovian
process Y(¢) = f(X(#)) is Brownian motion on the circle. If

flx) = 2

on all points of the form 2ka + 2,0 < z < @,k = 0, &1, - - - , Y(¢) is Brownian
motion on a line segment of length a with reflecting barriers at the endpoints.

As a further example consider starting out with two-dimensional Brownian
motion (Xi(), X,(t)), that is, the transition probability density is

P (21, 22), (1, 92) = (2rt) ™ exp (— %i [(-‘171 - y;)2 + (xz - y:)z]), t>0.

If
f@y, @) = (ur, up)

for all points (21, x2) of the form (u; + ja, s + ka) 0 = w, ue < @, j, k=
0, =1, --- (Y1(t), Y2(¢)) is Brownian motion on a torus. If

@1, 22) = (w1, up)

for all points of the form (u; + ja, @k + j) a £ %) 0 = wy, us < @, 4, k =
0, 1, « -+ (Y1(t), Y2(t)) is Brownian motion on a Moebius strip with reflecting
barriers on the edges of the strip.

REFERENCES

[1] Buse AND MOSTELLER, Stochastic Models for Learning, John Wiley & Sons, New York-

[2] J. L. DooB, Stochastic Processes, John Wiley & Sons, 1953.

[3] P. Levy, “Examples de processus pseudo-Markoviens,” C. R. Acad. Sci. Paris, Vol.
228 (1949), p. 2004-2006.

[4] B. RaNKIN, “The concept of enchainment—a relation between stochastic processes”
(1955), unpublished.

[8] D. RosENBLATT, ‘“On aggregation and consolidation in linear systems’”, to be pub-
lished in the Naval Research Logistics Quarterly.



