ESTIMATION OF THE MEANS OF DEPENDENT VARIABLES

By Ouive JEan Dunn?!

Statistical Laboratory, Iowa State College

1. Summary. Methods are given for constructing sets of simultaneous con-
fidence intervals for the means of variables which follow a multivariate normal
distribution.

In section (3), a set of confidence intervals is obtained for each of two special
cases; first when the variances are assumed to be known, and second when the
variances are assumed to be equal. These two sets have the property that the con-
fidence is known exactly, rather than merely being bounded below. In the case of
known variances, the intervals are of fixed lengths (i.e., the lengths are the same
from sample to sample); when the variances are unknown, the intervals are of
variable lengths. It may be surprising to note that nothing need be known about
the covariances in order to obtain confidence intervals of fixed lengths whose
confidence coeflicient is exact. These intervals are long, and do not make use of all
the information provided by the sample,

Each of sections (4) to (7) considers a different method for obtaining confidence
intervals of bounded confidence level. In each section a set of fixed lengths is
obtained when the variances are assumed to be known, while a set of variable
lengths is obtained when the variances are unknown but equal. In section (5) the
set of variable lengths applies to the general multivariate normal distribution, all
the other confidence intervals in this paper require some assumption concerning
the variances. ,

In section (8) the sets of intervals are compared on the basis of length. One of
the bounded confidence level methods, which has been established only for two or
three variables or for an arbitrary number of variables with a special type of
correlation matrix, is shown to yield the best possible set. Another of the bounded
confidence level methods, whose use is established in general, is shown to be
almost as good as the best set for confidence coefficients of practical interest.

It is interesting to notice that intervals with bounded confidence level, are
found which are much shorter than the ones whose confidence level is exact. This
need not surprise us, however. In the case of just one variable, we might easily
find that the 95% confidence intervals for the mean using the {-statistic were
shorter on the average than 94% confidence intervals using order statistics.
Moreover, since in admitting sets of confidence intervals with bounded con-
fidence level we consider a much broader class of methods, we might almost
expect that some of them would give better intervals.

2. Introduction. The problem of estimating the unknown means of dependent
variables arises frequently in situations where repeated measurements are made
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1096 OLIVE JEAN DUNN

on the same individuals, and the assumption of independence is unjustifiable. In
biological research, for example, growth data are often obtained with measure-
ments taken on n individuals at &k different times; the measurements would be
highly correlated. The psychologist might measure n individuals’ responses to &
different levels of a stimulus; again, a high degree of dependence would be ex-
pected. The point estimates chosen for the means would be the same as for in-
dependent variables; in this paper we wish to develop simultaneous confidence
intervals for the means.

Let 41, ++« , yx be k jointly distributed variables whose means are u; , - -+ , ux
respectively. A set of simultaneous confidence intervals for u;, ---, we with
confidence coefficient 1 — o consists of 2k functions of the sample values, say
giand h;, ¢ = 1,2, -- -, k, with the following property: if E; is the event that
the interval g; to h; covers u;, ¢ = 1, 2, --- , k, then the probability that E, ,
E:, .-, E; occur simultaneously is greater than or equal to 1 — «, where
0 < a < 1. Symbolically,

PE\Ey, -+ ,E) =Pl <m<h, -, <m<h)z1l-o

If the inequality sign holds, the set is of bounded confidence level.

Paul G. Hoel has in a recent paper [1] given a method for estimating a mean
regression curve and a confidence band for it which is applicable to the situations
we have in mind provided one assumes the existence of a polynomial regression
curve of a given degree. In this paper we shall assume that the experimenter is
actually interested in the regression curve, but is either unwilling to make the
necessary laborious calculations or else is unable to make the necessary assump-
tions concerning its form. He knows that there exist methods for studying linear
contrasts among the means, but this is not what he wishes to do. He might in-
deed decide to make k different 95% confidence intervals, one for each of the
k means; this is satisfactory only when he focuses on one individual mean.

We shall assume, then, that he will welcome a set of k confidence intervals, one
for each mean, being assured, with a high probability, that such a set covers all
k means simultaneously.

Another situation in which such a set of intervals would be useful arises when
a regression line, curve, or surface has been fitted, and several predictions are
made on the basis of it.

Suppose, for example, that the assumption has been made that the variables
z; are normally distributed with means o + Bf; and variances ¢°, and that the
maximum likelihood estimate & -+ §¢; has been calculated from a sample of size m.

At any particular value of ¢, say f, one can obtain a prediction interval for
29 , an observation drawn at random from the z’s belonging to # , by using the
fact that uo = 2o — & — Bt is normally distributed. But the research worker is
cautioned not to do this for more than one value of ¢, and of course this is exactly
what he wishes to do.

If he goes ahead and gets such intervals at k different points, say ot
he has the same unsatisfactory situation as with repeated tests of significance.
The variables u¥ = z¥ — & — Bt;, where z¥ is an observation chosen at random
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from the z’s at ¢ = #{,% = 1,2, - - - , k, are normally distributed and are corre-
lated; thus the methods of this paper may be used to give simultaneous prediction
intervals for the points =¥, - - - , zx .

3. Confidence regions using independent linear combinations.

3.1. Assuming first known variances, we seek independent linear combinations
of the sample values which can be used to give a set of confidence intervals of
fixed lengths whose confidence level is exact.

The observations y1;, ¥25, *-* , Y%, J = 1, --- , m, are a random sample of n
observations from 7i(y1, - -+, ¥&), the multivariate normal distribution with
unknown means, u; , - - , s, known variances, o1, - -+ , o3 , and unknown co-
variances Ny, ¢ # S.

Let 2z; = O jm1 @;%i;,4 = 1, - - - , k, with the following restrictions on the a;; :
(1) Zla,.i =1, di=1,--,k

=

(2) Z Qji Qjs = 0, 158
=1

(3) Z‘iaﬁ,- =¢, =12 -,k
=

The means, variances, and covariances of the z; may then be calculated, re-
membering that E(y:; — u:)(%; — us) = \is, but that (since two observations
in a random sample are independent) E(y:; — u:)(¥sj» — us) = 0 for j == 7'. The
means of the z; are calculated to be u;,2 = 1, - -+, k, their variances are pro-
portional to o3 , - -+ , ot , and their covariances are zero.

To determine the a;; , let A = (aj;), an n X k matrix. The columns of A may
be considered to be k vectors in an n-dimensional Euclidean space, each with an
end fixed at the origin. The three conditions imply (1) that the & vectors have
their endpoints on the plane which passes through the unit points on the co-
ordinate axes, P: ) i1 a; = 1; (2) that they be mutually orthogonal; and (3)
that their lengths equal ¢.

If n = k, the columns of

c o --- 0
O c .« o . O
D=]0 o --- ¢ |,ann X k
0 o --- 0
| 0 0 -+ 0 ]

matrix, are k¥ mutually orthogonal vectors of length ¢ whose endpoints lie on any
plane

S

)R S T ST 2 R T L
c Cc My My,
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The plane P’ can be rotated into the plane P provided the distances of the two
planes from the origin are equal; this will be true if

Cz= k
1 1,
N— "3 — eoe = —5
m,f+1 mz

To make the lengths of the confidence intervals formed from the z; as small as
possible, ¢ should be minimized. This is accomplished by choosing for P’ the
plane > %, (ai/c) = 1; then ¢ = (k/n).

The solution is then 4 = BCD, where B is an n X 7 orthogonal matrix whese
first column consists of the elements n’*;

1 .. 10 - 0
k k
C=]-.-- el 0 oo 0 ,anan
o --- 010 ..+ 0
0o -~ o]0 --- 0]
matrix consisting of zeros except for a k X k orthogonal matrix in the upper left
corner whose first row is k%, - - - , k¥; and D is defined as before, with ¢ = (k/n).

For C rotates the column vectors of D into vectors whose endpoints lie on the
plane a; = n. B~ rotates the plane > %, a; = 1 into the plane @, = n™*, so
that B rotates the k mutually orthogonal vectors of length (k/n)! into vectors
whose endpoints lie on the plane > %1 a; = 1. The problem thus reduces to that
of writing down a k X k orthogonal matrix and an n X n orthogonal matrix.

The 2;, -+ - , 2z are then independently normally distributed with means u;
and variances (k/n)s; . Thus

‘P<z1"'/‘/lE 0’1Ca<p1<zl+/‘/’£ o'kca’...’zk
n n
—1/@ onCa < i < 2 + ,‘/’ﬁ ,,kcd>=
n n

1 — a, where ¢, is defined by
Uk
N(ca) = 1_‘1"—_(_]_;1_)_—’
2
with N the cumulative distribution function of the standard normal variable.
The set of confidence intervals is z; = (k/n) o.c. .

3.2. When the variances are unknown but are assumed to be equal, the same
method may be used to construct i-variables whose numerators are independent
but which have the same denominator, provided n > k. Let a=di=1-,k

Let

n )
2i=2aﬁyﬁ’ i=11"')k;
=1
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and
umzzbimyfi; m=17""n_k7
=1

where r is any integer from 1 to k. The choice of  is arbitrary. It may be the same
for each 4. , or different r’s may be used for the different values of m. The prob-
lem is to determine the a;; and b, so that z,, <« , 2¢, Ur, - - , Un—s Will be in-
dependently normally distributed variables with E(z;) = wi, 2 = 1, ---, k;
E(um) = 07m = 17 N — k,E(zi - ”5)2 = (k/n)o'zyi = 1’ et 7k1E(u12n) = 027
m =1, .-+, n — k. This will be accomplished provided

(1) Zl Qi = 11 1= 17 ] kr since E(Zi) = M Z; Ajs = Mi.
j= =

2 Xa= k,i =1,---,k since E(z; — p)’ = o* 2 ats = lcaz.
=1 n J=1 n

(3) E:a,-,-a,-s = 0,7 5 s, since E(z; — ui)(2s — 1) = Nis Z; a;ia;; = 0.
. p

(4) Zb,-,,. =0,m=1,---,n — k, since E(u,) = umZb,-,,. = 0.
: gt

() 2 bi=1¢=1---,n—ksince Bun) = o’ 2 b = o"

i=1 =1
(6) Z bjm bjs = 0, m # s, since E(um ua) = E(yr - Hr)(yr' - Hr') Zl bjm bjs = (.
=1 i=

) Za,-;bj,,, =0,¢t=1,---,k;m=1,---,n — k,since E(e; — u:)(Upn)
= )\,‘,-Z a;ibjm = 0.
=1

Thus » mutually orthogonal vectors are needed, %k of length (k/n)} with end-
points on the plane ZZ‘,; a; = 1, and n — k of length one with endpoints on the
plane Y ria; = 0.

Let

o i [==]
S
[==]
o
(=]
(=]

k<
k
D= 0 ;1,00 0’
( 0o | 1 o
0 0
n—=k
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an n X n matrix whose columns are n» mutually orthogonal vectors of the needed

lengths.
Let,
[_1 1 0 0—
Vk Vk
0 0
¢= 0 o1 0 --- 0]
0 0 o 1 -.- 0
. 0o -~ 0]0 0 --- 1|

an n X n orthogonal matrix which rotates the first k columns of D into vectors
whose endpoints lie on the plane a; = n~* and which leaves the last n — k columns
unchanged.

Let B be an n X n orthogonal matrix whose ﬁrst column consists entirely of
the elements n*. Since B rotates the plane @; = n” } into the plane Z,,,l a; = 1,
it must also rotate the parallel plane a; = 0 into Y i a; = 0.

Thus A = BCD is an n X n matrix whose columns are orthogonal vectors.
The first k are of length (Ic/n)* and have endpoints on Y iy a; = 1;thelastn — k
are of length one and have endpoints onZ?_l a; = 0.

Then let

e = A i=1,-,k

"/n(n—k)nz—fu'”

These are k t-variables whose numerators are independent but whose denomina-
tors are the same. Their frequency function is (see [2]):

k —(n/2)
fatlly, -+, ) = r (g>(n;k) <1 + ;t>
2

[r(n — k)J¥nT n—k
If ¢, is defined by
f_ f:f,._k(tl, ) dhy ey dl =1 — a
then P(—ce <t < Cay **+, —Ca <t < €a) = 1 — a. Thus an exact set of con-

fidence intervals of equal but variable lengths is obtained:

zﬁicn 5 i=1"‘,k.
/‘/(n—k)m=1u"' ’

4. Intervals of bounded confidence level using the chi-square distribution and
Hotelling’s T-distribution.

4.1. Known variances. For a sample of size n from the multivariate normal
distribution with means u; , - - - , ux and covariance matrix (i), the expression

s
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1Y ket 2 it N*(F — ui)(@s — pa) follows a Chi-square distribution with k degrees
of freedom. Here A* denotes an element of the inverse matrix (\*) = (i)™,
and §; is the sample mean of the observations on y; . Then

;1 ”.Zl )\’(?/t — u)(@e — 1) =

where ¢, is defined by Ui(c.) = 1 — e, with Uy, the cumulative distribution func-
tion of a Chi-square variable with & degrees of freedom. In the parameter space

of the g , - -+ , wx , this equation defines an ellipsoid, which will be denoted by E.
Then
(Zl Z NG — )@ — w) < %") = P[E covers (u1, -+, m)] =1 — a.

To obtain a rectangular confidence region of bounded confidence level, a rec-
tangular parallelepiped, say R, with boundary planes parallel to the coordinate
planes in the u;, ---, ur space is circumscribed around the ellipsoid E. The
boundary planes of R are found to be

T
Ih'=:l7i:l:75\/6_a,

and are not dependent on the correlations.
Then P[R covers (ui, -+, )] > P[E covers (ui, -+, mx)] = 1 — a, thus
giving a set of intervals, 7; == (o:/nd)ct , with Uilea) = 1 — a.

4.2. Unknown variances. The same method applies when the variances are un-
known and n > k, using Hotelling’s T-statistic. Here E is the ellipsoid D5y
Z,_ll (i — w)(@e — 1) = ci/n where (I*) is the inverse of the matrix (I;,)
and l" =E;‘=l (yii - gi)(ysf - gs)/(n - 1))1' = 1) Tty k,S = 1) )k' The
boundary planes of R, the circumsecribed parallelepiped, are u; = §: % (6:/n})ca,
where &, = I};. For c, defined by F(c.) = 1 — a, with F the c.d.f. of Hotel-
ling’s T, the set of confidence intervals is 7; &= Gi/m)ea,i=1,2 -+, k.

It is to be noted that this is the only set of intervals given In this paper for
which no assumption has been made concerning the variances. For the other sets,
the variances were assumed to be known or else to be unknown but equal.

4.3. More general distribution functions. For n large, 72 can be assumed to
follow a Chi-square distribution with % degrees of freedom, even though the
original variables are not normally distributed [3]. A set of confidence intervals
forpi, -+, w is then §; &= (8:/n*)ck , withc, the upper « point of the Chi-square
distribution with & degrees of freedom.

5. Bounded regions based on linear contrasts. Henry Scheffé [4] obtains
simultaneous confidence intervals for the totality of linear contrasts among &
means, gy, - - , u , Uusing the F' distribution. Fe shows that P(§ — Sés < 6 <
0 + Sé5) = 1 — a. Here 6 is any linear contrast; S = (k — 1)ce ; c. is the upper
a point of the F distribution with & — 1 and » degrees of freedom; » is the de-
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grees of freedom of the x” variable used in estimating the variance; and P denotes
the probability that all such intervals cover their corresponding contrasts.

It can easily be shown that confidence intervals for the totality of linear com-
binations of u;, - - - , ux are similarly obtained from P(6 — S65 < § < 6 + S)é5 =
1 — a, where now §* = k¢, , with c, the upper a point of the F' distribution with
k and » degrees of freedom. Since the k means u;, *-- , ux are a subset of the
linear combinations, confidence intervals for them follow immediately.

6.1. Variances known. If the variables ¥, - -+ , y; are normally distributed
with unknown means p; , - - - , ux , known variances o1, - - - , ot , and unknown
correlations, ps , then the x* distribution is used rather than the F distribution,
and we have:

P(yx——\/E;<m<y1+ \/— oy Yk

Vn Vn

Vi < m < G + _\/—>21—a-
\/ n Vn

Here c, is, as in section 4.1, the upper a point of the x* distribution with k degrees

of freedom, and the intervals obtained are the same as those of section 4.1.

6.2. Variances unknown but equal. When the variances are unknown but
equal, then as an estimate of o one may use 61 = > 11(v1; — #1)*/(n — 1). Then

P(_??l— ,‘/%31\/a<ﬂ1<.?71+ 1/%31\/3,"',%
k. _ k.
- 1—?/01\/C—a<ﬂk<yk+ ;Lcn\/a =1—q

with ¢, the upper « point of the F distribution with & and n — 1 degrees of free-
dom. The confidence intervals are §; & (k/n)téct, .

It may seem unsatisfactory to use only the data from one sample point as an
estimate of o°; this has been done in order to have a x* variable for the denomina-
tor of the F variable.

If one wishes to use a pooled estimate of the variance, 65 = D i, ¢3/k, then
2 no longer has a x” distribution because of the dependence of the variables. It is
possible to show, however, that the F distribution may still be used, provided for
degrees of freedom one uses £ andn — 1 (rather than k and k(n — 1)). That the
degrees of freedom may not be increased may be seen by examining the extreme
case when all the correlations are equal to one.

To establish the necessary inequality for using 4%, one may fix é,, - , &
and consider the conditional probability ‘

_ B . ) T B ) )
P(yl_ﬂﬁpvca<ﬂl<yl+ ﬁ&p\/ca,"',yk
k" o m k Tl A A
— ;l’ﬂ'p'\/Ca<llk<y1+ ,'—,'/ép\/cala'ly"',a’k.
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P — _ 2é; — _
P(ﬂl—/‘/%,j\/ca<m<yl+ %T\/Qz""’yk
26 — _ -26‘,‘ —
- 7]%]Z\/ca<uk<yk+/‘/ST\/calh,“',&k)
3 A _ k -
;P(ﬂl—/‘/;L&i'\/ca<ll1<gl+/‘/h’ai'\/ca)”"gk

- 1/%&m/e".,<uk<yk+1/’;2&\/5.161,---,&:;)/10

Thus for the unconditional probability one has:

P(ﬂl—/‘/gﬁp\/az<ﬂ1<g1+/‘/§6p\/an“',?7k

- %&p\/é;<ﬂk<?7k+ %%V&)él—a-

(%

1%

6. Regions based on a bonferroni inequality. Confidence regions can be ob-
tained very simply using a Bonferroni inequality [5]. The use of this inequality
in a related situation was suggested by E. Paulson [6].

6.1. Variances known. Let 7x(yi, ++, ¥x; -pi, ok, pis) be the frequency
function of £ normally distributed variables with means p;, -+, mx, known
variances o3, - - - , o , and unknown correlations p;, . Let 7; be the mean of a
random sample of size n, Yu, * -+, Yin -

Let z, = ((§: — u,-)n*)/m-), 2 = 1, - -+, k. Then the joint frequency function of
21, o, 2ism(z, - -, 230, 1, pis), and

Pl—c<zn<e- - ,—c<z<ec
= / f e, -+ ,Zk;O,l,Pis) dzy -« dz .
Using a Bonferroni inequality, this integral is greater than or equal to 1 —

2k(1 — N(c)), where N is the c.d.f. of a standard normal variable. Setting this
expression equal to 1 — a, ¢, may be defined by N(c.) = 1 — (a/2k). Then

P(-Ca<w<ca’.-.’—ca<w<ca>
g1 Ok
= P[R covers (u, -+ ,m)] 21—«

where R is bounded by
_ g
m = ¥; £ W Ca-

6.2. Variances unknown but equal. Let y;, 7 = 1,---, k, have the joint
frequency function ni(y1, « -+, Yr ; pi a’, pis), where the variances are unknown
but equal. Let z; = ((§: — ,u,-)n*)/a, i =1---, k. '
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We wish to define Student {-variablest , - -+ , fx using z; , - - - , 2 in the numer-
ators and using the same Chi-square variable in the denominators. If u; = D> 1y
(yi; — §:)*/o°, then u; is a Chi-square variable with n — 1 degrees of freedom.
Since the u; are not independent of each other, we choose one, say u; , to use in
all the denominators, rather than use their sum which does not have a Chi-square
distribution.

Then

f = Vin =1z _ Vn@ — u)
i uim &1 )

i=1,---,k

are Student ¢-variables with the same denominators. Their distribution function

[3] is;
k+n—1
r < ) )
o e (25)
(™) 1”2[1 -1t gp“tit.] _kdnot

where o™ is an element of (p*) = (pi)”, and | (o*) | is the determinant of (™).
Asin 6.1,

Pl—c<ti<ec, -++,—c <t <c)

fﬂ—l(tl y " ytk 5 pis) =

— f PR ‘[ fn—l(tly teey, tk; Pis) dtl c. dtk g 1 - 2k(l - Hﬂ—-l(c)))

where H,_,; is the c.d.f. of a t-variable with n — 1 degrees of freedom.
The set of confidence intervals is then
_ 61
i —= Ca ,
Y n
where

a

Hn_l(ca) = 1 - 2—k,

and
G = 21 (y; — ﬂl)z/(n - 1.

As in section 5.2, it is possible in these confidence intervals to replace ¢, by
¢, , the pooled estimate of the variance; n — 1 must be retained as the degrees
of freedom.

7. Regions with bounded confidence level using inequalities between de-
pendent and independent cases.

7.1. Variances known. For ¢, -, ¥ independently normally distributed
with unknown means 1, - - - , w and known variances, o1, - - , ot , let z; be
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defined by z; = (*@: — us))/o:, where 7: is the mean of the 7 observations on
the 7th variable. Then

k
Pl—ca <81 < Cay oy —Ca < T < Ca) = [] P(—€a < % < €a) =1 — a

=1
where ¢, is defined by N(c.) = 3[1 + (1 — &)"*], with N the c.d.f. of the uni-

variate normal distribution. The set of simultaneous confidence intervals whose
exact confidence level is 1 — a is then §; &= o.c./n’.

If, now, the 1, -+ -, y: are defined as above except that now there may be
correlations among them, the same confidence intervals can be used as a set with
bounded confidence level, provided it can be proved that

Pl—ca <1 <Cay )y —Ca<ap<Ca) =1— a.
The proof of the following theorem establishes this inequality for certain cases.

TaeorEM. If 21, - - - , 2% are normally distributed with zero means, unit vari-
ances, and correlations p;, , then

2=c k
f [nk(xl, oo 23 0,1, piy) dy -+ day = [[ m(z; 0, 1) d:c],
c . Z=—C

provided (1) k = 2 or 3; or (2) pis = bib, ,fors,s = 1,2, --- , k, 4 5 s and with
0<b;:<1,2=1,2, -,k Theregion of integration C is the region bounded by
the planesz; = +c¢, =1, -+ , k;me(z1, - -+, 2 ; 0, 1, pis) is the frequency func-
tion of ; , - -+, 7 ; and m(x; 0, 1) is the standard univariate normal frequency
funection.

Proor. (1) k = 2, 3. For brevity the proof is merely outlined. The expression
[ o S, -, 20,1, pis) dry, - -+, dz, may be regarded as a function of

the pis, say F(p:). The proof consists in showing that for all admissible p;, ,
F(pis) has an absolute minimum at the origin of the p;, space.

First it must be shown that there is a relative minimum at the origin. This
can be shown for any % by considering the various first and second partial de-

rivatives with respect to the correlations.
The first partial derivative with respect to pi2 , say Fiz, can be shown to be:

zg=c zp=c
Y
Zg=—=t Zp=—c

“[ni(e, ¢, x5, -+, k3 0, L, pis) — mile, —c, 3, -+, 2x; 0, 1, pis)] dxs, -+ -, daz.*

Similarly, the second derivative with respect to piz and p,, , say Fia,q , 1S

zg=c zp=c
F12,Pq=2f "'/ nk(c,c’x-’n""xk;oxl,pis)
Z3g=—C Tp=—C

Ty=cC Zy=cC
To=c To=c

dxs, - -+, dxy—a similar integral with x; = ¢, 2, = —c.
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When all the p;,’s are zero, it is easily seen that Fy, vanishes. Further, Fys ,,
vanishes also at the origin unless p = 1 and ¢ = 2, while Fy, ;. is seen to be
positive.

Thus in the expansion of F(p;) about the origin, the first degree terms vanish
and the second degree terms form a positive definite quadratic form, so that
F(psi.) has a relative minimum at the origin for any k.

The next part of the proof is to show from the form of the first derivative, that
at any point beside the origin, at least one of the first derivatives differ from zero.
This was done only for £ = 2 and 3.

The set of all admissible points (points such that (ps) is positive definite and
0 < | (ois) | < 1), together with the boundary points, form a compact set, so that
F(pi;) must assume an absolute minimum either at an admissible point or at a
boundary point. Hence if it can be shown that no point on the boundary of the set
yields an absolute minimum, then the absolute minimum of F must be at the
origin.

For k = 2, the boundary points are just p;2 = =1, and they actually yield
absolute maxima for F(ps).

For k& = 3, a boundary point, say (p1z, p13 , p23s) Was considered. It was shown
that for m sufficiently close to 1 but less than 1, (mp2 , mp13 , p2s) is an admissible
point, and that the derivative of F at (mpw,mpis, pzs) in the direction of
(p12 , P13 , p2s) is positive. Hence (p12 , p13 , p2s) cannot yield an absolute minimum
of F.

This completes the outline of the proof for ¥ = 2 and 3, with any correlation
matrix.

(2) For any k, if pi;; = bib, , with0 < b; < 1for¢ =1, --- , k, a proof may be
given which is adapted from the proof of a similar theorem by C. W. Dunnett and
M. Sobel [3].

For o, 41, * - , Y independently normally distributed, with zero means and
unit variances, define

z; = /1 = by — by, i=1-,k

Then the z;’s are normally distributed with means zero, unit variances, and
correlations p;; = b:b, .
The theorem may be restated as follows:

k
Pl—c<m <, ,—c< a2 <€) gI:EP(—~c<x.-<c),

or
P(—e <A/T=bign —bio < ¢ -+, —¢ < VI — By — bugpo < ©)

k
g.IJI:P(_°< V1 — bty — biye < 0).
or

k
Pldi<ypri<en, -, de <y <en = H;P(d.- <y < e,
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where
d. = = + biyo _ ¢+ by

——— €= ——
VI — b2 V1 =2
This may be written as:

Yo=% y1=ey Yk=¢ck
f [f f nk(yl,---,yk;O,l,O)dyl,-H,dyk]nl(yo;o,l)dyo
Yyo=—2 Y Y

1=d} k=dk

k Yo=% y1=e;
= J f [ f m(ys; 0, 1) dys] 11 (yo; 0, 1) dyo,
=1 Yyo=—0 |_Vy;=d;
or
yo=x k k Yo=%
f [111 Fi(?/O):I m(yo; 0, 1) dyo = III f Fi(yo)ni(yo; 0, 1) dyo,
Yo=—x0 | 1= t=1 Yyg=—o0
where

Fiy) = f ni(ys; 0, 1) dy.

]

Thus the inequality becomes:
k k
5 ([ Fw) = [T 5.

The expected value of a product of monotone bounded functions is greater than
or equal to the product of their expected values [6], so that the last inequality
would hold if the F; were monotone. The functions F;(y,), however, are seen to
increase from — « to 0 and to decrease from 0 to «. Since the frequency function
of yo is symmetric about the origin, the transformation z = |y, | changes the
inequality to

k k
B ([1F0) 2 [T EE),
where F;(z) are monotonically decreasing bounded functions. This completes the
proof of the theorem.

7.2. Variances unknown but equal. When the variances are unknown but
equal, Student ¢-variables ¢; with the joint frequency function

fﬂ—l(tl y "y b ) pi&):

as defined in 6.2, are used to form confidence intervals. Using the same methods
as in 7.1, the following theorem can be proved:

TaEoREM. For k = 2 or 3,

/";"ff‘n—l(tl,"',tk;Pis)dtl"'dtlcgf’(‘}'ffn—l(ty"';tk;o)dtl"'dtk
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For pi;s = bib,, with0 < b; < 1,2 =1, ---,k,
c k
f 'é' ff"_1(t1, cry tk; pig) dtl e dtk g [ f”_1(t) dt] .

In this theorem, whose proof follows the same lines as the one in 7.1, C is the
region bounded by t; = ¢, 7 = 1, - -+, k, fa1(t) is the density function of &
Student ¢-variable with » — 1 degrees of freedom, and f,—1(t1, - - - , & ; 0) is the
joint frequency function of the {-variables when all p;, are zero.

Since

t‘._—_l/iy‘_:_’:‘i), i=1 -,k
o1

sets of confidence intervals obtained are as follows:
Fork = 2or3, i + (61/n})ca , where c, is defined by

f cee fn——l(tly"',tk;o)dtl"’dtk=l—a-

For any k and pi;s = bibs,0 < b; < 1,2 = 1, --- , k, the same set is obtained:
but with ¢, defined by Ha_1(co) = (1 + (1 — «)"*)/2, where H,_, is the c.d.f. of
a Student {-variable with n — 1 degrees of freedom. As in sections 5.2 and 6.2 one
may use ¢, in place of 1, provided one keeps n — 1 as the degrees of freedom.

8. Comparison of confidence intervals. In Table I are listed various sets of
confidence intervals, with their properties and restrictions.

One rather obvious way to compare them is by comparing their lengths, or the
expected values of the lengths. In Table IT are given numerical values of d. for
1 — a = .95, where

do = \_/O_Zb »\/E’(%f)2’

with / the length of the confidence interval. Throughout Table II, the variances
are assumed to be equal.

When the variances are known and equal, and all the correlations are zero, the
shortest set of confidence intervals must be those of section 7.1. When nothing is
known about the correlations, no shorter set can be obtained. The last column
in section 7 of Table II therefore gives the smallest obtainable values for d. , and
may be used as a standard for comparison.

For 1 — a = .95, the Bonferroni inequality intervals of section 6 are almost as
good as the best ones. Indeed for 1 — « as low as .80, the values of d, are still

very close, being:

k Bonferroni “‘Best”
1 1.28 1.28
2 1.64 1.61
4 1.96 . 1.92
6 2.13 2.09
8 2.24 2.20
10 2.33 2.29



TABLE 1
Confidence Intervals for Means of Dependent, Normally Distributed Variables

Section Confidence Intervals Definition of co Conditions
hid k 1 1 — o)l
3.1 | T ajyij &= = 0iCa N(ca) = 1+ 0= o) n2 k(1)
i=1 n 2
YA = 14 (1= a)it
3.2 ,21 @ji Yij = /‘/n(n _ mz_lu,,.-c,, H, i(ca) = e— >k (2,3)
o
4.1 ¥ = —\7-7; * Vea Urlea) =1 — @ )
4.2 %i;%%a Fle) =1—a n >k (5)
5.1 Gk = Ve Uslea) =1 — @ 4)
5.2 Ui £ \o;;b_ V¢a Frina(ca) =1 — a 6)
(4 a
6.1 ik —= * Ca N =1 — —
i \/ﬁ C, (ca) %% ¢))]
1 a
6.2 Js ‘- Ca Hyp1(ca) =1 — — 2
Ji % e c 1(ca) % 2
a; 14+ (10— )t
7.1 Ji = —= * Ca ) = %
=S v c N(ca) 2 1)
k= 2, 3, or pis = b,'b.
s 14 (1 — o)t
7.2 ?7;:!:"\'/““1;"- * Ca Hn—l(ca) = “‘"’2—6!-)"‘
k=23, 2,3
or pis = bibs (2)

(1) N is the cumulative standard normal distribution function.
(2) H, is the cumulative distribution function of a Student ¢-variable with » degrees of -

freedom.
(3) This definition of ¢, is approximate. The exact definition is:

Ccq Ca
f f b, -+ ) db, -+, dtx =1 — @, where filts, -+,

—Ca —Cq

P0+0
k42 |-tz
= 2 [l + Zia t'] , where
v

el kiep (.;' )

v is the degrees of freedom of ¢; .

(4) Ut is the cumulative distribution function of a Chi-square variable with % degrees of
freedom.

(5) F is the cumulative distribution function of Hotelling’s T'.

(6) Fi,p-1is the cumulative distribution function of an F variable with ¥ and n — 1
degrees of freedom.

1109
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TABLE II

Comparison of Lengths of Confidence Intervals for Means of Dependent, Normally
Distributed Variables with Equal Variances, 1 — a = .95*

n
k Variances Unknown Variances Known
Section 4 6 8 10 20 Section Any
4.1 4.2
1 3.18 2.57 2.36 2.26 2.09 1.96
2 10.8 5.52 4.53 4.12 3.55 3.17
4 27.9 11.4 8.63 6.13 4.98
6 ’ 49.3 17.8 8.75 6.44
8 77.0 11.8 7.72
10 15.6 8.85
5.1 5.2
1 3.18 2.57 2.36 2.26 2.09 1.96
2 7.55 4.16 3.47 3.17 2.74 2.45
4 13.9 6.70 5.21 3.79 3.08
6 20.1 9.12 4.82 3.55
8 26.4 6.01 3.94
10 7.53 4.28
6.1 6.2
1 3.18 2.57 2.36 2.26 2.09 1.96
2 4.37 3.40 3.08 2.92 2.66 2.45
4 6.04 4.56 4.06 3.81 3.41 3.08
6 7.32 5.45 4.82 4.50 3.98 3.55
8 8.41 6.21 5.37 5.08 4.46 3.94
10 9.38 6.88 6.03 5.60 4.89 4.28
7.1 7.2
1 3.18 2.57 2.36 2.26 2.09 1.96
2 4.17 3.16 2.84 2.68 2.44 2.24
4 5.41 3.80 3.33 3.11 2.76 2.50
6 6.22 4.22 3.64 3.36 2.94 2.64
8 6.92 4.53 3.86 3.565 3.07 2.74
10 7.47 4.77 4.03 3.69 3.17 2.81
8.1 8.2
1 3.18 2.57 2.36 2.26 2.09 1.96
2 4.16 3.15 2.83 2.68 2.43 2.24
4 5.35 3.79 3.32 3.10 2.75 2.49
6 6.17 4.20 3.62 3.356 2.94 2.63
8 6.86 4.50 3.84 3.53 3.07 2.73
10 7.40 4.76 4.01 3.67 3.16 2.80

* The figures given in the table are values of (nt/s)\/E (3¢)?, where ¢ is the length of the
confidence interval.



DEPENDENT VARIABLES 1111

It would be interesting to show that the ‘“best’” intervals can be used for arbi-
trary k and arbitrary correlations, but from a practical viewpoint, for 1 — «
large enough to be of interest, the Bonferroni regions are good enough.

The regions of section 5, based on the T-distribution and the x* distribution,
compare favorably only when & is small and n relatively large. The regions with
exact confidence level are everywhere unnecessarily long.
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