INCOMPLETE SUFFICIENT STATISTICS AND SIMILAR TESTS!

By RoBerT A. WissMAN?
University of California, Berkeley

0. Summary. For a family of exponential densities a imethod is given, called
“D method,” for constructing a class of similar tests in the case that the mini-
mal sufficient statistic is boundedly incomplete. This method also provides a
proof of a criterion for bounded incompleteness. Under certain conditions the
criterion states that a sufficient statistic for a family of exponential densities is
boundedly incomplete if the number of components of the statistic is larger than
the number of parameters specifying the distribution. Applications are indicated
in the Behrens-Fisher problem, and in the problem of testing the ratio of mean to
standard deviation .in a normal population. In the latter problem it is shown
that the D method generates the whole class of similar tests. Some unsolved
problems concerning the existence of an optimal similar test are indicated.

1. Introduction. Lehmann and Scheffé [8], [9] have introduced the concept
of completeness of a family of measures and have shown the usefulness of this
notion both for unbiased estimation and for the construction of similar regions.
The latter were introduced by Neyman and Pearson [11] as a means to cope with
tests of composite hypotheses. If the hypothesis is composite only because of
nuisance parameters, then the requirement of similarity of the test is often a con-
venient means of restricting the class of tests to be considered. If the hypothesis
is composite both of nuisance parameters and because the parameter tested is
not completely specified by the hypothesis, then similarity is often required if
the test is to be unbiased. For instance, let § be a real parameter, r a possibly
vector valued nuisance parameter, and let the hypothesis be H:6 < 6,, the al-
ternative H:6 > 6, , for some specified 8, . Suppose we want the test to be un-

“biased, then the power function of the test has to be <a for 6§ < 6, and =« for
6 > 6o, where a is the level of significance. If, in addition, the power function
is continuous, which is usually the case, then we have automatically that its
value on the surface § = 6, equals «, identically in r. Search for an optimum
unbiased test reduces then to the simpler problem of search for an optimum
similar test of the hypothesis H1:0 = 6, against H:0 > 6, .

In the presence of a sufficient statistic there exists a special class of easily
constructible similar regions [10], termed similar regions of Neyman structure by
Lehmann and Scheffé [8]. They proved that every similar region is of Neyman
structure if and only if the family of distributions of the sufficient statistic, as
specified by the hypothesis, is boundedly complete [8]. Unfortunately, there
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are important problems in which the latter condition is not fulfilled, in which
case the class of all similar regions is larger than the class of similar regions of
Neyman structure. An example is the Behrens-Fisher problem (see, for example,
[13], in which also references to earlier work can be found). In this problem the
similar regions of Neyman structure are of no use, since for any such region the
power function is identically constant.

All remarks in the previous paragraph are equally valid if instead of similar
rejection regions we consider randomized similar tests. It is clear from the dis-
cussion that in each problem of testing a composite hypothesis by means of a
similar test it is important to know whether or not the problem admits a bound-
edly complete sufficient statistic. If not, one would like to have a method of
constructing all similar tests. It is the purpose of this paper to provide partial
answers to these problems. In section 3 a method termed the “D method,” will
be given for the construction of a large class of similar tests in the case of a
family of exponential densities. In section 5 the D method will be used to de-
rive a criterion for bounded incompleteness in the case of a family of exponential
densities. Two examples of the D method are given in section 4; the first ex-
ample is the Behrens-Fisher problem, the second example is the problem of
testing the ratio of mean to standard deviation in a normal population. For
the latter problem it is proved in section 6 that every similar test can be con-
structed by the D method, provided this method is given sufficiently wide
scope. Some remarks on the problem of finding an optimal similar test are made
in section 7. A preliminary account of the results of sections 3 and 5 appeared
in [16].

2. Similar tests and boundedly incomplete sufficient statistics. Let & be a
space of points z, @ a o-field of subsets of % (with X ¢ @), and ® = {Py, 0 £ Q}
a family of probability measures on (X, @). Expectation with respect to Py will
be denoted by E; . If w © @ and T is a sufficient statistic for ®, = {Ps, 0 ¢ w},
we shall also say that T is a sufficient statistic for w. The range of T is denoted
by 3, and is understood to be a Borel subset of a Euclidean space. Let & be the
o-field of Borel subsets of 3. We recall the following definitions: A sufficient
statistic for w is called minimal if the sufficient sub o-field which it induces in
% is “essentially” contained in every sufficient sub o-field for » (see Bahadur
[2] for a precise definition).® A sufficient statistic 7' for w is called complete for
w if, for every B-measurable numerical function g

(1) Ew(T) =0 forall few=g=0 ae (®u).

If the implication (1) holds for every bounded ®-measurable numerical function,
then T is called boundedly complete for w. The following implications are true

[8].

@) Completeness = bounded completeness = minimality.

3 The term minimal was introduced by Lehmann and Scheffé [8], whereas Bahadur [2]
describes the same concept with the term necessary and sufficient statistic.
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Suppose a composite hypothesis H specifies § ¢ w Q. We shall consider
randomized tests for H with test functions ¢, where, for each z £ %, 0 < ¢(z) <
1, ¢ measurable, and H is rejected with probability ¢(z) if = is observed. Among
all tests we restrict ourselves to similar tests, defined by the condition that
Eyp is independent of 6 if 6 € w. If T is a sufficient statistic for w, @ C @ its
sufficient sub o-field and ¢ any test, we can consider the @o-measurable func-
tion E(¢ | o). If  is a number, 0 < & < 1, and if ¢ is such that E(¢ | @) = a,
then clearly Ewp = a for all 6 ¢ w, so that ¢ is similar. Such a ¢ is called a test
of Neyman structure [8]. If T is a boundedly complete sufficient statistic for «,
then every similar test has Neyman structure [8]. On the other hand, if a suffi-
cient statistic 7' is not boundedly complete for w, then there exist similar tests
which do not have Neyman structure. This follows from the fact that
the bounded incompleteness implies the existence of a ®-measurable numerical
function g on 3, bounded below by —a, above by 1 — a, different from 0 on a
set of positive probability (with respect to, ®.), with Eeg(T) = 0 for all § € w.
With f on & defined by f(x) = g(T(x)), we have that ¢ = f + « is similar of
size a, but E(p | @) — @ = f 5 0 on a set of positive probability, so ¢ is not
a test of Neyman structure. Conversely, for any similar test ¢ we can form the
function f = E(¢ | @) — « and define g on 3 by g(T(x)) = f(x), so that

Ey(T) =0

for all 6 £ w. It follows that all similar tests can be found by constructing all
bounded numerical functions g on 3 whose expectations vanish for all 6 ¢ w.

3. The D method for constructing similar tests in the case of a family of reg-
ular exponential densities. In this section the restriction of 8 to » will be under-
stood. Let the distribution of 7', induced by Py, have a density with respect to
m-dimensional Lebesgue measure, and let this density ps be of the form

® pl) = o exp | — 3 500 | b9

in which ¢ = (#, --+, tm), and s1, - -, sm are real valued functions on w. We
shall assume that the function & is of such a nature that it is possible to find a
closed m-dimensional cube C' on which A is bounded away from 0. With this
restriction on h, the family (3) will be called a family of regular exponential
densities. Exponential densities which arise in statistics are always regular.

If w is an m-dimensional subset of an m-dimensional Euclidean space, then,
under mild conditions, T' with density (3) is complete for w [9]. In that case
every similar test has Neyman structure. From the point of view of the present
paper the interesting case arises when o is a subset of an m — 1 dimensional
Euclidean space. In that case 8 has at most m — 1 components, so that the m
functions s; are functions of at most m — 1 parameters. Eliminating those
parameters will result in a functional relation between the s,. Suppose that
this relation can be put in the form

(4) P(817"')8m)=0
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in which P is a polynomial of positive degree in at least one of the s, . It should
be kept in mind that (4) holds identically in 6.

As discussed in section 2, a similar test of non-Neyman structure can be
constructed by constructing a bounded function g on 3, g # 0 on a set of posi-
tive probability, such that

3) [ ot @t = 0

Using (3), remembering that h is bounded away from 0 on some m-dimensional
cube C, it suffices to construct a bounded function F which is £ 0 on a subset
of C of positive Lebesgue measure, vanishes outside C, and satisfies

(6) fF(t) exp [— E s;(e)ti] dt = 0
The function g in (5) can then be taken as F/h. The left hand side of (6) is the
m-dimensional Laplace transform of F, denoted by £(F):

(7) fF(tl cey bm) exp[— z’::s,- t,-] dt = LF)(s1 -+ y Sm)-

The problem is to construct F in such a way that £(F) = 0 for all values of
$(6), 0 £ w. This can be done with help of (4). Let P be of degree d and let G
be a function on 3 possessing all partial derivatives of dth order in the interior
of C, vanishing outside C, and having all partial derivatives of d — 1st order
continuous on the boundary of C. An example of such a function is the follow-
ing. Let C be givenbya; £ t; < a; +1(¢ =1, ..., m), then on C we can take
G@t) = [ @t — a:)’(a; + 1 — t:)%. Now denote by D the differential operator

a i)
® pop(Z2)
We then have
) ' £(DG)(s) = P(9)£L(G)(s)

in which s = (s1, +++, Sm). Since the right hand side of (9) is = 0 by (4), we
may take F in (7) to be F = DG. The final result is therefore

(10) g9(t) = (DG())/h(t)
for suitably chosen G, and
(11) o(t) = a + (DG@®)/h(?)

is a size « similar test of non-Neyman structure.

Even for one m-dimensional cube C' the number of choices for G is large. In
addition there will usually be a large number of m-dimensional cubes on each
of which % is bounded away from 0, and finally one may consider regions other
than cubes for which the construction of functions @ is possible. Thus, there
will be a large class of functions g satisfying (5) which can be generated by the
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differential operator method, called the D method henceforth. Whether this
method, in general, will give all those functions g, is still an open question. In
one particular case the question has been answered in the affirmative, provided
the definition of D method is taken sufficiently wide (see section 6).

Suppose that with the help of the D method a similar test ¢(T) is constructed,
and that it is desired to consider similar tests which do not necessarily depend
on T only. Let ¢ be a test function defined on the sample space . If ¢ is chosen
to satisfy E(y |f) = ¢(f), then ¢ is also similar. In particular, it will usually
be possible to construct in this way a similar rejection region w, in which case
¥ is the indicator of w (this construction fails is & is a subspace of a Euclidean
space with same dimension as J) A similar region w is constructed by demand-
ing
(12) P(w|t) = ¢(f).

In other words, on each surface T = ¢ in the sample space a region is selected

which has conditional probability ¢(f). This generalizes the construction of a
similar region of Neyman structure [10]. Equation (12) will be used in section

4, example 2.

4. Examples of the D method. ExampLE 1 (Behrens-Fisher problem). Let
Xy, -++, X, be n, independent observations on a normal variable with mean
w1, variance o1, and Yy, -+, ¥,,, ns independent observations on a normal
variable with mean s, variance o3 . The X’s and Y’s are independent, and all
parameters are unknown. Under the hypothesis tested, which is u; = uz, the
joint distribution of the X’s and ¥’s has an exponential density with exponential
factor

]_m2 ”nx 1n22 ”nz]
R D ol R DY
in which p is the common value of u; and u; . We may take

n1 ni na no
Tua) = Xat, Too) =X, To@ =2y, T =2y,

—u —n
2_0?’ 8:(0) = —0'_%—’ s(0) = Ta‘%’ 84(0) = —;g—.

81(0) =
The s; are linearly independent, from which it can be shown that
T=(T,,Ty, Ts, Ty

is a minimal sufficient statistic for w. T has a regular exponential density of
form (3), with

(13) W) = (mh — &)™ (ngty — )01

if mt = &, nats = £, and h(t) = O otherwise. By eliminating g, o1, o, from
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the four s; we obtain s;84 — s:s3 = 0 as a realization of (4). The differential
operator D in (8) is then

(14) D= o won

and for suitably chosen G the test

(15) ¢(t) = a4 h-l(t) (gt—l 5t_4 - 52; 53) G(t)

is similar and of size a, where h(t) is given by (13). Whether this method can
be used to show the existence of an invariant similar region, such as the one
proposed by Welch [1], [15], has not yet been investigated.

It should perhaps be mentioned here that the approach to the Behrens-Fisher
problem by Wald [14] is essentially different, since Wald does not require the
test to be similar.

ExampLe 2. (Standardized mean of a normal population). Suppose we make
n + 1 independent observations on a normal variable and consider hypotheses
concerning the ratio of mean to standard deviation. By an orthogonal trans-
formation this problem can be brought in the following form: Let Xo , ooty Xn
be independent and normal, with common, unknown variance o*. X, has un-
known mean p, X3, -+, X, have mean 0. Denote u/¢ = r, then for some
given 7, the hypothesis tested is r = 7. For the time being the alternative to
be considered is immaterial. For later reference, however, suppose that the
alternative is r > ro. We then have

Q= {(r,0)ir = rn,oc >0},
w= {(r,o)ir = 10,0 > 0}.

Under the hypothesis the joint distribution of the X; has the fm;(m given by
(3), with exponential factor

exp[—-z%rgzxf-l-@xo]

0 ag

so that we may take
Ti@) = 2Xat, T@) =m, al)= 2 =  Sa(0) = —

T = (T:, T:) is minimal sufficient, smce sl and s. are linearly independent.
Elimination of ¢ from s; and s; gives s; — 2r5s; = 0, so that we can take

(16) P(Sl , 82) = 82 - 27‘081
and

_ 9 2 9
(17) D=_——2n )

o1}
~
[N
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The function % in (3) is found to be

(18) h(ty, ) = (4 — t:)(”/z)_l
if &4 = ¢, and h = 0 otherwise. For suitably chosen G(t , t) the test function
2
(19) ot 1) = a+ (b — t3) " (iﬁ — 2rp —a—) G, ta)
atz atl

is similar and of size a.

Equation (19) can be used to demonstrate the existence of similar tests which
are not invariant. In the present problem an invariant test is a function of
T./+/T; only. Choose for G in (19) the following function:

(20) Gty , 1) = c(ty — £5) "™
if #4 = & and G = 0 otherwise, with ¢ > 0 chosen so small that ¢ is bounded

between 0 and 1. It is easily checked that after substitution into (19) the re-
sulting test function is not invariant. This example can also be used to show
the existence of similar rejection regions which are not equivalent to a cone in
the sample space (we shall call two tests equivalent if they have the same power
function, and by a cone is meant a union of rays through the origin). If w is
any rejection region, ¢ the corresponding test function, given by (12), then w
and ¢ are equivalent since T is sufficient, not only for w, but also for ©. If w; is
a cone in the sample space, then the corresponding ¢ is invariant. Let w. be
any rejection region equivalent to w; , ¢2 the corresponding test function; then
¢ and ¢ are equivalent. Now T is not only sufficient for , it is also complete
for Q. Since ¢; and ¢, have the same power functions, it follows then that ¢, =
¢2 a.e. and thus ¢, is also invariant. The existence of a noninvariant similar test
¢ implies then the existence of a similar region which is not equivalent to any
cone in the sample space.*

b. A criterion for bounded incompleteness in the case of regular exponential
densities. Let the family of distributions be given by (3), with 8 ¢ w. By (2),
if T is not minimal sufficient for w, then T cannot be boundedly complete. This
happens, for instance, if the s; are linearly dependent on w because the exponent
—Zsi; in (3) can then be written as a linear combination of fewer than m of
the ¢; . The incompleteness in this case also follows from the applicability of
the D method of section 3, because of the existence of a polynomial P, linear
in this case, for which (4) holds. On the other hand, if the m functions s; are
linearly independent on w, then T' is minimal sufficient for w. Even if this is the
case, T may still be boundedly incomplete. Theorem 2 below tells when this
will happen. Its proof uses the D method of section 3. The conditions of The-
orem 2 are designed to guarantee the existence of the polynomial P on the left

¢ This seems to contradict a statement by Patnaik [12] to the effect that in the problem
under consideration every similar region is equivalent to a cone in the sample space. How-
ever, Patnaik’s proof is unconvincing, and the non-invariant ¢ exhibited above provides a
counter example. ’
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hand side of (4), such that P is not the zero polynomial. This is made possible
by the following theorem, due to A. Seidenberg (private communication). The
proof is given in Appendix 1.

TaeoREM 1. (Seidenberg). Let for each i, 2 = 1, -+, m, Py(si; 61, -+, Ok)
be a polynomial in s; and the 0;(j = 1, --- | k), with coefficients in some field K,
where k < m and P; is of positive degree in s; . Let A:(0) be the leading coefficient
of P; as a polynomial in s; . Then there is a polynomial P(sy, - -+ , Sm) with coeffi-
ctents in K, which is not the zero polynomial, and a power product B(6) of the
A (8), such that B(6)P(s) = 0 whenever P; = 0 for all <.

COROLLARY. If 6 is restricted to a set ©, and if, for each 6 ¢ ® and each ¢,

Aq(6) = 0,

then P = 0 whenever P, = 0 for all <.

For, if A;(0) % 0,7 =1, ..., m, then B(8) = 0.

In the application we want to make of the corollary, the set ® is w. Further-
more, we shall assume the s; of section 3 to be algebraic functions of the 6;,
for 8 ¢ w. Then for each ¢ there is a polynomial P; in s; and the 8; such that
Pi(s;; 61,-++, 6) = 0if 6 ecw. We shall further assume that the A,(6) are
# 0 if 6 £ w. These conditions will be satisfied in particular if, for each , s; on
w is a rational function of the 8;, with nonvanishing denominator.

TureoreEM 2. Suppose a family of regular exponential densities is given by (3),
with 6 € w; w 1s a subset of a k-dimensional Euclidean space, with k < m; on w,
the m functions s; are algebraic functions of the k parameters 0; , so that

Pi(si;ely“'yok):o

for some polynomial P; (1 = 1, ---, m); A(0), the leading coefficient of P; as a
polynomial in s; , does not vanish anywhere on o for any ¢. Then T is boundedly
incomplete for w.

The proof follows immediately from the constructibility, by the D method
of section 3, of a bounded function g, g # 0 on a set of positive probability,
satisfying Eeg(T) = 0 for all 8 ¢ w.

In both examples in section 4 the s; are rational functions of the 6;, with
nonvanishing denominators, and in both cases ¥k = m — 1 < m, so that The-
orem 2 applies. This provides another proof of the well-known fact that in the
Behrens-Fisher problem, as well as in the problem of testing the ratio of mean
to standard deviation in a normal population, the minimal sufficient statistic
is boundedly incomplete.

It would be interesting to know how much the assumptions of Theorem 2
can be relaxed. It is certainly not necessary that the s; be algebraic functions of
the 8;, for, if m = 2,k = 1, &, = cos 6, s; = sin 6, then si+ s —1=0,as
a realization of (4), so that the D method applies. It is not even necessary for
incompleteness that there exists a polynomial P in the s; which vanishes for
all 9 € w, as the next example will show. Takem = 2,k = 1,8 = —In g, s =
—In (1 — 6), with 0 < 0 < 1. Instead of (4) we have a transcendental equation:
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exp [—s1] + exp [—s)] — 1 = 0. With help of this equation one can easily con-
struct functions F of the kind mentioned in section 3. For example, the func-
tion F whose 2-dimensional Laplace transform is

L(F)(s1, 82) = ;182 (€™ 4 ¢ = D" — e (e — o)

is bounded between —1 and 1, vanishes outside the rectangle
w=Hh=h++1l, =t =b+1,

and has vanishing Laplace transform for all  between 0 and 1. On the other
hand, the fact that £ < m is not sufficient for bounded incompleteness, nor is
the additional restriction of analyticity of the s; sufficient. The following ex-
ample is due to L. J. Savage (private communication). In (3) choose m = 2,
k=18 = 6cosf, s, = 0sind(6 > 0), h(t) = 1 for ¢ in some square, h = 0
otherwise. Here the s; are analytic functions of 8, but yet it can be shown that
the family of distributions is complete. Another example is due to D. L. Burk-
holder (private communication) and differs from Savage’s example only in that
81 = 0 cos (1/60), sy = 6 sin (1/6). This example is a little less regular than Sav-
age’s example, but on the other hand the completeness of the family of distribu-
tions is easier to show.

6. Completeness of the D method in the case of a hypothesis concerning the
standardized mean of a normal population. In this section it will be shown that
in Example 2 of section 4 all similar tests can be generated by the D method,
provided the D method is defined in a sufficiently broad manner. That is, we
want to show that for each similar test ¢ there exists a function G satisfying
(19) and certain other conditions. In section 3 the functions G were restricted
to some m-dimensional cube on which % is bounded away from 0 but it was
remarked there that this restriction is not necessary. We shall not even demand
that G = 0 whenever h = 0. In fact, the main thing of importance was the
validity of (9), and even this we shall relax slightly in the problem under con-
sideration. ‘

Equation (19) can be put in the form

o 18\, +Vor
@D (55_&7’—(2)&2)6;_ To ¢
where ¢ is defined by
(22) o(t) = —(V/8rr) "h(t)($(t) — a).

Equation (21) can be considered as the heat equation in one dimension, if ¢ is
interpreted as time, & as position, G as temperature, and (v/2x/r0)e as a heat
source, capable of producing both positive and negative heat, whose strength
and spatial distribution varies with time. If this were an actual heat problem,
its solution could be written down at once, employing the usual Green’s func-
tion for the heat operator:
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' nN—1/2 1‘% (ts — t;)z r o
23) G,t) = f f e(t, t)(t — )" exp I:"' 5 ﬁ] dty dis
where the integration is over the strip 0 < #; < 4 . Since A(#), and therefore,
o(t'), is zero unless ¢° < f, we may integrate over &,° < i < #,. The ques-
tion to be answered next is whether, and if so, in what sense, the formal solu-
tion (23) to (21), and therefore, to (19) is a representation of ¢.
We shall at once study the power function of any similar test ¢, since some of
the results are needed in section 7. Let @ and w be as defined in section 4, Ex-
ample 2. We shall assume r, > 0. As remarked in section 4, the statistic

T = (T1, Ty

is sufficient for @, and it suffices therefore to consider test functions ¢ which
depend only on T'. The power function of ¢ is 8(r, ¢) = E, ,¢(T:1, T2). Suppose
¢ satisfies (19), then we get after substitution:

B, 0) = a+olr,0) [ [

(24) g

. exp [_ L, t{l(ﬂ. — o2 i) Gt , ) dts dts

247 s~ \o2 ot ’

where the integration isover 0 = ) < ®, —®o < f, < . We may effect this

integration by taking the upper limits on ¢ and ¢, as 4, B respectively, and then

let A — «, B — o in any order. With respect to the types of functions G to

be considered it will not be necessary to do something similar with the lower

limit on ¢, . If the upper limits on ¢ and ¢, are A and B, one can integrate by
parts, obtaining an integral

(25) r2:2rglAdtlf_:G(tl,tz)exp[—$t1+gtz]dtz
plus the following integrated terms:

(26) — or} /_:G(A, ) exp[—z—];—zA +§t2:|au2
(27) —gfoAG(tl,B) eXp[-%‘ztﬁgB]dtl

(28) [‘39%‘72’-5) exp [— ors +£B] dh

There is also an integral involving @ on the f-axis. For any G given by (23),
G(0, t;) = 0, so that the integral mentioned in the preceding sentence vanishes
trivially. It is sufficient, then, to consider only functions G which vanish if
t = 0. Now if @ is given by (23), with ¢ defined by (22) and ¢ similar of size
a, then it can be shown that (26)—(28) vanish in the limit if we let first B —
and then A — o, A proof is given in Appendix 2. Using (24) and (25) it follows
that
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7‘2 - 7‘3 . . 4 B
Br,0) = @+ olr, o) =" lim im [ a L Gt 1)
1 r

We see from (29) that 8(ro, ) = « identically in o, as it should.

The reason we could get the power function in the form (29) is that in this
problem the density of T is of the exponential form (3) on the whole of Q. The
exponent of the exponential factor is —#,/(2¢°) + 7t/o, so that on @ we have
8 = 1/(26%), s; = —r/s. The polynomial (16) is now defined on the whole of
Q:

(29)

2
7'2—' To

o2

(On w, r = 7y, 80 P = 0 as it should). We made the integrated terms (26)-(28)
vanish by taking limits in a special way. This suggests, for this problem to re-
define the 2-dimensional Laplace transform as follows:

(30) P(s) = s& — 2rfs; =

A B
B1)  £(F)(s1, 8) = lim Em A dtl'[ F(t, t;) exp [—s1th — s2o] dbs
With P and £ defined by (30) and (31), we have proved that if ¢ is similar, and
G is the corresponding function given by (23), then (9) is valid on the whole
of Q. Adding « to both sides of (9) then produces (29).

In order to characterize the whole class of similar tests, consider the class €
of functions G defined on the right half (¢, £) plane which satisfy the following
conditions (with D defined by (17)):

G DG ,t) =0ifts >t,

(i) —ast-6B"""DAt,t)<1—aift=t,

(iii) G=0ift; = 0,and G(t;, %) — 0 as t, — — =, for each ¢,

(iv) The integrals (26)-(28) approach 0 if we let firss B — « and then

4 — w,

For every similar size a test function ¢ there is, by (23) and (22), a unique G,
satisfying the conditions (i)~(iv), so that G ¢ €. Conversely, for any G € C we
have shown that ¢ given by (19) is similar and of size . Thus, there is a one-to-
one correspondence between the members of @ and the similar size o test func-
tions. The class @ gives therefore a complete characterization of the similar tests.
Unfortunately, condition (iv) is not a very easy one. There is an important
subclass of @ where (iv) is obviously fulfilled, consisting of those functions G in
© which vanish identically for &, > /% . This is the case, for instance, with all
functions @ leading to an invariant test. For a proof of this fact see Appendix
3. It would be desirable if (iv) could be replaced by a simpler condition. The
possibility is not excluded that conditions (i)-(iv) imply that G(t, &) = 0 for
all & > /1, but whether this is so is an open question.
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7. Some remarks on the search for an optimum test in the problem of section
6. Consider the class € defined in section 6. Let ¢, , ¢» be two similar size a tests,
G1, G, the corresponding functions in @€, and B;, B their power functions. It
follows from (29), since #* = r;, that if G+ = G, then 8; = B, so that ¢y is
uniformly more powerful than ¢. . Since every similar ¢ has a representative
G ¢ @, if there would exist a Gy &€ @ such that Go = @ for every @G ¢ @, then the
test function ¢o corresponding to Go would be UMP (uniformly most powerful)
among all similar tests. To decide whether or not such a dominating function
Gy exists, the following observations may be of help. The first observation is
that in the problem under consideration every invariant test—that is, depend-
ing only on T;/+/Tr—is similar. Secondly, if we denote by @* the subclass of
C representing invariant tests, then in €* there is a function Gi which dominates
every G* ¢ €*. The corresponding test function ¢¢ is therefore UMP among
all invariant tests. ¢o is nonrandomized, with a rejection region of the form
t2/A/t, > constant. That ¢; is UMP invariant is a known result [12], obtain-
able more directly by the observation that T»/A/T,; — T: has a noncentral
t-distribution with a monotonic likelihood ratio [3], [4], [7]. The third observa-
tion we want to make is that if the dominating function G, exists, it has to coin-
cide with Gg . This follows from the following proposition: If @ UMP similar
test based on T exists, it is necessarily invariant. The analogous statement, with
“similar” replaced by ‘‘unbiased,” is well known [5], [6]. In fact, both state-
ments are special cases of the following more general theorem, due to E. L.
Lehmann (private communication): Let G be a group of transformations which
leaves the problem invariant, and let X be a class of tests which ¢s closed under G.
If there is a unique UMP fest in &K, it is almost tnvariant. (The uniqueness is
understood to be a.e.). The proof of this theorem follows the same lines as in
the special case that X is the class of unbiased tests of fixed size. In our problem
X is the class of similar tests of size a, based on T. X is clearly closed under g.
If there is a UMP test in X, its uniqueness follows from the completeness of
T for Q. Finally, in our problem an almost invariant function can be shown to
be invariant (see also [17], footnote 3, and [5]).

The conclusion drawn from the precedlng discussion is that there is a doml-
nating function G, € @ if and only if G5 is the dominating function. Whether
or not this is so is still an open question, and consequently, it is still unknown
whether a UMP similar test exists. A last remark may be added to this. As
remarked in section 6 and proved in Appendix 3, the functions G* in €* have
the remarkable property that they vanish for ¢, = /% . This property holds
then in particular for G . Taking into account that G ¢ @ = — aG ¢ @ for suffi-
ciently small @ > 0, we conclude that if G¢' is a dominating function in €, then
every G ¢ C must also have the property G(t, , tz) = 0 if &, = /4 . If this were
indeed true, then condition (iv) in section 6 could be replaced by the much
simpler condition G(t;, t) = 0 if ¢, = /% . However, as remarked in section
6, even this property has not yet been proved.
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Appendix 1. Proor or TueoreM 1 (Seidenberg). For the purpose of this proof
we shall replace the s; by ;. Let P; = A(0)zf + --- . Let d = max {d.}.
Multiplying P; by z7%, we may suppose all the d; equal. Multiplying P; by
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Ag.--- . A, , Poby A14;5. --- . A, etc., we may suppose all the 4; equal.
Now we have P; = A(6)z? + ---,% =1, ---, m, where A is some polynomial
in6,---,0.
Suppose we have a congruence of the form
Mz A* = R(z, 6) mod (P1, -+ , Pm)

(i.e. the two sides are equal whenever all P; vanish), with R a polynomial in
the 2’s and 6’s. Let M = max {degy P;}. The left hand side has degree in the
0’s at most M3r; . Assume this to be the case also for R(z, 6). Assume further
that deg,, R(z, ) < d — 1,7 = 1, ---, m. Multiplying the congruence by
x;A, on the left we get a power product of degree 1 4 Zr; in the z; times AR
On the right there possibly appears a power z %: if so, we replace Az by

(AzS — P;) mod P; .
In this way we get a congruence .
z¥A% = R'(z, ) mod (P1, +++ , Pm)

with Zs; = 1 + Zr;,deg,, R =d—1(¢=1,---,m),degg R’ = MZs;. The
congruences

236 = A"zt — PYmod (Py, - -+, Pn)

are of the above form. Multiplying by various power products of the z;A, we
again get congruences of the stated form. Let s = sy = m(d — 1) + 1. Then
any power product of the z; of degree s must have a factor a% for at least one
4. Hence we can get a congruence of the desired form with any power product
of the z;A of degree s on the left. For any such power product there may be
several congruences: choose one.

For a fixed integer v = so (to be determined in a moment), we consider all
the power products of the z:A of degree between s and v; and all the congruences,
one for each power product. We still multiply each of these by an appropriate
power of A so that A” is the power of A occurring on the left. On the right, then,
all polynomials are of degree <My in the 6’s and of degree <d — 1 in each z; .

Let N(p, q) be the number of distinct power products of degree p or less in ¢
letters. Then N(p, ¢) = @+ ¢ +q¢—1)--- (p + 1)/ q! We are con-
sidering, then, N(y, m) — N(so — 1, m) congruences. The right hand sides of
these congruences are linear combinations over K of power products of degree
<M~ in the 6’s and of degree <m(d — 1) in the z’s; therefore in at most
N(M~, k)N(m(d — 1), m) power products. Since

deg, [N(y, m) — N(so — 1, m)] = m > k = degy N(Mv, k)N(m(d — 1), m),
we see that for sufficiently large v,

N(y, m) — N(so — 1, m) > N(My, k)N(m(d — 1), m).
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Let v be taken large enough for this to be realized. Then there exist ¢, ,...,i, €
K, not all = 0, such that
A"Zeiy e in®ite o 2om = 0mod (Py, -+, Pu). Q.E.D.
Appendix 2. It will be proved here that the integrated terms (26)-(28) vanish

in the limit B — «, then 4 — . Since ¢ is similar and of size a, the function
¢ defined by (22) has the property

° Vil 1 To _
(82) -/o- -[\/t—f so(tl, 1) exp [_%i b+ p tz] dty dty = 0.

This property is erucial for showing (26) — 0, but is not needed for (27) and (28).

We shall first treat (26). Since ¢ is an arbitrary positive number, we shall give
the proof with o replaced by ro/7 , which will be useful for later purposes.
With this change we substitute (23) into (26) and get

B 2
To A To
[ wG(A, t) exp [";5 57 + = tz:l dts

2 A 7 B
ro A ’ \/‘—1 1o ’ N1/
= eXp[—ﬁ 2—02]]0 dt ‘[\/T; o(ty, ta) dis j;w (4 — )™

2 N2
. =1t n
exp[ E*A—:—t;‘“‘;tﬁ]dk

\Zm [< rﬁ)A] TN S
= o exp 1 r—z' ;‘-2- l dtl j_"\/‘_{ ¢(tl ) t2)

1 B Iy —
-exp[—2—17—2t1+?t§]dt;[w\/°2—1r(A—tl) z

2 ’ ne
. _1r(te — (A — t1)/aro — 1) ]
exp[ 5 y dt

The integral over ¢, can be written
1 B 1,
Ve e"f’[‘ 52]‘”’

B = r(A — )" (B — (A — 81)/oro — &).

As B— o, B"’ — « and th(; integral converges monotonically increasing to 1.
The integration over #; and # can be considered as a double integral of the form
[ fs(t1, ts) dt1 diz, in which f5 is bounded in absolute value by

in which

v 1, 7oy
|¢(t1,t2)|eXPl: 2—;2151'1‘;152]

which is integrable. Applying the Lebesgue bounded (dominated) convergence
theorem, we may take the limit as B — « under the integral. We have
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[V
limfs(t{,té) = f dt; [ :'so(t{ , t2) exp [— 5.3 AL t;] dis .

By (32) we may replace the integral on the rlght in the above equation by minus
the integral with same integrand but the ¢ integration running from A to «.
Thus we get

lim wG(A,tz)exp[ 22a2+ tz] dt, = £(4)

B>

with
_ vV 2r [( rﬁ) A] * ’ \/EZ v
£4) = e XD 1 ) o0 j;dtl [vr:¢(tl,t2)
To

. exp[ 2—;2151 +-—t2:|dt;.

Since ¢ is bounded we see by (22) that ¢(t1, &) is bounded in absolute value by
const. h(t1, £3), which is bounded by const. ™7, In the integration over t

we have that
\/t—: To I:I
»[\/t'( exp [ A

is bounded by 2v/% exp [(ro / 0)\/7]]. Thus
| £(4) | < const. exp [(1 - :_g) 202][ g o I: Ly \/_] i

We make the substitutions &; = o*(u + n)?, A = 7K, then A and K go to
o together. Put £(4) = »(K), then

2 2 )
| 7(K) | < const. exp [(1 - ;g) %—:I fx (u + 7r0)" exp [—1u?] du.
—ro

In the integrand, (w + 70)" can be bounded by const. 4", and by partial integra-
tion one finds that

f u* exp [—3u’] du
K—rg

is bounded by const. K" exp [—%(K — 70)’]. This leads then to

2

| n(K) | < const. K" exp [ % + roK]
which — 0 as K — «. Q.E.D.

Of the integrated terms (27) and (28) we shall only treat (28), since (27) is a
little simpler and follows the same pattern. It can be shown that (23) can be
differentiated partially with respect to ¢, under the integral sign, provided & > t; .
Substituting the result into (28) we obtain, apart from a multiplicative constant,
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(h — )™ (B — t)e(t, ta)
1]

(33) e
s (B — t)
e"p[ gt iB =g g

in which the integration is over the region #;° < t; < & < A. We shall show
that (33) — 0 as B — « for fixed A, after which taking the limit 4 — o« yields
then trivially 0. Clearly the integrand in (33) approaches 0 as B — . It suffices
therefore to show that limit and integral may be interchanged. By the Lebesgue
bounded convergence theorem it is sufficient to show that the integrand is
bounded in absolute value by an integrable function independent of B (but
possibly dependent on A). Let By > /4 and consider only values of B = B, .
The integrand is bounded in absolute value by |e(f1, t)|fifafs , in which

2 /N2 ’ ’
_ r _@_(B—tz):l _ I:_TO(B"‘tz)]< —'tz)
fi = exp [;B 4 u—t I f = exp 4 -t Vi -t

and f; = (B — #)>. Now f; is bounded by

exp [ ro (B — VA)’ \/A) ]

]MM%

which is bounded by a constant; f; is of the form ¢ exp [—(r3/4)y’] and is there-
fore also bounded by a constant; f; is bounded by the constant (B, — /4)".
Finally we have then that the integrand in (33) is bounded in absolute value by
const. |(#1, ¢)|, which is integrable over the bounded region #,* < #; < 4 < A.
Q.E.D.

Appendix 3. We will show that if ¢ is invariant, then G = 0 in the region
b=Vh.Lety = to/Nt,andy = t2/‘\/— If ¢ is invariant, it is a function
of y only. Put ¢(t; , £2) = ¢*(y), so that by (22) and (18)

olt, 1) = const. 4771 — ) T P*(y) — o).
After substitution into (23) and making the change of variable r = #/t;,

we can write (23) as

2
G(t1, t) = const. t7'* exp [—g yg]
(34) 1
fo (1 = )" o* () — a)f(y,y") dy,

in which
1
(35) f(y, yl) = /; T(n—l)/2(1 _ ‘r')_l/2 expl:

2
Throughout we restrict y and ¢y’ toy > 1, y _S_ 1. Let the differential operator
D, be defined as

r% r—2yy\/r+y r]d'r

1 -7
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14 )
(36) Dv——a—'é_y@"(n'Fl)

75 Oy
and the operator D, similarly by replacing in (36) y by y’. Then f satisfies the
two equations ‘

(37 D,f(y,y) =0
(38) Dyf(y,y') = 0.

Furthermore, it can be seen from (35) that f — 0 if y — « for fixed y’, or if
y — — o for fixed y. Two linearly independent solutions of the equation

(39) Dyu(y) =0
are u; and u, , with us(y) = w(—y), and
(40) wly) = fo t" % exp [— 3t + oV yl dt

When y — o, ui(y) — © whereas us(y) — 0, with the opposite behavior as
y — — o, It follows from (37) and (38), from the behavior of the functions u,
and us , and from the behavior of fas y — « or y’ — — «, that f must equal

(41) fly, y') = const. wa(y")us(y).
Substituting (41) into (34), it remains to be shown that the integral
1
(42) [ @ =y w) - o) ay

equals 0, with u; given by (40). Replacing in (40) ¢ by & and in (42) ¥’ by &/ Vi,
the integral (42) is nothing else but the expectation of ¢ — a with respect to
the distribution specified by r = 7, ¢ = 1. Since ¢ is similar of size a this
expectation vanishes, Q.E.D.



