A HIGH DIMENSIONAL TWO SAMPLE SIGNIFICANCE TEST!

By A. P. DEMPSTER
Bell Telephone Laboratories®, Murray Hill, New Jersey

0. Summary. The classical multivariate 2 sample significance test based on
Hotelling’s T2 is undefined when the number & of variables exceeds the number of
within sample degrees of freedom available for estimation of variances and co-
variances. Addition of an a priori Euclidean metric to the affine k-space assumed
by the classical method leads to an alternative approach to the same problem. A
test statistic ' which is the ratio of 2 mean square distances is proposed and 3
methods of attaching a significance level to F are described. The third method is
considered in detail and leads to a ‘“non-exact’ significance test where the null
hypothesis distribution of F depends, in approximation, on a single unknown
parameter r for which an estimate must be substituted. Approximate distribution
theory leads to 2 independent estimates of 7 based on nearly sufficient statistics
and these may be combined to yield a single estimate. A test of F nominally at
the 5% level but based on an estimate of r rather than r itself has a true signifi-
cance level which is a function of 7. This function is investigated and shown to be
quite near 5%. The sensitivity of the test to a parameter measuring statistical
distance between population means is discussed and it is shown that arbitrarily
small differences in each individual variable can result in a detectable overall
difference provided the number of variables (or, more precisely, ) can be made
sufficiently large. This sensitivity discussion has stated implications for the a
priori choice of metric in k-space. Finally a geometrical description of the case of
large r is presented.

1. Introduction. The statistical problem here treated is that of significance
testing for the difference of the means of 2 k-variate populations which may be
assumed to have the same structure of variances and covariances, the test being
based on a sample from each population with sample sizes denoted by 7, and n, .
It is intended to provide a method applicable to data where the number & of
characteristics measured on each individual is large but where the number of
individuals measured may be quite small. The usual method of classical multi-
variate statistics encounters a mathematical barrier and becomes inapplicable
when & > n; + n2 — 2, but certainly the need has arisen in applied statistical
work for techniques handling small samples of highly described individuals.

The classical method has 2 equivalent formulations in terms of the T” statistic
of Hotelling [2] or the best linear discriminator of Fisher [3]. For this method the
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space of the & characteristics is thought of as k-dimensional affine space and
needs no further structure: the method is invariant over the choice of any k
linear combinations of full rank of the given k variables to be used in place of the
given variables. The 2 populations are assumed to be probability distributions
over affine k-space and the samples constitute n; + 7, points of this space. In the
formulation of [3] the sample points are projected along a family of parallel
(& — 1)-dimensional hyperplanes onto any line, the family being chosen so that
the one-dimensional Student’s ¢ for the 2 samples is maximized. This #u.x is then
used to test the significance of the difference in population means. However, if
k> n + np — 2, a family of (¢ — 1)-dimensional hyperplanes can be chosen
which projects the points into 2 points, one for each sample. Then fpex =
regardless of the populations and so is useless as a test-statistic. In the formula-
tion of [2] the samples are used to define a Euclidean metric in the affine k-space
and the test-statistic is the distance between the 2 sample means in this metric.
This metric is based on the variation of the samples about their means, and if the
samples are shifted to have a common mean point and ¥ > n; + n, — 2 the
variation spans only a subspace of n; + n; — 2 dimensions. Thus it is not sur-
prising that in this case the method of defining the metric breaks down. Further-
more it is heuristically evident that no metric for a whole affine space can be
well-defined from variation taking place in a flat subspace. For these reasons we
are forced to give up the classical approach with its elegant mathematical
property of affine invariance.

The approach of this paper is based on the observation that, whatever metric
is chosen for k-space, the distance between sample means is a statistic which may
yield evidence of separation of the populations, and, rather than be preoccupied
with a choice of optimum metric from the data, we should try to use a metric
determined apart from the data and analyze the information yielded through
this metric.

For much of the theory the population distributions will be assumed to be
(multivariate) normal.

2. The general method. It is assumed that a Euclidean metric has been
assigned to the affine k-space of the k characteristics; that is, & independent
linear combinations of the given variables have been chosen which define distance
along k& mutually orthogonal axes of Euclidean k-space. The metric may be
thought of as chosen from a priori knowledge (precise or imprecise) of the joint
distributions of the k characteristics, in the hope of roughly sphericalizing these
distributions. More detailed remarks on the choice of a metric are to be found in
section 5.

Suppose that the 2 population distributions have means denoted by k X 1
vectors »; and », and common &k X %k matrix of variances and covariances de-
noted by A. We are secking evidence that »p = »; — », is different from zero
and are naturally led to consider V, the vector joining the sample means. V, is
an unbiased estimate of »,. Having a metric at hand we will try to direct a
significance test at the detection of a non-zero length of v, and will use the
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length of V, in estimating this length. Rejection of the null hypothesis » = 0
will result from evidence that the length of V), is significantly greater than zero.

So far this use of V has been justified mostly on heuristic grounds. It makes
sense geometrically. If however we assume that the populations are multivariate
normal N(»;, A) and N(», A) a more mathematical reason may be given.
Suppose the n; + 7 individuals are regarded as defining a set of orthogonal axes
in a Euclidean space of n; + 7, dimensions. The space may be regarded as
“degree of freedom” (d.f.) space and any set of orthogonal axes defines a set of
orthogonal d.f. Such a new set of d.f. may be defined as follows: first choose the
d.f. measuring the grand mean of the n; + 7, individuals, second choose the
d.f. measuring the difference between the means of the 2 samples, and third
choose any set of n; + ns — 2 d.f. which together with the first 2 form an orthog-
onal set. This last set represents ‘“within sample” d.f. Their number #; + n, — 2
will henceforth for convenience be denoted by m. The data, which consists of &
points in this (n; + n,)-space, can be described by a set of n; + ns &k X 1 vectors
corresponding to the new d.f. Let U, be the vector corresponding to the mean
difference d.f. and U, , Us, - - -, Un be the vectors corresponding to the within
sample d.f. It can be easily checked that

3
n-(L+i) o,
ni Ng

that Uy, Ua, - -+, U, have mean 0, and th%t Up, U, ---, Unare uncorrelated
and each have A for matrix of variances and covariances. Finally, assuming

normality and defining
o)
N ny Ne Y0

it is seen that U,, Uy, - -+, Un are independent, the first being distributed as
N(g, A) and the remainder as N (0, A). With the normality assumption it is clear
that Uy, Uy, -+ , Un are sufficient for the parameters » and A, for apart from
an irrelevant overall translation of both samples the original data can be re-
constructed. But since U, is the only one of these vectors involving the param-
eter » it is natural to choose a property of U, alone in testing significance.

Three methods of testing whether or not U, is significantly long will be de-
scribed, but only the third of these will be pursued. The first is the non-para-
metric randomization test based on the method of Pitman and Welch [4, 5]. For
each of the (nl:- n2> divisions of the n; + n, individuals into 2 groups of n, and

1
ns there is a corresponding d.f. for group difference and corresponding vector U.

Under the null hypothesis that the n; + n, individuals are a sample from one
distribution the lengths of all these vectors U have a joint distribution sym-
metric under permutation of the vectors. Accordingly U, is significantly long at
level o if the length of U, is beyond the (1 — a) point of the sample cumulative

distribution of the set of (nl : nz) lengths of vectors U. The second method is
1
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the continuous analogue of the first method which comes into play when normal
distributions are assumed. Suppose a set of p d.f. are chosen independently at
random uniformly with regard to direction in that part of (n; + m.)-space
orthogonal to the d.f. for the grand mean. The set of p corresponding vectors
together with U, have, under the null hypothesis of identical normally dis-
tributed populations, joint distributions which are again symmetric under
permutations so that a significance test may be defined as in the first method.
The limiting test as p — < is uniquely defined and may be regarded as the con-
tinuous analogue of the Pitman and Welch procedure. For & = 1 this amounts
to the usual ¢ test, but for general k the distribution associated with the limit-
ing test appears difficult to handle analytically. However the test could be ap-
proximated using a suitable p and experimental sampling.

The third method, which is the concern of most of the subsequent discussion,
is also based on normal distribution theory. The idea here is to compare the
length of U, directly against the lengths of Ui, U;, -+, Un, since under the
null hypothesis they form a sample of size m + 1 from a certain distribution.
Define @; = squared length of U;(z = 0, 1, --- , m) and

F=a/L3a

Then U, will be declared significantly long if F is significantly large. If the null
hypothesis distribution of F 1nvolved no unknown parameters then an exact
test could be based on F; since this is not the case a type of ‘“‘non-exact signifi-
cance test”” will be mtroduced

3. Distribution theory. The distributions involved in the non-exact significance
test are those of properties of the vectors Uy, Uy, U,, -+, Un, in particular
their lengths and angles between pairs of them. We suppose in this section
normal distributions and so may deal with a typical vector U distributed as
N(0, A) or a typical sample of such vectors. Under these assumptions @, the
squared length of U, has the distribution of a quadratic form in k¥ normal vari-
ables. Since this distribution in precise form involves k parameters, all unknown,
we will rely on the well-known [6] approximation which treats @ as distributed
as ux: depending only on 2 unknown parameters u and 7. The parameters x and
r are generally fitted by equating the first 2 moments, and this results in the
inequality r < k.

This approximation, at least for integral r, corresponds to approximating the
distribution of vector U by a spherical normal distribution lying in a flat sub-
space of dimension r in k-space. Stated more precisely this says that in the
metric chosen for k-space there is an orthogonal transformation to coordinates
(1, %2, -+ , y&) such that the distribution of U is defined by

1 r
(1) density =—— @r )r/2 exp (— P ; .1/%> foryi, 42, y-,and

@) Yr41, Yrgz, **+ , Yr are zero with probability one.
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Having this approximate underlying distribution for U it is possible to define
from it approximate distributions for other statistics based on U.

As a first example consider the angle 6 between a pair of vectors U and U’
independently distributed according to (i) and (i) above. Due to the spherical
symmetry of the distribution in r-space the conditional distribution of 6 given
U’ does not depend on the particular U’ so that the distribution of 6 is the dis-
tribution of the angle between U and any fixed direction e.g.,

p=Lypp=ys=- =y =0.
Thus cos® 6 is distributed as
/@i + v+ + 9
i.e. cos’ 6 has the 8 distribution Bu2,¢r—1s2 defined by density

1 r—1
JORES
This will be used as an approximation to the distribution of cos® # under the
circumstances where ux; is used as an approximation to the distribution of Q.
Accepting these approximations it is natural to attempt to estimate u and r.
In particular, estimation of r plays a significant role in our non-exact test. The
distribution theory leading to estimates of » will now be discussed. The vectors
Vi, V2, -+, V. may be described by the set of their lengths and the set of
angles between pairs of them, and under the sphericalizing approximation
these 2 sets of random variables are independent of one another. From each of
these sets a statistic is defined which contains nearly all the information about
7 in the set and whose distribution may be approximated by a fast-converging
limiting form as 7 — oo, namely [(1/r) + (¢/r*)]xs where ¢ and % must be de-
termined for each set. This leads to 2 independent estimates of » which may be
combined into a single estimate.
Taking the set of lengths define @, as the squared length of U, and consider
Qi, -+, @m as m independent observations from ux? with x and 7 unknown. The
results of this paragraph are found in [7]. The joint density function of @, R

Qz,"',QmiS

() () o (-4 20)
5 )4 2 B P\ T g, & Y

so that H'Z;lQ,- and E’{‘,,IQ,' are a pair of sufficient statistics for x and r. It is now
natural to look at

(1 — )V,

_ I
)™

v
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as a statistic not involving u for the purpose of estimating r. From joint charac-
teristic functions » and Y 7,Q; are seen to be independent. Thus
v - (;1 Qz) = 'I]1: Q:

where the 2 factors on the left are independent as are the m factors on the right.
Since the distributions of Z’Z‘.l ; and @; are known this equation makes it pos-
sible to immediately write down the moments of v about 0 or the cumulants and
characteristic function of log ». In this way we approach the limiting x* distribu-
tion of log v as r — « and show that the power series expansion in terms of
(1/7) of the cumulants of the actual and asymptotic distributions agree up to the
terms in (1/r)’. This asymptotic distribution is stated in [7] to be remarkably
good with agreement of the first 4 cumulants to within 5% when 7 is as small as 5.

Asymptotic expansions for the cumulants may be derived as follows. Define
t = —log(m™v), and K, as meaning sth cumulant. Then for any s

K, (logv) + m'K, (log Xm; Q,) = mK, (log Q.),

or
Kc (lOg U) + m’Ka (lOg Xf»r) = mKs (IOg X?‘)~

From [8] asymptotic formulas for the cumulants of log x> are given by

K, (log x5) = logn -—71"— 2:1%
= de o gk
and .
K, (log x2) = (—)'2' [(82;8_21)! L6 2—”1)1 " ng gl (—4)7_1(‘;,:;)2!‘7;&;18 - 1!
- (=) [(82;3—21)! " (s 2—n81)! " 6:;1 _'_7_&?:54_ ] for sz 2,

where B; are Bernoulli numbers. Thence
Ki(t) = —mlog m — K; (log v)
= —mlog m — mK; (log ;cf) + mK; (log xar)

PO,
=D+ 5 1574 T

and for s = 2

K.(t) = (=)'K, (logv) = (=)'[mK, (log x}) — m'K, (log xns)]

1
sl1+4 =
28—1(8—1)!(m—1)l;]:_’+_(__*m_>_+ 0 +]

3,’-s+1 ,’-s+2
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Since xm—; has cumulants K, = 2°(s — 1)! (m — 1) it is seen that ¢ ~ (1/7)x%
with agreement in first terms of the expansions, and

<1 1+%)
2
b~ ;‘+——3-r'2—' Xm—1

with agreement in the first 2 terms, for all cumulants.
Thus r may be estimated by # defined by

1 1+%)
=\ft—w Jm -V

and for r moderately large the distribution x._; can be used to put confidence
limits on .

Consider next the set of 3m(m — 1) angles among Uy, Uz, -+, Un. Set
n = im(m — 1) and denote by S; (¢ = 1, 2, - - - , n) the squared sines of these
angles. Under the approximate model any S; is considered distributed as8¢x—1 /2,172,
but as a further consequence of spherical symmetry in r-space it may be noted
that any set of angles containing no closed subset is a mutually independently
distributed set, and in particular the angles are pairwise independent. Extending
this approximation to complete independence the joint density of the S; becomes

(L " ,.
,\71:";—(%) 1131 (S:) (r=3)/2 H a- S,—)'%

so that J[7uS: or > 2, logS; appear as equivalent sufficient statistics for r, so
contain approximately all the information about r in the directional properties.

This leads to a consideration of —log B_12,12 . The density of 1 — Be—1y/2,1/2
is easily seen to be asymptotically as r — o the density of 1/r xi and since
Be—1y/2,1/2 — 1 in probability as r — o it follows that

i=1

—log Bu—1y/2,1/2 -1
1 — Be-vr2p

in probability as r — o so that —log B¢_1/2,1/2 is also asymptotically distributed
as 1/r x2.

Direct asymptotic expansions for the cumulants of —log 8¢_1/2,1/2 show that,
as with statistic ¢, this last asymptotic distribution can be modified to have
agreement in the first 2 terms. For, since x2_; = Bu—n/2,12 - X; With independence
on the right (as may be seen by computing the characteristic functions of the
logs of these random variables),

K, (=log Be-12,12) = (—=)'K, (log Br—1y/2,1/2)
= (=)'[K. (log x7-1) — K. (log x})]
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for all s. Thence
Ky (—log Be—y/2,y2) = log r + [ 1 —1—+——2—— + :I
' r 32 150

| 1 1 2
~ log (r — 1)_[_r—1_3(r—1)2+15(r—1)4"""']

"'+2r2+ +4r4+

and for §2 2

K, (—log Be—y212) = 2° [ (s =~ 2! + (s — D! + st +0+4+ -- ]

2(r — 1)t 2(r — 1)’ 6(r — 1)°
(s=2)! , (s—1!
- 2[ 2! + 2re + 6r"‘ +0+- ]

o—1 s(s 4+ 1)
=270 — 1)'[ 2,.+1+‘—,.T—+“‘]
so that
1 3
—log Bu—1y/2,12 ~ (; + -2—73> xi

with agreement to second terms in the expansions and therefore usable accuracy
for quite small r.
Now we may regard

—Z log S: ~ (1 + 232) Xn

and obtain a new estimate of 7. Since in approximation the angles were more than
pairwise independent the first 2 moments of this last are asymptotically faithful
to the approximate model. The remaining moments however will be distorted
slightly on account of non-independence in a way which is difficult to investigate.
Finally an estimate of  can be obtained from ¢ — > i log S; regarded as
asymptotically (1/r) xm—14» OF an appropriate refinement for small r.

4. The non-exact significance test. The question is discussed here of what can
be had in the way of a significance test based on F = Qo/1/m) -1 Q; considered
as F, . under the null hypothesis where r is unknown but estimated from a
statistic w considered distributed as f(r)x independent of F with f(r) equal to
1/r or an asymptotically equivalent refinement of 1/r. The point estimate of r
found from the equation w = f(r)- » will be denoted by 7 and the term 100p%
confidence point of r will indicate the value of r satisfying w = f(r)x% Where
X4 denotes the 100p% point of x% . Similar notation will be used for percentage
points of other distributions.

A statistical test may be termed exact if the distribution of the test statistic
under the null hypothesis does not depend on any unknown parameters. If r
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were known the statistic F would have this property and the natural test would
be to regard F as significant if F > F, nro5 . (Assume for this discussion a
standard 5% nominal significance level.) Since 7 is unknown any test based on
F must be non-exact and the natural non-exact test appears to be to regard F
as significant if F > Fj micos . This test can also be formulated in terms of
quantities @ and &. Define « as the significance level of the observed F as a func-
tion of the true parameter 7, i.e. a satisfies F = F, nurq—a . Similarly & as a func-
tion of the observed statistics F and w can be determined from F = F: nsq-p .
The unattainable exact test is that F is significant if @ < .05; the non-exact test
defined is that F is significant if & < .05.

The non-exact test still has a significance level (or size or probability of type
I error) but this is now a function of r. Denoting this function by v(r) we have

+(r) = Pr(a < .05)
Pr(F > Fi micom)
= ave{Pr(F > Fiw)miw (99 | W)}

It

where F is distributed as F, ... The last version of v(r) indicates how y(r) can
be calculated for given r i.e. by averaging a set of fairly well tabled probabilities
over a x’ distribution. The major interest of this section is to determine the rela-
tion between v(r) and the nominal significance level .05.

The distributions of « and & can be compared by fixing & and looking at the
variability of the corresponding & This amounts to conditioning the various
random variables by fixing F to produce the desired «, but leaving w uncondi-
tioned. For any fixed e, if r is known, percentage points of w can be translated
into percentage points of # and thence to percentage points of & These are de-
noted (& | ) . Alternatively, for fixed «, r unknown, but w observed, con-
fidence points for r can be translated into confidence points for « and these will
also indicate how much & varies about a.

Short of actually calculating y(r) for various values of r, m, n and .05, two argu-
ments will be advanced to show that it is near .05. The first argument is to use
a table to back up the belief that the disturbance caused by going from « to &
is not very great relative to the (0, 1) range of « and is well balanced with regard
to direction, so that the unconditional distribution of & is not much different
from the uniform (0, 1) distribution of «. Table 1 shows quartiles of (& | «) for
m = 10,n = 64, « = .05 and .10, and 7 = 6 and . This table indicates that the

TABLE 1
r a (&la) (.26) ( &la) (.78)
6 .050 .043 .057
.100 .091 .107
© .050 .030 .070
.100 ©.072 .125
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disturbance in « caused by using & is well-balanced near the 5% level and is a
slight shift towards 0 near 10% . The indication is that y(r) is very near .05.

The second argument involves computing the non-trivial limit y(w) =
lim,,. v(r). Define

Frr — )T =0 if Fror—1=0

= F.m — 1 otherwise.

As

r— o F,,m,NN(l,g{ 1+1—})
r m
s0 that
+
(Fr,mr - 1)+~ <N (0; ‘2'{ 1 + L}))
r m
or

+12 2 1 2
(e =17 ~0 o 2(14 1)

each with probability %. Similarly if (1/#) = (1/rn)x’ is put in for 1/r,
— 1)FE 2 1} »_2 1Y1 5, .

[(Ff.mr 7] 0 or ;(1+%)X1—;(1+;ﬁ);&xﬂ X1

each with probability 2 where x> and x; are independent. From this

¥() = Um Pr (Frmr > Ftmocon)

r—>00

= im Pr ([(Frmr = 1) > [(Fsms — 1)1 or)

r->00

1
=3 Pr (3 > ™ [x5 - xﬂ(.so))

Now
ave {xi} =1 and var {xi} = 2,
and

SRR

ave{%xf. . xi} =1 and var{%xf. -,xf} =2+

whichindicates strongly that

1
[—- Xn * xf] > [x%]
n (.90) (.90)

ie. y(») < .05 so that asymptotically the test is conservative as r gets large.
Since the foregoing table indicates smaller spread in (& | «) for finite r than for
r = o we might hope that y(») is as near-.05 as y() is.
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In any particular case the spread in (& | @) can be examined by computing
confidence points of « from confidence points of 7.

One feature of this test which might be regarded as a practical drawback is
the non-uniqueness of the vectors Uy, U, - - - , U . These vectors resulted from
a choice of an orthogonal set of m d.f. chosen arbitrarily in a space of m = n; +
ns — 2 dimensions. The symmetry of the normal distribution over any choice of
an orthogonal set of d.f. assures that the distribution theory of the test holds
for any such set, but there is no assurance that the observed statistics are un-
changed by different choices. In fact it can be easily seen that ) ., Q; is in-
variant under all choices so that F = @ / (1/m) Z'{'..lQ,- is also. Thus it is only in
the estimation of r that variations occur, and, since we have heuristic evidence
of having used almost all the information about r in our estimates # and since the
7 plays only a secondary role, the non-uniqueness of the significance test should
be of minor importance.

6. The sensitivity of the test. A natural parameter measuring separation of the
2 populations is distance between their means in a metric defined as follows
from their second order moments. Suppose that the metric inserted into affine
k-space from a priori information and used heretofore is denoted by G, , and
suppose that the ellipsoid in affine space which appears as the unit sphere in G
is denoted by E; . If, in an affine coordinate system for k-space a sample point is
represented by k X 1 vector « and the corresponding k X k matrix of variances
and covariances is A, then an ellipsoid E, can be defined as w'A™'u = 1. It is
easily seen that the same ellipsoid is defined by the same prescription in any
affine coordinate system so that given the distribution over affine space E, is
uniquely defined. E, may now be used to define a Euclidean metric G, in affine
space as that metric in which E, appears to be the unit sphere (so that the dis-
tribution is sphericalized). Suppose the Gi-distance between population means
is 7 i.e. vp has Gy-length 7. Then 7, which is also the ratio of mean difference to
standard deviation for that linear combination of original variables which
maximizes this ratio, may be taken as the parameter measuring difference be-
tween population means, and we would like to know if our test is sensitive to
large 7.

Nowave{V,} = v with Gy-length 7 soave{Us} = ¢ = (1/n; + 1/ns) v, with
Gy-length (1/n; + 1/ns) ™ = 7, say. Denote by Qo(¢) the squared G;-length of
U, , by Po(¢) the squared G,-length of Us and by R(U,) the squared ratio of the
radius of E; to the radius of E; both radii in the direction of U, . (This ratio of
lengths in one direction is independent of the particular metric.) Then

(5.1) Qo(&) = R(Uo)Po(¥).

Assuming normality the distributions appear in G, as spherical unit normals so
that Po(£) has the non-central x* distribution xi(r;) defined as the distribution of
(v 4+ 1) + vs + -+ + vi where vy, vs, - - ,-0 are NID(0, 1). Unfortunately
R(Uy) has a distribution depending on the direction of ¢ as well as its length.
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This may be contrasted with the statistic T* usable if ¥ < m, which is non-
centrally distributed as

T = mix (1)
- 2
Xm—k+1

with the numerator independent of the denominator [9] which distribution de-
pends only on 7 and on no other properties of £. The present situation has the un-
desirable feature that the Gi-metric may have been selected in such a way that the
Gi-length of £ is too small to cause a significant disturbance in Qo whereas 7 is
large enough to cause a significant disturbance in xi(r1). An extreme example of
this would occur if the populations were not of full rank but lay in separate paral-
lel hyperplanes but still very close in G; . Here 7 = « but @(£) could very well
be little disturbed. As long as £ is regarded as having non-random direction and
G, cannot be chosen to coincide with G there is danger of insensitivity to a large
7 arising from this source. On the other hand if it is permissible to assume random-
ness for £ then this danger can be controlled on the average, and further discus-
sion proceeds along these lines.

The high-dimensional case is likely to arise in practice when little or nothing
is known about the separating power of individual variables. If nothing is sup-
posed known it may be reasonable to think of ¢ as random with all directions
intuitively equally likely. The only affine choice consistent with this intuitive
notion is to make £ uniformly distributed with respect to G.-direction, so the
first case considered will be where £ has constant Gp-length 7, and is uniformly
distributed with respect to G.-direction independently of the within sample
variation.

Under this assumption and normality Ue(¥) = £ + Uy(0) where the 2 vectors
on the right are independent each with directions distributed uniformly in G, .
Also, due to the G;-spherical symmetry of the distribution of Uo(0), the Gy-length
of Uy(0) is distributed independently of its Ge-direction. It follows that Uy(¥)
has independently distributed Gp-length and Go-direction, so that in the equation
(5.1) the 2 terms on the right are independent. Also the distribution of R(U,)
is independent of £. In our standard approximation of Qo(0) by ux; by fitting first
2 moments we have ave{Qy(0)} = ur and ave{Qi(0)} = u’r(r + 2). Also
ave{Po(0)} = ave{xi} = k and ave{P;(0)} = k(k + 2). Thus

ave {R(Uy)} = ave {Q(0)} _ "_k_”

ave {P(0)}
and
" _ave {Q3(0)} _ Lr(r + 2)
ave (RO} = Sopa)) ~ #G 4 2)
so that

ave (Qu®)) = ave (R(UD) - ave (i)} = wr (1+7),
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ave {R*(U,)} ave {xi(n)}

T1 Ti )
ur(r+2)(1+2 + )

ave {Q0(9)}

and

, 9.2 n k—rrt
var {Qo(8)} = 2;”'(1 + 2% +mk_§)

The distribution of Q(£) is clearly not non-central x* since the variance of the
latter does not involve a term in 73 . For practical purposes it would be reasonable
to fit a x* shape to this distribution by ﬁtting first 2 moments, i.e. Ax: where

7‘71

lc+2k2
l

1+2 +

A=u

r+ 271

E+2k
142 ,1'% + k—rri

E ' k+2k
Now it is possible to compute approximate “power functions” and ‘“confidence
limits”” for = by assuming F for 7 > 0 approximately distributed as A/u Fy mr
and by adopting the procedure used with significance testing of replacing r by #.
These “power functions” and “confidence limits” are actually estimates of the
true power functions and confidence limits associated with the non-exact test
just as & was an estimate of a. The deviation of the estimated power from the
true power may again be expected to be near zero and balanced about zero.
Using confidence points of » confidence points for any particular value of the
power function may be found and these will indicate the order of the disturbance
caused by replacing r by 7.

For convenience a criterion different from the power function will be used to
measure the sensitivity of the test, namely 7. the value of  which will produce
on the average a barely significant test statistic. Regarding (1/m) Y 7 Q:, the
denominator of F, as (u/m) x&r

ave {F}

g=r|1l+

ave {Qu(®)} - ave{%— . x;.f}

2
- ) 1_mr
—“r<1+k> ur mr — 2

(2 ()

so that =, satisfies
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or, since, for large r, Fy m ~ N(1, (2/7)[1 + (1/m)]), 7. asymptotically satisfies
-1 2 3 b
1+<l+l> 1+ 1.65(2) (1 +l>
n o me/) k r m,

=N (l + -1—) k™
ny Mg

or

where N = 1.65(2)}(1 + (1/m))! = 2.3. Note that for a given experiment r? is
the only factor in > which depends on G . This result is encouraging, for suppose
we have a set of variables with equal but possibly small individual separation
parameters p. If the within sample variation is independent from variable to
variable then 7* = ko’. Thus if G; can be chosen such that

2 2

P \1 No
then separation would show on the average. This implies that regardless of how
small p is we need only go on adding variables of separation p until 7 has been
built up to correct size. Whether it is possible to continue indefinitely adding
variables with small separations in a practical case is uncertain, but the example
does show how small individual separations can produce something that will
show.

If there is some feeling that £ is not uniformly distributed relative to Ge-direc-
tion an alternative would be to suppose it uniform relative to a different metric
G; with ellipsoid Ej , i.e. when Ej; appears as the unit sphere § appears of length
o and uniform with regard to direction independent of @o(0). Then a priori knowl-
edge of the separating powers of the variables could be supposed to consist of
some information about E;. Suppose the mean square Gi-length of £ is A%
where A® depends only on Ej;, and suppose the mean square Gy-length of the
centrally distributed Usis B® = ur = ave{Qo(0)}. Then

2
ave {Qu(®)} = B* + A’ = ur (1 + %f)

so that o7 producing significance on the average is given, in the asymptotic case by

s 1, 1\4°
A= (i)
where now the choice of @; can influence both B/A and r.

We are now in a position to discuss theoretical issues concerning the original
choice of metric G; . These suggest that for most purposes the aim should be to
make G, and G, coincide as nearly as possible except for a scale factor. The prac-
tical question of how well this can be accomplished is not discussed, nor is it
crucial for the use of the method. There are 2 issues in the choice of G; : sensitivity
of the test and safety of the assumptions. .
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If G, is related to G: by a scale factor, then the statistic Q is distributed as uxt
i.e.,, r = k and under normality the approximation to the distribution of @ by
px: is exact. This is the way in which choice of G; can be made to improve the
assumptions. It is heuristically evident that a larger value of r results in less
likelihood that approximations of this kind will go wrong.

Regarding sensitivity it can be seen that only when E, is G;-spherical is there
equal sensitivity to a separation of 7 in all directions and so no danger of in-
sensitivity to large 7. Also it has been seen that when the direction of £ is assumed
Ge-uniformly distributed 72 depends on r* so again there is evidence that maxi-
mizing r to k gives greatest sensitivity. However, under the alternative random-
ness assumption of ¢ uniform over ellipsoid E; the situation appears more com-
plicated, for the factor in o2 to be minimized by choice of G, is A%/(B?) r*. This
suggests that if something is known about the shape of E; as well as E, then E,;
should be chosen to give more weight to those directions in which Ej is long rela-
tive to E, provided this does not too greatly depress r. It is felt that this last
suggestion may be occasionally useful but the general rule will be to try to make
r=k

6. Asymptotic behavior. In the foregoing are many results asymptotically
true as r — o with m fixed. Certainly these are a mathematical convenience. The
question of whether indefinitely large r can be practically obtained remains open.
Certainly if £ can be made arbitrarily large and each of the k variables contains
a part independent of the rest then in theory r can be made arbitrarily large be-
cause a metric can be chosen such that »r = k. What is much more in doubt is
whether or not variables could be chosen which would give r indefinitely in-
creasing and = also increasing at a rate such that the sensitivity of our method
would continue to improve.

Whether it is practically attainable or just mathematically useful the following
geometrical picture of the asymptotic case is illuminating. Consider throughout
the approximate model of section 3 and its asymptotic behavior. As r — « the
coefficient of variation of @ (i.e. ux’) tends to 0, so that if we back away from the
picture at the correct rate as r increases the vectors U, , --- , U,, will appear to
all approach in probability the same constant length. Also since 1 — S; ~ 1/(r) x}
each angle between vectors tends in probability to m/2 so they tend to an orthog-
onal set of m equal length vectors. Vector U, also becomes perpendicular to
Ui, -+, Un but its length depends on 7. However if its length should differ
from the common limiting lengths of the rest by a factor as great as (1 + Nr %)}
this is roughly what would be called significant, so that asymptotically a sig-
nificant U, could be indistinguishably different from the rest.

An implication of this asymptotic picture is as follows. For small r it would be
natural to compare Qo(£) from U, more closely with those Q; from U,; making the
smallest angles with U, , because if U, and U, are close then R(U,) and R(U,)
are likely to be more nearly the same. 7" accomplishes this in a neat manner
which disappears when & > m, but the present method makes no attempt to do
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it. The asymptotic picture says that in the limit there is no hope of making such
a correction, for if U, is nearly at right angles with every U, then the radii of
E,; and E; in the direction of U, bear no relation to the radii in the direction of
the U;, i.e. there are too many directions for U, to take to hope that it will be
near enough to any U, to make any difference.
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of Princeton University for his generous guidance in this research.
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