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NOTE ON A MOVING SINGLE SERVER PROBLEM!

By S. KaruiN, R. G. MiLLER, JR., AND N. U. PraBHU

Stanford University and Karnatak University

1. Introduction and summary. B. McMillan and J. Riordan in [1] derived
the generating function for the probability distribution of the number of items
completed before absorption in a moving single server problem in two special
cases. Through an analogy to the work of L. Takéics [2] on busy period prob-
lems for a simple queue, McMillan and Riordan postulated a nonlinear integral
equation relation for the generating function. In this note the validity of this
relation is proved in general by exploiting the analogy more fully, and the
generating function in the two special cases is obtained directly from the in-
tegral equation. A similar functional relation is established for the Laplace-
Stieltjes transform of the distribution of time until absorption, and the trans-
form is obtained for the two special cases.

2. Functional relations. As stated by McMillan and Riordan the moving
single server problem is the following: an assembly line moving with uniform
speed has items for service spaced along it. The single server available moves
with the line while serving and against it with infinite velocity while transferring
service to the next item in line. The line has a barrier in which the server may be
said to be “absorbed” in the sense that service is disabled if the server moves
into the barrier. The server with exponentially («) distributed service time starts
service on the first item when it is T time units away from the barrier. Let the
spacings between items be independent random variables with the general dis-
tribution function B().

This problem is analogous to a simple queue with a single server, Poisson ar-
rivals (A = ), and distribution of service times Fs(t) = B(t). The time until
absorption in the moving single server problem is equivalent to the length of a
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busy period for the simple queue in which the service distribution for the first
item in line is

1, t> T,
P20 = {0, t<T.

The number of items completed before absorption is one less than the number of
items serviced during a busy period in which the first item has the service dis-
tribution Fr .

Let p(k, T) be the probability that the server completes k items before ab-
sorption, and let P(z, T) = > iop(k, T)z*. Let f; be the probability that j
items are serviced during a busy period in which the first item has service dis-
tribution Fs, and let F(z) = >y fi’.

For the queue suppose that n items arrive during the service period (of length 7'
of the first item. The probability distribution on the number of items serviced
during the remainder of the busy period is the n-fold convolution of f = {f;}.
Hence,

" P = 3 S e

— e—aT(l—F(z))’
where F(z) is defined above and is the unique analytic solution to the integral
equation

@) Fo) =« fo T By, lz] <1,

subject to the condition F(0) = 0 (see [2]). Since the integrand in (2) is P(z, ¢),
P(z, t) is the unique analytic solution to the non-linear integral equation

®) P, T) = exp{—aT (1 -z fo " Pz, 0 dB(t))},

subject to the condition |P(z, t)] < 1 for |z| < 1, all ¢&. This is the integral rela-
tion conjectured by McMillan and Riordan.

Let H(u, T) be the probability that the server is absorbed prior to time u,
and let H(s, T) = [5 ¢ " dH(u, T). Let G be the distribution of the length of a
busy period in which the initial item has the service distribution Fs, and let
G(s) = [¢ e dG(u).

The length of time until absorption is 7' plus an n-fold convolution of busy
periods where n is the number of items arriving in the interval (0, T). Hence

0 e—aT(aT)n =)
@ Hw) - 2 — w1, u> T,
0, u=sT,
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where G™ denotes the n-fold convolution of G. In terms of Laplace-Stieltjes
transforms (4) becomes

(5) H(s, T) = exp {—T(s + a(1 — G(s)))},
where G(s) is the unique analytic solution to the relation
(6) Gs) = f ® =36t gpey

o

subject to the condition lim,. .. G(s) = 0 for real s (see [2]). Combination of
(5) and (6) implies that A(s, t) is the unique analytic solution to the equation

) H(s, T) = exp {-—-sT — aT (1 - '/:n ﬂ(s, )] dB(t))} .

subject to the conditions |H(s, f)] < 1for Re{s} > 0, all { and lim, . 17 (s,8) =0
for real s, all ¢.

3. Examples.

(s) B0 ={y; (%

P(z, T) can be determined either from (1) and (2) or from (3) directly. To
determine P(z, T) from (3) let T = € in (3).

(8) P(z, 6) = e—ae(l—z?(z,e))

80 P(z, ) satisfies the equation

) aerP(z, )¢ T = aexe ™.

The expansion of "' for z = aexP(z, €) (see [1]) is

2 k-1
(10) et =1+ kz_l (T/e)(T/I:!-l— k (ccexe =)*
80
1y Pz, T) = ¢ + g (T :!kf) ¢ (a6 ) 2",

"H(s, T) can be determined from (11), from (5) and (6), or from (7). For the
latter method let 7 = ein (7).

12) acll(s, e ™F®) = g

»
aTH(s,e) :

so the expansion of e is

(13) eaTl;("e) =1 + kZ:l (T/é)(T/I:' + k) (aee~—e(a+a))k

and
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) k—1
1) Bl = ror 3 T RIS ergmecypgrsnny,
k=1 .
(b) B@) =1—¢&*, t=0,8>0.

To determine P(z, T') from (3) integrate both sides of (3) with respect to dB(T)
and solve for ¢ P(z, t) dB(t).

- a4 B8 —@F P = dafe
(15) fo P(z, ) dB() = o
SO
(16) P, T) = exp{—g (a =B+ Vie+ B2 — 4aﬁx)}.

To determine H(s, T) from (7) integrate both sides of (7) with respect to
dB(T) and solve for 3 H(s, t) dB(t).

amn f:ﬁ(s,t) dB(t) = s+“+ﬂ‘\/(2sa+“+ﬂ)2—4aﬂ

SO

(18) H(s, T) = exp{—-g s+a—B++Vis+a+Br - 4aﬂ)}.
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DISTRIBUTION OF THE “BLOCKS ADJUSTED FOR TREATMENTS”
SUM OF SQUARES IN INCOMPLETE BLOCK DESIGNS

By A. M. KSHIRSAGAR

Bombay Unaversity

Introduction. Marvin Zelen [1] has stated that the distribution of the “blocks
adjusted for treatments’” sum of squares in an incomplete block design is un-
known. The present paper is intended to derive this distribution.

Notation and derivation. Let there be v treatments and b blocks having
ki, k2, -+, ko plots respectively and let the ith treatment be replicated r;
times; (¢ = 1, 2, - - -, v). Let n;; (which is either zero or one) be the number of
times the ¢th treatment occurs in the jth block, ? = 1,2, ---v;7 = 1,2, .-+,
b). Then
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