ON THE DISTRIBUTION OF THE KOLMOGOROV-SMIRNOV D-STATISTIC

By Pedro Egydio de Oliveira Carvalho¹

University of São Paulo

Summary. Gnedenko and Korolyuk [1] have pointed out that the exact distribution of the Kolmogorov-Smirnov *D*-statistic can be obtained explicitly by solving a certain double-boundary random walk problem, which, in turn, is solved by the principle of reflection. This principle is employed here in what is believed to be a new way to derive Gnedenko's and Korolyuk's result.

A random walk problem. Let us consider a random walk on the half plane (t > 0, s), starting from the origin, such that at every point (t, s) there are two possible steps to take, either to (t + 1, s + 1) or to (t + 1, s - 1), each with equal probability and for some positive integer n, consider the paths from the origin to the point (2n, 0). Among these, let us denote for any non-negative integer $k \le n$, the set of all paths that have a point on the line s = k by $C(d_v \ge k)$, the set of all those paths that reach the line s = -k by $C(d_x \ge k)$, the set of all those that have a point on at least one of these two lines by $C(d \ge k)$, and the set of all those that reach both $s = \alpha k$ and s = -k, but go to the $s = \alpha k$ line first, by $C(d_v \ge \alpha k \to d_x \ge k)$. Let the number of elements in C() be $C^*($).

While it is well known (p. 70, 2) that

$$C^*(d_x \ge k) = \binom{2n}{n+k}$$

 $C^*(d \ge k)$ is more difficult to calculate.

Clearly, $C^*(d \ge k) = C^*(d_x \ge k) + C^*(d_y \ge k)$ less the number of paths in $C(d_x \ge k) \cap C(d_y \ge k)$ or

$$C^*(d \ge k) = C^*(d_x \ge k) + C^*(d_y \ge k) - C^*(d_x \ge k \to d_y \ge k) - C^*(d_y \ge k \to d_x \ge k)$$
(2)

and by symmetry

(3)
$$C^*(d \ge k) = 2C^*(d_x \ge k) - 2C^*(d_x \ge k \to d_y \ge k).$$

Because of (1) it remains to calculate the last term in (3). As the first step, we show that for $i = 2, 3, \dots, [n/k]$,

$$(4) \quad C^*(d_x \ge ik) - C^*(d_x \ge ik \to d_y \ge k) = C^*(d_x \ge (i-1)k \to d_y \ge k).$$

Received January 20, 1958; revised June 12, 1958.

¹ Posthumous note. Revisions were made and references to literature supplemented following the referee's suggestions by Agnes Berger and Ruth Gold, School of Public Health and Administrative Medicine, Columbia University.

A path counted on the left side of (4) is one of two types. The first type reaches s = -ik, but does not reach s = k, the second reaches both lines but reaches s = k first.

Let P be a path of the first type. By definition, it has points on s = -ik. Let p be the first of these. There must be points of P on s = -(i-1)k to the left and also to the right of p; let the closest one to the left be p_{1i} and to the right, p_{1r} . Replace the portion of p from p_{1i} to p_{1r} by its reflection about s = -(i-1)k. The new path P' contains the image of p, say p'_2 , falling on the line s = -(i-2)k. On s = -(i-2)k, let the points of P' nearest to p_{1r} be p'_{2i} on the left and p_{2r} on the right. Reflect P' between p'_{2i} and p_{2r} about s = -(i-2)k, to get a new path P''. On s = -(i-3)k, let the points of P'' nearest to p_{2r} be p''_{3i} on the left and p_{3r} on the right. Continuing in this manner, i reflections will lead to a path $P^{(i)}$ that goes first to s = -(i-1)k and then to s = k, but does not reach s = -ik except possibly after reaching s = k. Thus

$$P^{(i)} \in C(d_x \ge (i-1)k \to d_y \ge k)$$

but

$$P^{(i)} \not\in C(d_x \ge ik \to d_y \ge k).$$

Conversely, let Q be any path such that

$$Q \in C(d_x \ge (i-1)k \rightarrow d_y \ge k)$$

but

$$Q \not\in C(d_x \ge ik \to d_y \ge k).$$

Q has points on s=k, let q be the first of these. On s=0, let q_i and q_r be the nearest points of Q to the left and right of q_r respectively. Let all the other points of Q on s=0 to the right of q_r be a_1, \dots, a_m , in order. Let us reflect the portions of Q between q_i and q_r and at the same time between all those points a_i , a_{i+1} between which Q reaches s=k about the line s=0. The new path Q' does not reach k. The reflection of q_r , say q'_r , lies on s=-k. Next reflect Q' between q' and the nearest point to the left of it on s=-k. Continuing in the same manner, the ith reflection will produce a path that reaches s=-ik but never reaches s=k.

Let U be a path of the second type, i.e., one that reaches s=k first and then reaches s=-ik. Let p=(t,0) be the first return of U to s=0 after having reached s=-ik. Let the portion of U between (0,0) and (t,0) be represented by the ordered sequence ϵ_1 , ϵ_2 , \cdots , ϵ_t , where ϵ_j is a vector of length $\sqrt{2}$ and slope +1 or -1. Let U' be a path such that from (0,0) to (t,0) it is given by the reversed sequence ϵ_t , ϵ_{t-1} , \cdots , ϵ_1 and coincides with U from (t,0) to (2n,0). U' is clearly in $C(d_x \geq ik \rightarrow d_y \geq k)$ and therefore also in $C(d_x \geq (i-1)k \rightarrow d_y \geq k)$.

Conversely, let V be a path such that

$$V \in C(d_x \geq (i-1)k \rightarrow d_y \geq k)$$

and

$$V \in C(d_x \ge ik \rightarrow d_y \ge k)$$

and let $q'_0 = (t', 0)$ be the first return of V to s = 0 after having reached s = k. Reversing the steps between (0, 0) and q'_0 uniquely determines a path of type II, completing the proof of (4).

Note that (4) has the structure

$$A_i - B_i = B_{i-1}$$

where $A_i = C^*(d_x \ge ik)$ is known by (1). Thus knowing B_i for any i implies knowing all B_j for j < i. But for $i = \lfloor n/k \rfloor$, (4) gives

$$\begin{pmatrix} 2n \\ n + \left\lceil \frac{n}{k} \right\rceil \end{pmatrix} - 0 = C^* \left(d_x \ge \left(\left\lceil \frac{n}{k} \right\rceil - 1 \right) k \to d_y \ge k \right) = 1 = B_{\lfloor n/k \rfloor - 1}.$$

Carrying out the substitutions gives

$$C^*(d_x \ge k \to d_y \ge k) = \sum_{i=2}^{[n/k]} {2n \choose n+ik} (-1)^i$$

and from (3)

$$C^*(d \ge k) = 2 \sum_{i=1}^{\lfloor n/k \rfloor} {2n \choose n+ik} (-1)^{i+1}$$

Application to the Kolmogorov-Smirnov problem. Let $X = (x_1 < x_2 < \cdots < x_n)$ and $Y = (y_1 < y_2 < \cdots < y_n)$ be two independent samples of ordered independent observations having the same continuous cumulative distribution function. Suppose $x_i \neq y_j$, $(i, j = 1, 2, \cdots, n)$ and let the two samples be combined and arranged in increasing order of magnitude, say $Z = (z_1 < z_2 < \cdots < z_{2n})$. Let $S_n(x)$ be the number of observed values x_i which are less than or equal to x and $S'_n(x)$ the number of observed y_j 's less than or equal to x.

Let

$$D^{+} = \max_{n} (S_n(x) - S'_n(x))$$

and

$$D = \max_{n} |S_n(x) - S'_n(x)|.$$

The limiting distribution of D was found by Kolmogorov [3, 4] and Smirnov [5, 6, see also 7] and an iterative method for its exact distribution has been given by Massey [8]. Gnedenko and Korolyuk recognized that a one to one correspondence exists between the set of all Z and all paths from (0, 0) to (2n, 0) in the above discussed random walk: Starting from (0, 0), we move to (1, 1) if z_1 is from Y, to (1, -1), if z_1 is from X and so on. In particular, samples Z for

which $D \ge k$ correspond to paths in $C(d \ge k)$ and vice versa. Thus we get Gnedenko's and Korolyuk's result

$$P\{D < k\} = 1 - \frac{C^*(d \ge k)}{\binom{2n}{n}}.$$

REFERENCES

- [1] B. V. GNEDENKO AND V. S. KOROLYUK, "On the maximum discrepancy between two empirical distributions". Doklady Akad. Nauk. SSSR (N.S.), Vol. 80 (1951), pp. 525-528. Reviewed by W. Feller in Mathematical Reviews, Vol. 13 (1952), pp. 570-571.
- [2] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, John Wiley and Sons, Inc., New York, 1957.
- [3] A. Kolmogorov, "Sulla determinazione empirica di una legge di distribuzione", Inst. Ital. Attuari, Giorn., Vol. 4 (1933), pp. 1-11.
- [4] A. Kolmogorov, "Über die Grenzwertsätze der Wahrscheinlichkeitsrechnung", Bulletin [Izvestija] Academie des Sciences URSS, (1933), pp. 363-372.
- [5] N. SMIRNOV, "Ob uklonenijah empiričeskoi krivoi raspredelenija", Recueil Mathematique (Matematičeskii Sbornik), N.S. Vol. 6 (48) (1939), pp. 3-26.
- [6] N. SMIRNOV, "On the estimation of the discrepancy between empirical curves of distribution for two independent samples", Bulletin Mathématique de l'Université de Moscou, Vol. 2 (1939), fasc. 2.
- [7] W. Feller, "On the Kolmogorov-Smirnov limit theorems for empirical distributions", Ann. Math. Stat., Vol. XIX, No. 2 (1948), pp. 177-189.
- [8] F. MASSEY, JR., "The distribution of the maximum deviation between two sample cumulative step functions", Ann. Math. Stat., Vol. 22, No. 1 (1951), pp. 125-131.