ON THE DISTRIBUTION OF THE KOLMOGOROV-SMIRNOV
D-STATISTIC

By Pepro Ecypio pE OLIVEIRA CARVALHO!
University of Sdo Paulo

Summary. Gnedenko and Korolyuk [1] have pointed out that the exact dis-
tribution of the Kolmogorov-Smirnov D-statistic can be obtained explicitly by
solving a certain double-boundary random walk problem, which, in turn, is
solved by the principle of reflection. This principle is employed here in what is
believed to be a new way to derive Gnedenko’s and Korolyuk’s result.

A random walk problem. Let us consider a random walk on the half plane
(t > 0, s), starting from the origin, such that at every point (¢, 8) there are two
possible steps to take, either to (t + 1, s + 1) or to (¢t + 1, s — 1), each with
equal probability and for some positive integer n, consider the paths from the
origin to the point (2n, 0). Among these, let us denote for any non-negative
integer k < n, the set of all paths that have a point on the line s =k
by C(d, = k), the set of all those paths that reach the line s = —k by C(d: = k),
the set of all those that have a point on at least one of these two lines by C(d = k),
and the set of all those that reach both s = akand s = —k, but go to the s = ok
line first, by C(d, = ak — d, = k). Let the number of elements in C( ) be

C*( ).
While it is well known (p. 70, 2) that
_( 2n
0 crazn=(,",)

C*(d = k) is more difficult to calculate.
Clearly, C*(d = k) = C*(d- = k) + C*(d, = k) less the number of paths in
C(d- = k)N C(dy, = k) or ’
C*d 2z k) =C*d: 2 k) + C*dy 2 k) — C*ds 2 k—d, 2 k)
—C*dy, 2 k—d. = k)

and by symmetry
®3) C*d = k) = 2C*(d. = k) — 2C*(d. = k— d, = k).
Because of (1) it remains to calculate the last term in (3). As the first step, we
show that for¢ = 2,3, -- -, [n/k],
(4) C*(d. 2 ik) — C*d: 2 tk—dy 2 k) = C*d: 2 G — Dk —dy 2 k).
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1 Posthumous note. Revisions were made and references to literature supplemented
following the referee’s suggestions by Agnes Berger and Ruth Gold, School of Public Health

and Administrative Medicine, Columbia University.
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A path counted on the left side of (4) is one of two types. The first type reaches
s = —1k, but does not reach s = k, the second reaches both lines but reaches
s = k first,

Let P be a path of the first type. By definition, it has points on s = —1k.
Let p be the first of these. There must be points of P on s = — (¢ — 1)k to the
left and also to the right of p; let the closest one to the left be pu.: and to the
right, p:, . Replace the portion of p from p;; to pi, by its reflection about s =
— (¢ — 1)k. The new path P’ contains the image of p, say pz , falling on the line
s = —(i — 2)k. On s = — (i — 2)k, let the points of P’ nearest to pir be ps: on
the left and ps, on the right. Reflect P’ between ps; and ps, about 8 = — (3 — 2)k,
to get a new path P”. On s = — (¢ — 3)k, let the points of P” nearest to ps be
pa; on the left and ps, on the right. Continuing in this manner, ¢ reflections
will lead to a path P that goes first to s = —( — 1)k and then to s = k,
but does not reach s = —1k except possibly after reaching s = k. Thus

PP eCd. 2 (6 — Dk—d, = k)
but
PY 2CWd, = ik —d, = k).

Conversely, let Q be any path such that
QeCld:=2 (¢ — 1)k—dy = k)
but
QzC(ds =tk —dy, = k).

Q has points on s = k, let ¢ be the first of these. On s = 0, let ¢; and g, be the
nearest points of @ to the left and right of g, respectively. Let all the other
points of @ on s = 0 to the right of ¢, be a1, : - - , am , in order. Let us reflect the
portions of @ between ¢; and ¢- and at the same time between all those points a; ,
ai41 between which @ reaches s = k about the line s = 0. The new path Q' does
not reach k. The reflection of ¢, say ¢’, lies on s = —k. Next reflect Q' between
¢’ and the nearest point to the left of it on s = —k. Continuing in the same man-
ner, the ith reflection will produce a path that reaches s = —ik but never
reaches s = k.

Let U be a path of the second type, i.e., one that reaches s = k first and then
reaches s = —ik. Let p = (¢, 0) be the first return of U to s = 0 after having
reached s = —1tk. Let the portion of U between (0, 0) and (¢, 0) be represented
by the ordered sequence ¢ , €, - - - , €, Where ¢; is a vector of length 4/2 and
slope +1 or —1. Let U’ be a path such that from (0, 0) to (¢, 0) it is given by
the reversed sequence ¢ , €.1, - - - , & and coincides with U from (¢, 0) to (2n, 0).
U’ is clearly in C(d; = 7k — d, = k) and therefore also in C(d, = (z — 1)k —
dy, = k). '

Conversely, let V be a path such that

VeCld:z (2 — Dk—>d, = k)
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and
VeCld:=tk—d, =k)

and let g = (¢, 0) be the first return of V to s = 0 after having reached s = .
Reversing the steps between (0, 0) and go uniquely determines a path of type II,
completing the proof of (4).

Note that (4) has the structure

4;— B; = Bi,

where A; = C*(d. = k) is known by (1). Thus knowing B; for any ¢ implies
knowing all B; for j < <. But for ¢ = [n/k], (4) gives

(n fT%]) —0=c* (d, = ([’—,ﬂ - 1> k—d, 2 k) - 1= Bops.

Carrying out the substitutions gives

[n/k] 2n .
.z zh = 3 (2

and from (3)

. [nlk] zn i1

> k) = —1)°
cazh=2% (,2)

Application to the Kolmogorov-Smirnov problem.Let X = (z; < 22 < - -+ < x,)
and ¥ = (g1 < y2 < -+ < y») be two independent samples of ordered inde-
pendent observations having the same continuous cumulative distribution
function. Suppose z; = y;, (3, j =1, 2, --- ,n) and let the two samples be
combined and arranged in increasing order of magnitude, say Z =
(71 < 22 < -+ < 224). Let Su(x) be the number of observed values z; which are
less than or equal to z and S, (z) the number of observed y,’s less than or equal

to x.
Let

D' = max (S,(z) — 8.(x))

and
D= max!S,.(x) — S (x) I

The limiting distribution of D was found by Kolmogorov [3, 4] and Smirnov
[5, 6, see also 7] and an iterative method for its exact distribution has been
given by Massey [8]. Gnedenko and Korolyuk recognized that a one to one
correspondence exists between the set of all Z and all paths from (0, 0) to (2n, 0)
in the above discussed random walk: Starting from (0, 0), we move to (1, 1) if
z1is from Y, to (1, —1), if z; is from X and so on. In particular, samples Z for
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which D 2 k correspond to paths in C(d = k) and vice versa. Thus we get
Gnedenko’s and Korolyuk’s result

%*
PD<k=1-21020
2n
(2)
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