ON THE INTEGRODIFFERENTIAL EQUATION OF TAKACS. II!

By Epcar REicH

University of Minnesota

1. Introduction. This paper continues (Cf [1]) the study of the properties of
the function, F(¢, 0), 0 < F(t,0) = F(t) < 1, where F(t, ) = Pr {5(t) < z},
t =0,z = 0, satisfies’

9F (t, ) _ 9F(t,2)
at ox

The functions ®(s) = [oe = dF(0, x), H(z) = [s h(¢) df,
(h(®) 2 0, [ h(¥) dt = 1),

and M) = A’(t) = 0 are given. It is assumed that there exists a ¢ > 0 such that

~* h(z) € L’(0, »). The moment [0z *n(z) dz, if it exists, is denoted by u. . We
put ¥(s) = [oh(x)e”** dx . Fujthermore, we suppose that [o I\ dt exists as
a possibly improper Riemann integral for all T > 0.

The stochastic process n(t) represents the waiting time of a customer arriving
at time ¢ in a queue with Poisson arrivals of variable density \(t), with H(x) the
distribution of service times. F(t) is the probability that the counter is unoccu-
pied at time ¢. Our present purpose is to study the behavior of F(¢) for large ¢,
especially under conditions that turn out to guarantee that F(t) does not ap-
proach zero. Previous knowledge ([2], [3], [4]) in this direction appears to be
restricted essentially to the case A(t) = const.

The following was proved in [1], although it does not appear as an explicit
statement there.

TueoreM 1. There is only one distribution-solution, F(t, x), of (1.1). Moreover,
F(t) is the unique continuous solution of the Volterra equation of the first kind

(1.1)

“AOFG2) 20 [ HE - 9) dF6).

(1.2) f : G@t, wF(u) du = g(¢), (almost all t = 0) ,
where

—[A ds
G(t,u) = PV. __[ -t ®-AwI v B8
z—100 s

_1 e ts—A () [1—p(0)] S
00 = g5 [, 20 r
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1 This work was done with support under Contract Nonr-710(16).

2 As the referee points out, the derivation of (1.1) in [2] implicitly assumes that F (¢, z) is
differentiable in z, z > 0. However, it seems possible to prove the differentiability by an
argument based on that of [2], p. 108.
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Our approach to the asymptotic behavior of F(¢) will be through (1.2). This
will, of course, not be as simple as in the case, A(f) = const, when (1.2) can be
solved by Laplace transforms. The main results shall be based on the restrictive
assumption that y(s) is regular at infinity, and in a neighborhood of the imaginary
axis. The class of such y(s) is, however, still large enough to include as a proper
subclass the important class of rational ¥(s).
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2. Some Abelian lemmas.

LemMma 2.1. Suppose ¥(s) is regular at infinity and in a nezghborhood of the
imaginary axis, and Buy/a < p < 1. Then there exist functions ki(p) > 0,7 = 1, 2,
such that

pv. L f By )] ds — 1] < k()™ 9% 6 2 0,8 2 0.
2w z—1i00

Proor. If A > 0 and & > 0 are chosen so that ¢ is regular for | s | = A and
®s = —4, we can write the quantity inside the absolute value signs as H (a, 8) =
(1/2%%) [., where C = C(4, 8, x) is the contour shown in the figure.

Since Y() = 0 we may choose A sufficiently large so that | ¢(z &= 74) | < 1.
The function ¥(s) is of the form ¥(s) = 1 —ms +p/28° + O(s’), i > 0. Re-
calling that u; > 0, let us choose § sufficiently small so that

¥v— 1+ ws
8

(2.1) g >0,

and < 0, on the segments [—3& + &7, &), and [—5 — &7, —&1], respectively.
Furthermore, we choose 8 = §(p) sufficiently small so that, also,

¥ — 14 ms 1 —1/2
max | —= —-1).
o] V2 s =12 (v )
Finally, we select the number x = x(p), 0 < x < 8, so that
RY(—x+1y) <1 whend < |y | = A.

(This is possible since ®¢(iy) = [¢ cos (yE)h(£) di < 1 when |y | > 0.) In the
proof of the lemma we may assume that o = 1, because in the opposite case
both « and B are bounded from above, and the truth of the lemma follows from
the fact that, because of the continuity of H(a, 8), at most an adjustment of
k.(p) is necessary.

On the segment [—& — ¢, —& + &,

Qfas — A1 — YOI} = a{[a ~pu(1- L“—;—“sff“’)]s}

< (a — Bu)(=8) + Bum ]3] "’“—;;L‘s < (a — Bu)(—9)

+ Bun/25 % G — 1) < —as(l —p).

Thus

<2 25 0D _ 6,(p) exp [— €xlp)al , €a(p) > 0.

I f_s+s.
—5—381

On the segments [—8 =+ 8, — x= 8] we find, by (2.1), that

Gias — Bl — Y@} = (a = ARG + Bu [‘“(s)m (———lii‘f)

ws

F o9 (‘L——" 1+ “‘s)] < a{ 1 - f_’ﬂ[l — m(“’_———_ 1+ “‘s)]} ®s.
ms a 18
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Since ®s < 0, the above
éa{l_ﬁﬂl[l_i_’\l’—l-l-ﬂls

o 18

]} ®Rs S afl —pll + o~ 1]} ®s =

—a(l — p"®x.
Hence

—3—384 —x+8¢
f —x—3i f —348¢

In view of the choice of x,

< 2(5 ;_ x) e-"(l"’m)\‘“ = &(p) g CiPe , clp) > 0.

—x—3% —xtA4i
f —a4i + /- Y = —2—;}' e = C(p)e **P%, (o) > 0.

Finally,
—x—A L —o004A4 1
s
—c0—A1 —x+A41
Putting all the above inequalities together, we obtain the lemma.

CoroLLARY. Suppose y(s) is regular at infinity and in a neighborhood of the
tmaginary axis, and

2 ® —az — a 2
§foe 4z =Cre %% @g(p) > 0,if a = 1.

t—u-»0 t—u

lim sup [m M] <1
Then
2.2) [o G u)F () du = fo " Fw) du+ 0Q1), ast— co.

Proor. There exists a T > 0 such that

A — A(w)
h t—u

If|G(t,w)| = Mfor|t — w| < T then, fort > T,

= p<1whenevert —u=T.

( f ; Gt u ) F(u) du — f: F(u) du ] < [ ;_T G, w) — UFG) du|+ (M + DT

t—T
< f k(e ™ Py + of + DT = B0 4 (a1 + )7 = 001).
0 k‘z(P)

Lemma 2.2. Supposey(s) = 1 — ws + o(s), as s — 0, uniformly with respect to
arg s, | arg 8| < x/2, and wmA(t)/t < p < 1. Then g(t) = t —mA() + o(t), as
t— oo,

Proor. Let C, denote a contour along the imaginary axis, with a semicircular
detour of radius r, center 0, to the right. Since | #(s) | < | for ®s = 0, we have,
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according to a known Abelian theorem ([5], pp. 494-5),
0 = o= [ a@etor D _ @) + o), ast— o .
27I" 1 Jor 32
It therefore suffices to show that
DG) = g@) — p) = 5= f () 1B o) agt s .
27"1' Cr 82

Choose € > 0. Then, if | s| < 8(¢), |¢ —14ms| < €| s|, and therefore
le(\ﬁ—lﬁm)A -1 I < Ae l s I eA¢|¢|-

Consider points 74,0 < r < A £ 8(¢) on C, . Evidently,
] f (t_“A)rA e fiA l d8| - Aee(t-—u1A)r+A¢A<r +2 log A) .
—i4 —iA I 8 l r
Also,
—14 . 100
ey
—~100 T4

Hence,

4
o2

< 2j' | et=0PA _ gUmmbe ’d—g < 4/‘ t_l%/
4 Yy 4y

D(t) é ;471_ + Aee(t—#1A)r+AcA (1!' + 210g ;i:l_) .

Puttingr = ¢, A = ¢ ¢, where t = T(e) = [ed(¢)] ™", we find that
D(t) < Kitelog (1/¢) fort = T(e).

We shall state the following without proof.
Lemma 2.3. If Y(s) and &(s) are regular in a neighborhood of s = 0, and if
mA@)/t < p < 1theng(t) = t—um A(t) + 0(1), ast — .

3. Asymptotic average of F(f). In the special case A\(f) = N = const it is
known [4] that, for the distribution solution F(¢, z) of (1.1), ;A < 1 implies
lim.,oF(f,0) = 1—m\. In view of our above results we are able to make the
following statements in the general case.

TrEOREM 2. Suppose ¥(s) is regular at infinity and in a meighborhood of the
imaginary axis, and .

im sup m .A(_t)_—A(ul <1
t—u-»0 t—u
Then, if F(t, x) is the distribution solution of (1.1),

A(T)

Tfpamm_1—m +0(1),as T — o .

TaEOREM 3. If we also assume that ®(s) is regular in a neighborhood of s = 0
then “o(1)” in the conclusion of Theorem 2 can be replaced by “O(T™).”
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