A CLASSIFICATION PROBLEM INVOLVING MULTINOMIALS!

By Oscar WESLER
University of Michigan

1. Introduction. The problem of the k-faced die. There are several distinct
classification problems involving multinomials, each known as the problem of the
k-faced die. For example, the problem may be to decide whether the die is loaded,
and indeed there are several versions of this. One, say, in which the loading is
specified; another, in which the unknown loading is estimated from one sample,
and then a decision is made as to whether a second sample came from the loaded
die or an honest one [1]. Or the problem may be to determine which of the %
faces carries a known extra load [2]. Although distinct, all these problems are
somewhat related and have certain features more or less in common. The version
we shall treat in this paper is still another and a general one of its kind. It will
be convenient for our purposes to state it formally as a fixed sample size two-
decision statistical problem considered within the framework of composite hy-
potheses. We shall use the notation and terminology of [3].

Let the space @ of nature’s pure strategies consist of two subspaces @; and
Q,, O censisting of the k! states got by permufing a known probability dis-
tribution p = (p, P2, - -+, pr) over the faces 1, 2, --- | k of a k-faced die, 2,
consisting similarly of the k! states arising from a known distribution ¢ =
(1, @, -+, qx). We assume the p; and ¢; strictly positive, and shall further as-
sume, /without loss of generality, the vectors p and ¢ written so that p1 = p, =

-2 pr,and @ = ¢ = --- = g . The statistician wishes to make one deci-
sion if w £Q; (the null hypothesis), and another decision if » £, (the alternative hy-
pothesis), the decision to be made on the basis of a sample of N observations x =
(21, -+, xn), or rather on the basis of the sufficient statistic » = (r, - -+, i)
representing the number of times each of the k faces appears. Let ¢ be a ran-
domized statistical decision procedure such that if r is observed, the null hypothe-
sis is accepted with probability ¢(r) and the alternative hypothesis is accepted
with probability 1 — ¢(r). Let @ and 8, the probabilities of the two kinds of errors,
be the two functions given by

alw|¢) =1 -2 ¢(NP(r|w), wed

Blw|e) Z () P(r|w), we D
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and let
al¢) = max a(w|e),

B(¢) = max B(w|¢).

welly

Then the problem we wish to consider is: Of all procedures ¢ satisfying the
condition a(¢p) = ao, to find that procedure ¢* which minimizes B(¢).

In this paper a game-theoretic minimax method is used to find an entire class
of these desired procedures ¢*, optimal in this extended Neyman-Pearson sense.
A simplification of the result is then given for the asymptotic case of large N.
Finally, for illustrative purposes, a look is taken at the special binomial case of
k = 2, a case deserving of special attention in its own right. We shall begin
with a brief description of the minimax approach, referring the reader to Section
7.7 of [3] for detailed proofs.

2. The minimax method. This method of solving the problem can be under-
stood in terms of a simple geometric picture. Consider the «, 8-set in Euclidean
2-space given by S = {(a(¢), B(®)):¢ £ P}, where ® is the class of all randomized
strategies ¢. S is a point set in the unit square of the first quadrant and contains
the diagonal on which « 4+ 8 = 1. Although 8 is not necessarily convex (unlike
the case of a simple hypothesis against a simple alternative) it can be shown that
the subset T of S lying on or below the above-mentioned diagonal ¢s convex, and
that moreover, in the present case, the points on the lower boundary of T, a
strictly decreasing convex curve joining the point (0, 1) to the point (1, 0),
belong to T. Clearly, it is these points on the lower boundary of T which provide
the solution to the statistical problem posed above: Given ay , We are interested
in that procedure ¢* which determines the point (a(¢*), 8(¢*)) on the lower bound-
ary of T whose first coordinate is equal to ao . Our problem, then, is to charac-
terize the class of test procedures ¢* which sweep out the entire lower boundary
of T.

Now let G, be the statistical game that arises when the losses are taken to be
1 for an error of the first kind, a constant v > 0 for an error of the second kind,
and zero otherwise. It is readlly seen from our picture that a minimax solution
éu for G, determines that point on the lower boundary of T for which alpr) =
uﬁ(d:.,) It follows at once, therefore, thut by varying u between 0 and «, the class
of corresponding minimazx solutions b will generate the desired lower boundary of T,

8. The general solution. The minimax method requires that we solve the
statistical game G, for arbitrary » > 0. The problem is clearly invariant under
the symmetric group of permutations on k letters. We shall therefore set about
finding the class of (unique) invariant minimax procedures which will sweep
out the lower boundary of T.” For fixed g, with 0 < g < 1, let A, be the a priori
probability distribution over @ which selects €, with probability g, 2 with prob-

2 For the specific problem under consideration, it is very easily shown that only invariant
procedures need be considered in minimizing 8(¢). In more general situations, see [5].
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ability 1 — g, and which is uniform within both ©; and Q,, ie. A\ () = g/k!
for w e and M(w) = (1 — g) / k! for w Q. Define the distribution function
p(r) over the set of all possible outcomes » = (ry, - - -, 7) of the N observations
by the formula,

1 N!

: L2 ...tk
|p31p’2 Dig »
D |

where the summation is taken over all permutations (3;, - - - , %) of the indices
1, -+, k. In other words, p(r) is the average of all the multinomial distributions
over the r’s arising from the probability vector p = (py, - -, pi). p(r) is clearly
symmetric in r, that is, p(r) = p(r1, r2, -+, ) = p(rsy, 14y, +++, 74). Simi-
larly, define the symmetric distribution q(r) as the average of the multinomial
distributions determined by the probability vector ¢ = (g1, - -+ qx). The Bayes
procedure against ), is readily computed in the usual way to be:

(. .. q@) g _ _
1 if p—(f) < a=ou clg,u) = ¢
1) ¢e.i(r) =40 if q(r) >c
p(r)
o qr) _
e T

where ¢ is any fixed number satisfying 0 < ¢ < 1. We note that the procedure
¢,: is a symmetric function of » and depends on g and w only through c. Further,
for any choice of ¢ and ¢, we see that any pair of numbers go, uo leading to ¢
will yield the same procedure ¢.,., which will be Bayes against )\;, in the game
G.,. Moreover, ¢ varies between 0 and « as g and u vary respectively between
0 and 1, and 0 and . Varying ¢ between 0 and «, and ¢ between 0 and 1, the
symmetric partitions of the set of all possible r’s into acceptance and rejection
regions defined by the inequalities in (1) are clearly such that the acceptance
regions vary monotonically from the empty set to the whole space, so that the
corresponding a’s vary from 1 to 0. By an obvious continuity argument, there-
fore, given any ap, with 0 = a9 = 1, we can by suitably choosing ¢ find a ¢
such that a(¢.,:) = ar. Now, consider any one such procedure ¢.. From the
symmetry of ¢.,. it follows that its associated risk function p(w, ¢.,) is constant
over €; and constant over 2 , equal to a(¢.,.) and uB(¢.,:) respectively. Selecting
uo S0 that a(d.,:) = uB(d.,:) and then go so that go/(1 — go)uo = ¢, we see that
the procedure ¢.,; is Bayes against A;, and has a constant risk function over Q,
hence ¢.,; is a minimax procedure for the game G,,, and determines the point
(a(@e.t), B(#c,e)) on the lower boundary of T. By continuity, therefore, the class of
invariant procedures ¢,,; with 0 < ¢ < o, 0 < t < 1, determines the entire lower
boundary of T and provides the extended Neyman-Pearson solution to our classi-
fication problem. Finally, since any minimax invariant procedure ¢* for a game
G., must be Bayes against the corresponding A,, , and since the only such invari-
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ant Bayes procedures are of the form ¢.,; , this proves the uniqueness of the class
of invariant minimax procedures.

It might perhaps be useful for certain purposes to give the class of invariant
partitions or procedures the following somewhat simpler geometric description.
Let = be the fundamental probability simplex in k-space, consisting of all vectors
£§= (&, -, &) with & = 0, Elf:l ¢& =1, and let 8; = r;/N, so that § =
(61, -+, &) € E. By the symmetry of the problem and its solution, we shall
assume without loss of generality that r, = --- = 7i, so that the observed prob-
ability vector 6 as well as the two given vectors p and ¢ all belong to the sub-
simplex Z’ of E defined by & = & = --- = & . Then, given ao, the desired op-
timal procedure ¢.,; may be characterized in the first place by the simple parti-
tion of &’ into two regions of &’s (the acceptance region and rejection region,
with possible mixing on the boundary) given by the defining inequalities specified
in (1); the symmetric images of this partition under all k! permutations then give
the corresponding symmetric partition of E which constitutes the whole proce-
dure ¢,¢ .

4. The case of large N. The kaleidoscopic procedures. For large N, an ap-
proximation suitable for most purposes may be given which materially simplifies
the class of optimal partitions.

Confining our attention to Z’, the inequality ¢(r)/p(r) < ¢ in (1) may be
written, on factoring out the largest term from both numerator and denomi-

nator, as
(0@ (T
Y4 D Dk, 14+ 2,

where, for large N, hence only approximately for large 7y, 72, - -+, 7, both Z
and =, may be taken as zero, or as certain positive integers less than k!, depend-
ing on the number of equalities existing among the given components ¢; of ¢
and among the p; of p. In any event, taking logarithms, we may then regard the
optimal partitions of E' as approximately determined by the one parameter
family of hyperplanes

k
(2) > 6:log Z% =) (b an arbitrary constant).
=1 7

That is, for arbitrary b and ¢, 0 < ¢ < 1, the optimal procedure ¢,. amounts to
placing the points § of E’ on the side of the hyperplane where

k
5,‘10 gﬁ<b
iz=1 gpi

into the acceptance region, the points on the other side into the rejection region,
those on the hyperplane mixed in the proportion ¢, 1 — ¢, and then taking the
symmetric images of this partition to get the symmetric partition of = as a whole.
In view of our geometric description, we shall call these approximating ¢,
the kaleidoscopic procedures.
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To see at once the reason for this rather striking language, we invite the reader
to consider the case of £ = 3, and to draw a few simple figures, with the points
dor§ = (&, &, &) of E represented in barycentric coordinates by a point in an
equilateral triangle with unit altitude, the distance from the point to the three
sides being the values &, & and & . By selecting different pairs of points for p
and ¢ so as to get separating lines with different slopes, and by varying b so as
to translate these lines in a parallel fashion, the reason for the term kaleidoscopic
will appear before his eyes.

In general, by a suitable choice of b and of the mixing factor ¢, the symmetric
or kaleidoscopic test can be made to give us any desired oy with approximately
the minimum 3.

b. The case of k = 2: The binomial case. We specialize the previous discus-
sion to k = 2 as deserving of special attention, and also to provide a simple
illustration of the discussion and results. We refer the reader to problem 7.7.3
of [3] and to pages 75-76 of [4] for a particular example.

We are now in the binomial case and shall speak of coins rather than dice.
Two probability distributions, p = (p1, p2) and ¢ = (¢, ¢2), are given. Under
2 the coin falls heads with probability either py or p; = 1 — p1, under @,
heads with probability either ¢: or ¢z = 1 — ¢; . Assume things written so
that 1 > p1 > 1 = 1/2. Let r = (r1, N .— r) represent, respectively, the num-
ber of heads and tails appearing among the N tosses of the coin. Then p(r),

given by
N ry N—rp ry N—r;
p(,)=<>pxpz + pitpl
1 2

and ¢(r) given similarly, are symmetric bimodal distributions over the number
ry of heads, n = 0, 1,--- , N. The likelihood ratio ¢(r)/p(r) which determines
the optimal procedures in (1) may be written

@ 90 _ gd'e+ga <;L92>N_'f <qf"‘” + qi"‘”)
p(r)  pipy "t + pitpt pi N 4 pp "

1P2,

Without bothering to convert r to §, the kaleidoscopic procedures given by (2)
are immediately seen to be two-sided symmetric tests of the following form:
Take action 1 (decide for p) if r, < j or , > N — j, action 2 (decide for q)
if j < < N — j, and mix actions 1 and 2 in the proportion ¢, 1 — tif r, = j
or N — j, where j is allowed to run over the integers 0, 1, ---, [N/2] and ¢
is any number satisfying 0 < ¢ < 1. Denote this two-sided symmetric test by
(4, t). Then the kaleidoscopic procedures are given by the set of all pairs (j, ¢)
withj = 0,1, ---, [N/2],0 < ¢t < 1. Note that if p; < ¢ the procedures are of
course the same; except that the actions taken are reversed.

The interesting feature here, which we shall prove, is that the optimal proce-
dures of (1) and the (j, ¢) of (2) are the same, in exact agreement for every N,
so that there is no question here of approximations or of loss of power in the ap-
proximation. To see this, let us agree because of symmetry to consider the like-
lihood ratio (3) for only those outcomes r = (r,, N — ). for which 2r, = N.
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Then the assertion amounts to showing that the inequality ¢(r)/p(r) < ¢
for any one such r implies the same inequality for all » with a larger r, . Suppose,
therefore, ¢(r)/p(r) < c. Since ¢:g2 > P12, the first factor in the factored form
of (3) decreases with increasing r; . If we can show that the second factor decreases
as well with increasing r; , the assertion will be proved. We require the following
simple lemma.

LemMa: The function y = [z™ + (1 — 2)™*/[z™ + (1 — )™ considered
on the unit interval 0 < x < 1, with m an arbitrary non-negative integer, is de-
creasing for 0 < x < 1/2 and (by symmetry) increasing for 1/2 < z < 1.

Proor: Taking derivatives, a straightforward calculation will show that y’
has the same sign as [z — (1 — z)™™] + mz™ "1 — 2)™ 2 — (1 — 2)°].
Clearly, ¥’ < 0 for 0 < z < 1/2, hence the lemma,

Applying the lemma for successive values of m and multiplying functions to-
gether, there follows at once the more general fact that the same decreasing
property over 0 < z < 1/2 and increasing property over 1/2 £ z < 1 is ex-
hibited by the function

_r+ A=

“Fra—or
for arbitrary integers n > m = 0. From our assumption of 1/2 £ ¢ < p1 < 1
there follows the inequality

g t+ag pitp

@' +¢ P+ pr
or, equivalently, the inequality

o+ ¢ < @+ ¢

pr+p: Pl + P
for arbitrary integers n > m = 0. But this says that the second factor of (3)
decreases with increasing r; . The asserted agreement between the optimal and
kaleidoscopic procedures is thus proved.

It should be pointed out that in practice, given a9 , it becomes a simple matter
in this case, using tables of the binomial distribution Px(r; | p1), to calculate the
desired test (j, t) from the condition a(7, ) = ao . The minimized 8, namely 8(j, ?),
is then read off directly from the tables of Px(ri| ¢1).
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