A SINGLE-SAMPLE MULTIPLE-DECISION PROCEDURE FOR
SELECTING THE MULTINOMIAL EVENT WHICH HAS
THE HIGHEST PROBABILITY!

By RoBERT E. BECHHOFER, SALAH ELMAGHRABY, AND NORMAN MORSE
Stbley School of Mechanical Engineering, Cornell University

Summary. The problem of selecting the multinomial event which has the
highest probability is formulated as a multiple-decision selection problem.
Before experimentation starts the experimenter must specify two constants
(6*, P*) which are incorporated into the requirement: ‘“The probability of a
correct selection is to be equal to or greater than P* whenever the true (but
unknown) ratio of the largest to the second largest of the population probabilities
is equal to or greater than 6*.”’ A single-sample procedure which meets the re-
quirement is proposed. The heart of the procedure is the proper choice of N,
the number of trials. Two methods of determining N are described: the first is
exact and is to be used when N is small; the second is approximate and is to be
used when N is large. Tables and sample calculations are provided.

1. Introduction. We are concerned in this paper with the multiple-decision
problem which arises when one attempts to answer questions such as the fol-
lowing:

(a) Which of the six faces of a loaded die has the largest probability of landing
face up?

(b) Which of the thirty-six “bettable” numbers on an unbalanced roulette
wheel has the largest probability associated with it?

(c) Which of the k television programs available to a given TV audience in a
certain locale can claim the largest proportion of the total audience as listeners?

The multinomial distribution provides a statistical model for dealing with
each of these questions. In the following sections it is shown how such questions
as these can be formulated as multiple-decision selection problems. A single-sample
procedure is proposed which provides a solution to these problems.

2. Statistical assumptions, and definitions. Let X; = (X1;, Xoj, *++, Xij)
be independent vector-observations from the same multinomial population with
a common unknown probability vector p = (p1, Pz, - , Px); here p; is the prob-
ability of the event E;(0 < p; < 1, D ta p: = 1) and X;; = 1 or0 according as
E; does or does not occur on the jth observation (1 = 1,2, --- ,k;7 = 1,2, ---).
Let puyy < P £ --- < pw denote the ranked probabilities. It is assumed
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MULTIPLE-DECISION PROCEDURE 103

that the experimenter has no a priori knowledge which would rule out any of the
k! possible pairings of the pi; with the E:(7 = 1,2, - -+, k). Let 6;,; = pa/pu
(t=7;1,7=1,2, ---, k). Let N be the number of vector observations; let
Yiw= 2 juXij(6=1,2---, k), and let yuny < Yy = -+ < Yy denote
their ranked values. Let E;» denote the event associated with yx . Let Yiyw
be that one of the Y.y which is associated with the event having probability
Y40 (G=1,2--, k.

3. Goal, specification, and requirement. We now state the experimenter’s
goal, specification, and requirement:

Goal. The experimenter’s goal is to select the event associated with py; .

The statistical formulation of the problem for this goal involves the true ratio
Orx—1 = 0 (say) and the true probability P of a correct selection. It is assumed
that before experimentation starts the experimenter can specify a pair of con-
stants (6*, P*) with 1 < 6* < « and 1/k < P* < 1 as described below.

Specification. The experimenter specifies:

(a) The smallest value, 6*, of the ratio  that is worth detecting, and

(b) The smallest acceptable value, P*, of the probability P of achieving the
above goal when 6 = 6*.

The specification above is summarized in the following:

Requirement. The experimenter requires that the procedure to be used guaran-
tee that

Probability {Correct selection | 6441 = 6*} = P*.

That is, the probability of a correct selection is to be equal to or greater than
P* whenever the true (but unknown) ratio of the largest to the second largest
of the population probabilities p; is equal to or greater than 6*.

4. Procedure. We propose a single-sample procedure that will guarantee the
requirement. It is similar to ones described in [1], [2], and [6] which are used
to solve selection problems involving parameters associated with other basic
distributions. (A sequential procedure which will guarantee the same require-
ment (above) was reported on in [3]; the theory underlying the sequential pro-
cedure will be given in a paper with the same title as [3] which is being prepared
by the authors of that abstract. Either the sequential procedure reported on
in [3] or the single-sample procedure described in the present paper can also be
used to solve problems of the type posed in [4].)

Our single-sample procedure takes the following form:

Procedure.
(a) Select a random sample of N vector-observations.
(b) Compute the yyyn @ = 1, 2, -+, k).
(c) If exactly s (s = 1,2, - -- , k) of the yq~ are tied for largest, Yp—stur =
Yh—at2¥n = *** = Ymw , select as the event associated with py,; , one of E—eyyn ,

Eg—siav, -+, Epgy using a random device which assigns probability 1/s to
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each of them. In particular, if there is a single largest one, i.e., if s = 1, select
Epw .

The heart of the problem in terms of designing the experiment is the proper choice
of N ; it must be chosen just large enough to guarantee the requirement, i.e., P* must
be achieved for all possible p = (p1, P2, ---, pr) for which 6 ;3 = 6*. In
order to accomplish this we consider the least favorable configuration (1.f.c.) of
the prg’s the definition of which follows.

We define the Lf.c. of the p(;’s as that probability vector p which for any
given N, k, 6* minimizes the probability of a correct selection when 6; x—; = 6*.
It is proved in [7] that:

(a) The 1f.c. is independent of N.

(b) The 11f.c. is given by

1) Ok, = 6* =12 :--,k—1).
Since Y %=1 pra = 1, this implies

P = P@ = - = Pp—y = 1/(6* +k — 1)
2

pwm = 6*/(6* + k — 1).

It is intuitively clear that for any p for which the p; are not all equal, the prob-
ability of a correct selection increases with N. Hence if N is chosen large enough
to guarantee a specified probability of a correct selection when the configuration
is least favorable, it will guarantee at least that probability for any configuration
of pry’s with 6; 1 = 6% i.e., it will be large enough to guarantee the require-
ment. We shall denote by N* the smallest value of N which will guarantee the
requirement.

In the next section we shall show how to compute the exact probability of a
correct selection for any k, N, and p; this method is appropriate when N is small.
Methods of approximating these probabilities when N is not too small are given
in sections 6 and 7. Using these methods it is possible to compute tables from
which N* can be determined for any specification. Several such tables are given
at the end of this paper.

6. Exact probability of a correct selection. For any fixed k¥ and N and any
probability vector p with pp—y; < pp; , the probability of a correct selection is
given by
@) &=, - ,pm =2 LN pupPy - pUPY

8 Yan! - Yan!
where the summation is over all vectors y» = (yww, Y@~, -**, Ywn) such
that ZI:_] Yon = N and YN = YN (i =12/ ... ’ k— 1), and 8, which is a
function of yx , is the number of y,x’s tied for largest. (Note: If exactly s (s =
1,2, ---, k) of the pq are tied for largest, then pp—s41) = Prossgy = -+ =
P , and we consider the selection of any one of the associated s events as a
correct selection.)
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For fixed k¥ and N it is straightforward (but tedious) to express ¢; in terms of
the pa(¢ =1, 2, ---, k); for example, if £k = 3, N = 4 and py > py, it is
easy to verify that

4) ¢(pw , Per > Pw1) = Plar + 4pta(l — Pw) + 3pta (Pl + 4PwPw + Pin)
and if the p;; (¢ = 1, 2, 3) are in the Lf.c. (2), this reduces to

1 1 * \_ (69 "2 N
which involves only 6* Substituting the numerical value of the specified 6* in
(5) gives the ezact probability of a correct selection for ¥ = 3 and N = 4 when
the pr (2 = 1, 2, 3) are in the Lf.c. (2). General expressions of the type of (4)
can be obtained for arbitrary £ and N, and using (2) these can be reduced to
expressions of the type of (5) which involve only 6*. The exact probabilities of a
correct selection which are listed in Tables A-2, A-3, and A-4 are all associated
with the 1.f.c. and were computed using expressions of the type of (5). It should
be emphasized, however, that it can be extremely laborious to express (3) in
the form (5), especially when N is moderately large. For example, for & = 4
and N = 20 the expression analogous to the term in braces in (5) is a fifteenth-
degree polynomial in which five of the coefficients are eleven digit integers. The
evaluationi of such expressions for the specified 6* is an additional problem (al-
though this can be done expeditiously on a high-speed electronic computer).
It thus is obvious that some large-sample approximation for (3) would be de-
sirable.” We consider this problem in the next sections.

6. Large-sample approximations to the probability of a correct selection.
First we shall consider the case k¥ = 3 to see what might be involved in making
a large-sample approximation. We have

$s= Pr{Yow— Yau >0, Yor — Yar > 0}
+3Pr{Yoy — Yoor = 0, Ygn — Yn > 0}
+3Pr{Yon — Yon >0, Yan — Yo = 0}
+3Pr{Yov — Yon =0, Ygv — Yon = O}.

Because of the equality signs, the last three terms become negligible for large
N ; hence, for large N we shall approximate ¢; by

(7 $s=Pr{¥Younv — Yon 2 0, Yon — Yon = 0}.

(6)

2 The referee has called our attention to an unpublished Stanford technical report, ‘“A
procedure for determining the loaded face of a die,” 1952, written by 8. G. Allen, Jr.,
which reports some results of H. Rubin and the late M. A. Girshick. They were concerned
with obtaining a large-sample approximation for (3) when (1) holds. The approximation
that they propose is different from ours and appears to be much more tedious to apply.
We have not attempted to determine which approximation is the better.
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For arbitrary k we let

Y Y .

®) W.-=-—]5\-’;—’—’!—-*]—<v’—” G=1,2,k=1)
and approximate (3) by
(9) 6’5 = Pr {Wl g 01 W2 g O) MR Wk——l g 0}.

TABLE A-2
Ezxact Probability of a Correct Selection for k = 2 and selected 6* and N when

Pr/pm = 6*

0.
N
1.02 1.04 1.06 1.08 110 1.20 1.30 140 1.50 1.60

1| .504951f .509804| .514563| .519231| .523810| .545455 .565217| .583333| .600000| .615385
2| .504951) .500804| .514563| .519231| .523810| .545455| .565217| 583333 .600000| .615385
3| .507426| .514704 .521838 .528832| .535687| .567994| .597271| .623843| .648000| .670005
4] .507426| .514704 .521838| .528832| .535687| .567994| .597271| .623843| .648000| .670005
5| .509282| .518378( .527290| .536022| .544575| .584759| .620903| .653381| .682560| .708788

6| .500282| .518378| .527290| .536022| .544575| .584750| .620903| .653381| .682560| .708788
7| .510828( .521438| .531830| .542005| .551965| .598614| .640261| .677312| .710208| .739386
8| .510828) .521438| .531830| .542005| .551965| .508614 .640261 .677312| .710208| .739386
9| .512181) .524114| .535798| .547232| .558417| .610637| .656910| .697670| .733432| .764734
0f .512181) .524114| .535798| .547232| .558417| .610637| .656910| .697670| .733432| .764734

11) .513399| .526522| .539367| .551930| .564210| .621369| .671640| .715483| .753498] .786332
12| .513399| .526522| .539367| .551930| .564210| .621369| .671640| .715483| .753498| .786332
13| .514515| .528729| .542636| .556230| .569509| .631125| .684913| .731359| .771156| .805076
14 .514515| .528729) .542636| .556230| .569509| .631125| .684913| .731359| .771156| .805076
15| .515551| .530777| .545668) .560217| .574417| .640109| .697028| .745691| .786897| .821554

16| .515551) .530777| .545668| .560217| .574417| .640109| .697028| .745691| .786897| .821554
17} .516523| .532697| .548509| .563949| .579009| .648462| .708193| .758754| .801064| .836180
18| .516523) .532697| .548509| .563949| .579009| .648462| .708193| .758754| .801064| .836180
19| .517440( .534509| .551189| .567468| .583336/ .656286| .718558| .770748| .813908| .849257
20( .517440| .534509| .551189| .567468| .583336| .656286| .718558| .770748] .813908| .849257

21} .518312| .536229 .553734| .570807| .587437| .663657| .728237| .781826| .825622| .861019
22| .518312| .536229| .553734| .570807| .587437| .663657| .728237| .781826 .825622| .861019
23| .519143| .537871) .556160| .573989| .591342( .670635| .737319| .792107| -.836357| .871648
24| .519143| .537871) .556160| .573989| .501342| .670635| .737319| .792107| .836357| .871648
25| .519940| .539444) .558484( .577034| .505077| .677267| .745874| .801686| .846232| .881292

26| .519940| .539444| .558484| .577034| .595077| .677267| .745874| .801686| .846232| .881292
27) .520706| .540056| .560716| .579958| .508660| .683590| .753961| .810641| .855348| .890072
28 520706 .540056| .560716 .579958| .598660| .683590| .753961| .810641| .855348| .890072
29| .521445| .542413| .562867| .582773| .602107| .689639| .761626| .819036 .863787| .898087
30| .521445| .542413| .562867| .582773| .602107| .689639| .761626| .819036| .863787| .898087
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TABLE A-2 (Continued)

107

170 1.80

190

2.00

2.20

240

2.60

2.80

3.00

10.00

1{ .629630! .842857
2| .629630| .642857
3| .690088] .708455
4| .690088| .708455
5| .732384] .753637

6| .732384| .753637
7| .765261] .788215
8| .765261 .788215
9| .792095 .816001
0| .792005 .816001

11} .814623| .838967
12| .814623| .838967
13| .833885} .858301
14] .833885| .858301
15| .850569] .874788

16| .850569| .874788
17| .865159] .888983
18| .865159] .888983
19| .878012| .901294
20( .878012( .901294

.889402| .912036
.889402; .912036
.899543| .921452
.899543] .921452
.908609| .929740

. .929740
.916740| .937058
.916740| .937058
.924053| 943538
924053 .943538

BRERE REBYN

.655172
.655172
.725286
. 725286
. 772806

772806
.808593
.808593
.836890
.836890

.859905
.859905
.878969
.878969
.894967

.894967
.908521
.908521
.920089
.920089

.930019
930019
.938586
.938586
946005

946005,
.952450
.952450
.958069
.958069

.666667| .
.666667) .
740741 .
.740741] .
.790123] .

790123 .
.826703| .
.826703| .
.855154| .
855154 .

877915 .
.877915] .
.806461| .
.896461| .
.911768| .

911768 .
.924525| .
.924525| .
.935234| .
.935234{ .

944277 .
944277 .
.951950| .
.951950
.958486

958486
.964073
.964073
.968861
.968861

.970463
.975366

.975366
.979418
979418
982776
982776

.705882
.705882
.791370,
791370
.844615

.844615
.881462
.881462
.908237
.908237

.928249
.928249
.943483
.943483
.955231

.955231
.964376
.964376
.971550] .
.971550( .

.977209| .
977209 .
.981695( .
.981695 .
.985265| .

.985265| .
.988116| .
.988116) .
.990399
.990399

722222
.722222]
.811385
. 811385
.865048

.865048
900934
.900934
".926132
.926132

.944330
.944330
957717
957717
.967692

.967692
.975196|-
.975196

.994590
.994590

.736842
.736842
.828692
. 828692
.882123

.882123
.916658
.916658
.940096
.940096

956457
.956457
.968090
.968090
.976468

.976468
.982560
.982560
.987023
.987023

.990311
.990311
.992745)
.992745
.994555

994555
995004
995004
996914
996914

. 750000
.750000
.843750
.843750
806484

.896484
.929443
.929443| .
.951073] .
.951073

.965673
.965673
.975710] .
975710 .
.982700

.982700
.987615
.987615|
.991097| .
.991097

993577 .
.993577| .
.995353(1.
.995353|1.
.996630]1.

.9966301.
.997549(1.
.99754911.
.998216

.909091
.909091
.976709
.976709
.993474

.993474
.998093
.999428
.999826
.999826
.999983
.999983
.999995
.999995

.999998

.998216(1.

6.1 The normal approximation. In the least favorable configuration the
chance variables W; (¢ = 1, 2, -+, k — 1) have a (k — 1)-variate distribution

with
(102)

(10b)

(10¢)

Var {W}

Cov {W,;, W}

E{W}

S5

0*
T+ k-1

-1

_(k+ 20+ (k-2

N@*+ k — 1)

(k + 1)6* — 1
T N@* + k — 1)
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Corr {W;, W;} =
ii

(k+ 1)6* — 1

k+26*+ & —2)°

it is to be noted that the W; have a common mean and a common variance, and
all pairs (W;, W;) with ¢ > j have a common correlation. The standardized
variables obtained by subtracting the common mean from each W; and dividing
the differences by the common standard deviation have zero mean, unit variance
and correlation (10d). As N approaches infinity it can be shown that their joint

TABLE A-3

Ezact Probability of a Correct Selection for k = 3 and selected 0* and N when
Pw/Pe = Pa/Pw = 6*

0*

1.02

1.04

1.06

1.08

1.10

1.20

1.30

140

1.50

1.60

1 .337748
2| .337748
3| .339230
4] .340211
5| .340708

6] .341530,
7] .342261
8| .342690
9| .343331
0] .343924

11} .344311
12| .344852
13| .345363
14| .345718
15| .346193

16| .346649
17| .346978
18| .347408
19| .347822
20] .348131

21f .348525
22| .348908
23| .349200
24| .349566
25! .349923

26| .350202
27| .350546
28} .350882
29| .351147
30| .351472

.342105
.342105
.345067
.347015
.348015

.349659
.351116
.351980
.353264
.354448

.355228
.356312
.357335
.358049
.359004

.359916
.360581
.361444
.362275
.362899

.363692
.364459
.365050
.365787
.366505

.367067
.367759
.368435
.368973
.369627

.346405
.346405
.350845
.353746
.355254

357717
.359896
.361198
.363125
.364899

.366075
.367703
.369237
.370316
371751

.373121
.374125
.375422
.376671
377614

.378808
.379962
.380855
.381966
.383045

. 383896
.384939
.385956
.386770
.387756

.350649
.350649
.356563
.360404
. 362424

.365703
.368599
.370341
.372909
.375270

.376845
.379016
.381060
.382506
.384422

.386247
.387593
.389326
.390991
.392256

.393850
.395391
.396589
.398073
.399514

.400655
.402049
.403407
.404499
.405818

.354839
.354839
.362223
.366988
.369524

.373614
.377220
.379405
.382612
.385556

.387531
.390244
.392794
.394608
.397003

.399282
.400971
.403137
.405217
. 406805

.408798
.410723
. 412226
.414083
.415882

.417315
.419059
.420755
.422126
.423776

.375000
.375000
.389648
.398804
.403954

.412000
.419041
423441
.429767
435526

.439500
.444851
.449841
.453486
.458204

. 462662
.466050
.470311
.474375
477552

.481465
.485220
.488221
.491856
.495360

.498211
.501616
.504912
.507632
.510844

.393939
.393939
.415644
428798
.436571

.448349
. 458579
.465140
. 474385
.482730

.488625
.496410
.503615
.508992
.515819

.522228
527195
.533327
.539137
.543766

.549362
.554699
.559043
.564207
.569158

.573255
.578062
.582687
.586569
.591073

.411765
.411765
.440261
.457023
.467376

.482601
.495737
.504341
.516236
.526881

.534549
.544485
.5563613
.560545
.569185

577239
.583582
.591273
.598513
.604368

.611321
.617912
.623353
.629708
.635764

.640847
.646703
.652307
.657072
.662503

.428571
.428571
.463557
.483549
.496400

.514760

.530497
.540988
.555226
.567859

.577108
.588874
.599602
.607866
.617984

.627350
.634822
.643725
.652051
.658865

.666818
.674310
.680564
.687746
.694548

.700315)
.706852
.713070
.718410
.724397

444444
444444
.485597
.508459
.523701

.544870
.562902
.575098
.591360
.605664

.616279
.629544
.641549
.650901
.662159

.672506
.680846
.690617
.699693
.707190

'.715798

723854
.730636
.738300
745512

.751678
.758554
.765054
770679
.776883
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TABLE A-3 (Continued)

1.70 1.80 1.90 2.00 220 240 2.60 2.80 3.00 10.00

1| .459459| .473684| .487179| .500000| .523810| .545455| .565217| .583333| .600000 .833333
2| .459459| .473684| .487179| .500000| .523810| .545455 .565217| .583333| .600000| .833333
3| .506446| .526170| .544834| .562500| .595076| .624343| .650694 .647479| .696000| .937500
4| .531844| .553794| .574400| .593750| .629013| .660201| .687858| .712457| .734400| .954861
5| .549348| .573422| .596006| .617188| .655677| .689539| .719367| .745687| .768960| .976562

6| .573002| .599248| .623707| .646484| .687420| .722879| .753615( .780302| .803520| .985605
7| .593033| .620996| .646908| .670898| .713621| .750156| .781411| .808186| .831168| .992135
8| .606741| .636019| .663056| .687988| .732096| .769443| .801050( .827817| .850522| .995066
9| .624709| .655391| .383552| .709351| .754530| .792237| .823677| .849902| .871811| .997263
0| .640379| .672142| .701122| .727509| .773277| .810967| .841960| .867454| .888455  .998342

11| .652138| .684827| .714528| .741447| .787793| .825541| .856218| .881142| .901414| .999029
12| .666581] .700148| .730459| .757750 .804259| .841598| .871496| .895425| .914596| .999425
13| .679553| .713808 .744556| .772069| .818512| .855299| .884350| .907277( .925387| .999662
14| .680754| .724627| .755785| .783525( .820974| .866334| .804600| .916778| .933995| .999797
15| .701829| .737229| .768662| .796463| .842547| .878110| .905440; .926415| .942521 .999881

16| .712849| .748649| .780247| .808021| .853620| .888334| .914642( .934550| .949621 .999929
17| .721803| .757985| .780763| .817546| .862776| .896789| .922234| .941231| .955417| .999957
18| .732124{ .768579| .800397| .828033| .872575| .905597| .929943) .947853 .961031) .999975
19| .741646 .778285| .810073| .837510| .881309| .913341| .936627| .953517| .965769| .999985
20| .749569| .786405| .818200| .845400 .888677| .919865| .942239 .958246| .969696| .999991

.758521| .795439| .827106| .854100| .896418| .926542 .947841 .962856| .973441 .999995
.766844| .803783| .835277| .861964| .903378| .932464| .952742| .966836| .976630| .999997
.773807| .810887| .842256| .868687| .909339| .937525| .956912| .970200| .979306| .999998
.781741| .818669| .849790| .875841| .915513| .942633| .961019| .973439| .981825 .999999
.789077| .825899| .856745| .882401 .921100| .947194| .964638| .976255| .983987| .999999

795385 .832141| .862765 .888089| .925944| .951138| .967749| .978658 .985817|1.000000
.802311| .838805| .869184| .894068| .930902| .955073| .970782| .980949| .987524/1.000000
.808819| .845199| .875139| .899580 .935412| .958605 .973468| .982950| .988996|1.000000
.814481| .850706| .880351| .904409| .939360| .961685| .975795 .984672| .990250|1.000000
.820632| .856601| .885853| .900437| .943363| .964731| .978045| .986299| .991412/1.000000

EVRNY HRBRIE

distribution approaches a (k — 1)-variate normal distribution. Thus, for large
N the probability of a correct selection in the least favorable configuration can
be approximated by the volume under a (k — 1)-variate normal surface. How-
ever for k = 4 such volumes are tabulated (see Table 1 of [1], Table Al of [5],
and [9]) only for the particular correlation matrix {p:;} where

1 ifz =7
(1) 0ii = .
3 if 7 # j.
Although the matrix of Corr {W;, W} is of this form, the correlation coefficient

when 7 # j is not %; in fact, as k approaches infinity this correlation coefficient
approaches 6*/(6* + 1). Because of the lack of appropriate tables this approach
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was abandoned. The approach described in the next section yielded the desired

results.

6.2. The arcsin transformation and the normal approximation.

6.2.1. Derivation of formulae for the approximation.
We next consider the chance variables

TABLE A-4

Exzact Probability of a Correct Selection for k = 4 and selected 6* and N when

/P = Pw/Pa = Pw/pm = 6*

Z

0*

1.02

1.04

1.06

1.08

1.10

1.20

1.30

140

1.50

1.60

.253731
.253731
.254673
.255611
.256139

U 00 b e |

6] .256583
7| .257172
8| .257687,
9

0] .258492

11} .258928
12| .259327
13| .259681
14| .260022
15| .260383

16| .260724
17| .261038
18| .261340
19| .261657
20| .261959

.262243
.262519
. 262804
.263079
.263341

.263595
.263857
.264112
.264355
.264592

VBN KPR

257426
.257426
.259318
.261192
. 262250

.263145
.264331
.265365
.266195
.266989

.267868
.268673
.269389
.270078
.270808

.271497
.272133
272747
.273387
.274001

274578
.275137
.275716
.276276
.276807

277324
.277857
.278375
.278870
. 279355

.261084
.261084
.263935
.266744
.268331

.269686
271472
.273030
. 274282
.275485

.276814
.278029
.279113
.280158
.281264

.282308
.283272 .
. 284205
. 285177
.286109

.286985
. 287836
.288716
. 289567
.290375

.291164
.201975
.292763
.293518
.204257

. 264706
.264706
.268522
. 272264
.274382

.276203
.278595
.280677
. 282357
.283975

.285758
.287388
. 288846
.290253
.291741

.293144

.295701
.297011
.298266

.209447
.300597
.301784
.302931
.304023

.305090
.306185
.307249
.308270
.309271

.268293
.268293
.273081
.277752
.280401

. 282694
. 285694
.288304
.290415
.202454

. 294695
.206744
.298580
.300355
.302228

.303995

305634
.307222
.308874

.310457

.311949
.313402

.314900

.316349
.317730

.319079
.320463
.321808
.323100
.324366

.285714
.285714
.295432
.304688
.309977

.314699
.320770
.326017
.330318
.334516

.339075
.343240
.347007
.350670]
.354499

.358115
.361490
.364774
.368164
.371415

.374495
.377504
.380587
.383569
.386423

.389219
.392071
.394844
.397516
.400140

.302326
.302326
.317041
.330730
.338609

.345828
.354949
.362783
.369274
.375660

.382512
.388764
.394460
.400013
.405770

.411204
.416297
. 421263
.426353
.431231

.435869
.440402
. 445020
.449483
.453764

.457960
.462216
.466352
.470344
. 474265

.318182
.318182
.337904
.355833
.366224

.375948
.388029
.398342
.406967
.415493

.424536
.432773
.440317
.447681
.455249

.462384
.469092
.475631
. 482287
.488657

.494723
.500650
.506648
.512437
.517995

.523439
.528926
.534250
.539390
.544434

.333333
.333333
.358025
.379973
.392775

. 404969
.419872
.432516
.443171
.453734

.464814
.474882
.484138
.493169
.502373

.511035
.519189
.527129
.535152
.542817

.550117
.557238
.564399
.571294
577911

.584380
.590860
.597133
.603185
.609112

.347826
.347826
377414
.403143
.418245

.432836
.450388
.465190
477740
.490198

.503121
.514835
.525629
.536145
.546771

.556749
.566146
.575274
.584432
.593158

.601462
.609543
.617614
.625364
.632792

.640033
.647242
652198
.660898
.667440
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TABLE A-4 (Continued)

111

170

1.80

1.90

2,00

2.20

240

2.60

2.80

3.00

10.00

26
27

29
30

.361702
.361702
.396088
.425352
. 442630

.459521
. 479526
.496297
.510588
.524771

.539326
.552481
.564618
576412
.588232

.599300
.609715
.619802
.629849
.639392

.648459
.657254
.665978
674328
.682313

.690070
697743
.705121
712210
.719106

.375000
.375000
.414063
.446615
.465942

.485016
.507268
.525812
.541676
.557400

.573366
.587752
.601028
.613886
.626666

.638596
.649804
.660620
.671313
.681436

.691030
.700300
.709434
718142
. 726446

.734481
.742376
.749939
.757181
.764196

.387755
.387755
.431359
.466955
.488203

.509329
.533616
.553736
.571001
.588076

.605234
.620642
.634853
.648563
.662079

.674651
.686436
.697760
.708875
.719356

.729261
738788
.748111
.756962
.765375

773477
.781387
.788930
.796128
.803068

.400000
.400000
.448000
.486400
.509440

.532480
.558592
.580096
.598589
.616825

.634964
.651193
.666144
.680503
.694543

707554
719716
731348
.742683
.753325

.763347
772941
. 782265
.791078
799421

.807418
.815172
.822533
.829528
.836237

. 423077
.423077
. 479404
522732
. 548979

.575418
.604569
.628297
.648751
.668762

.688278
.705602
.721496
.736604
.751145

.764506
.776908
.788646
.799919
.810407

.820203
.829482
.838375
.846700
.854511

.861918
.869005
875664
.881935
.887883

.444444
444444
.508459
. 555877
.584855

.614126
.645564
.670860
.692668
.713796

734014
.751811
.768040
783293
797744

.810902
.823012
.834343
.845071
.854951

.864092
.872652
.880744
. 888239
.895201

.901727
.907887
.913614
.918950
.923956

. 464286
.464286
.535350
.586110
.617382

.648945
.682011
.708314
.730951
.752642

773022
.790802
.806895
.821837
.835780

848351
859809
870404
880292
889302

.897552
.905187
.912303
.918823
.924814

.930363
.935530
.940279
.944656
.948710

.482759
.482759
.560253
.613697
.646869

.680232
.714362
.741205
. 764235
.786038

.806167
.823564
.839178
.853493
.866653

.878395
.888988
.898662
.907565
.915588

922853
.929494
.935600
.941130
.946155

.950752
.954974
.958810
.962304
.965501

.500000
.500000
.583333
.638889
.673611

.708333
.743056
770062
.793130
.814697

.834270
.851026
.865925
.879409
.891625

902410,
.912033
.920712
.928587
.935605

.941887
.947559
.952702
.957307
.961441

.965176
.968560
.971600
.974335
.976808

.769231
.769231
.892126
.929939
.956118

972900
.983657
.989681
.993584
.996024

.997522
.998450
.999033
.999395
.999622

.999763
.999851
.999907
.999942
.999963

.999977
.999986
.999991
999994
.999996

.999997
.999998
.999999
1.000000
1.000000

(12)

=2% 2 aresin

and for arbitrary k we shall write (9) as

(13)

Y(i)N

N

('1:= 1)2;"'7’0‘— 1),

(ﬁk:PI’{ZlgO,Zng,"',Zk_lé0}.

The chance variables Z; (4 = 1,2, --- , k — 1) also havea (k — 1)-variate dis-
tribution, with means, variances, and covariances which can be expressed as
power series in 1/N. In the 1.f.c. these power series involve only k, N and 6*.
They are found in the following way. We expand 2 arcsin (Y ;n/N )% consid-
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ered as a function of Y(,x/N, in a Taylor series around the point ¥ yn/N =
Pr; obtaining

2 arcsin ,‘/ Yow _ o) + ' (pra) ('—9— - Pm)

3
(14) -+ -2-f"(17m) ( (DN pm) + %f"'(l)m) (Y](&)N _ pm)
A (ZL__ pm) N 0(%)
where
flpra) = 2 arcsin \/prg
Flpg) = ——
VS Vel — o)
(15) F(pr) = — 2P — 1

2Vpta — pra)’
: 8pta — 8pia + 3
" (pra) =
4Vl — pa)°
(o) = 3P = DBpia — 8pia + 5)
Pa 8V (1 — p) :
Pra(l — pra)

Now E{Z.}, Var {Z;}, and Cov {Z;, Z;} all can be expressed in terms of E{2
aresin (Y (on/N)""}, E{[2 arcsin (Y(on/N)""} and E{[2 arcsin (¥(on/N)"]
[2 arcsin (Y(;,x/N)"?}, and these latter involve the moments of multinomially
distributed variables which are well known. Thus, for example,

B2 srosin v/ T/ N} = flpia) + f (prq) PAL = P1o)

2N
777 p.(l—p.-)(l—Zp.)
v 1w PA = P = T
+ (o) [P%n(lg 1;2 pa)’ + pa(l — p)( ;41?;7[‘1 + ﬁpfq)]
+0(1/N‘) (7:=1)2"",k_1)

which immediately yields E{Z;} up to terms of order 1/N*.
In the lf.c. we use (2) and obtain after simplifications

(172) B{Z} = a1 + % + 0(1/N?

=12 ---,k—1)
(17b) Var(zd = %+ % 4 00/N)
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where

P P A
(18a) a1 = 2 arcsin FrE=1 2 arcsin Fy—

o= Stk—3 + 0*— k41
4/0* + k — 4\/(k — 1)6*

(18) b =2+2 "/(k— 1)(0*+k—2)
0+ k — 1)(Uk6* + k — 2) — 6%k — 6% — 1)(6* + k — 3)
4/0%(k — 1)}6* + k — 2)°

306+ k — 1)*(k6* + &k — 2)
80%(k — 1)(6* + k — 2)

(18b)

+ -1

In addition,

(19) Corr{Z;,Z;} =
i3

1+24/ = 1)<o*+k—2) ~ +£+0(1’v1‘2)
2424/ == T +O()

_(0* 4+ &k — 1)°(k6* + k& — 2) 4 6*(0* — k + 1)(6* + k — 3)
4V 0¥k — 1)*(6* + k — 2)°
_206*+k—1)°6*+k—2) — (0*+ k —3)°
8(6* + k — 2)° )

where

(20)

The following table shows how (19) varies with k and 6* when N is large. (In
these computations, N in (19) is assumed to be infinite.)

k
0‘
3 4 5 6 10 36
1.10 0.512 0.508 0.506 0.505 0.503 0.501
1.25 0.527 0.519 0.514 0.511 0.506 0.502
1.50 0.548 0.533 0.526 0.521 0.512 0.503
1.75 0.564 0.546 0.536 0.529 0.517 0.505
2.00 0.577 0.556 0.544 0.536 0.521 0.506
10.00 0.674 0.645 0.626 0.611 0.577 0.527
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It is seen from (19) with N = 4 (and from the above table) that as 6* ap-
proaches unity, (19) approaches % for any k; also, as k approaches infinity, (19)
approaches % for any 6*.

As with the W, when (1) holds the Z; have a common mean and a common
variance, and all pairs (Z;, Z;) with ¢ ¢ j have a common correlation. Also as
N approaches infinity it can be shown that the joint distribution of the stand-
ardized variables approaches a (k — 1)-variate normal distribution with zero
means, unit variances, and a correlation matrix of the form of (11); and the com-
mon correlation coeffictent (19) for © # j 18 approximately %. Thus, the tables in
[1], (6], and [9] can be used for finding the volume under the (k — 1)-variate
normal surface, and hence an approximation to the probability of a correct selec-
tion can be obtained.

6.2.2. The approximation. To obtain the approximation we let

(21a) A=a+ %;
and
_bh b
(21b) B =3+ %
Then
@ d~ [ [ [ e, b dida e di,
VEVE VB
where g(t,, &, --+, i) is the (k — 1)-variate normal density function with

zero means, unit variances, and correlation matrix (11). Since [9] gives Pi(A)
as a function of A where

(23) Pk(A)=LéL[—A""[Ag(tl)tﬂx"',tla—l)d.tldh,"',dtlp-l.
V2 V2 V2

we obtain

(24) é ~ P, (A 2.

6.2.3. Tables based on the approximauon. Some computations were made
to indicate the goodness of the approximation. These approximate probabilities
are listed along with the corresponding exact probabilities (which were extracted
from Tables A-2, A-3, and A-4) in Tables B-2, B-3, and B-4. They were com-
puted as follows: The quantities a;, as, b;, and b, were computed for each &
and 6* using (18a), (18b), (18c), and (18d), respectively; then A and B were
computed for each N using (21a) and (21b), respectively; then A = A(2/B)"?
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Ezact' and Approzimate' Probability of a Correct Selection for k = 2 when
P/ = 6*
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6* N =10 N =15 N =20 N =25 N =30

1.02 .51250 .51530 .51767 .51974 .52163
.512181 .515551 .517440 .519940 .521445

1.10 .56993 57322 .58437 .59414 .60293
.558417 574417 .583336 .595077 .602107

1.50 73764 .78204 .81587 .84279 .86481
.733432 .786897 .813908 .846232 .863787

2.00 .85744 .90506 .93711 .95494 .96836
856154 .911768 .935234 .958486 .968861

3.00 94834 .97750 .98986 .99533 .99781
.951073 .982700 .991097 .996630 .998216

10.00 .99700 .99973 .99998 1.00000 1.00000
.999428 .999983 .999998 1.000000 1.000000

t Exact probabilities are given to six decimal places; approximate probabilities are

given to five decimal places.

TABLE B-3
Ezact* and Approzimate' Probability of a Correct Selection for k = 3 when
Pa/P = Pw/Pm = 6*

[:ad N =10 N =15 N =20 N = 25 N = 30

1.02 .34361 .34593 .34789 .34963 .35120
.343924 .346193 .348131 .349923 .351472

1.10 .38408 .39577 .40571 .41451 .42251
.385656 .397003 .406805 .415882 .423776

1.50 562556 .61374 .65641 .69061 72097
.567859 .617984 .658865 .694548 .724398

2.00 71977 79077 .84134 .87854 .90642
727509 .796463 .845490 .882401 .909437

3.00 .87858 .93681 .96644 .98196 .99022
. 888455 .942521 .969696 .983987 .991412

10.00 .99450 .99958 .99995 1.00600 1.00000
998342 .999881 .999991 .999999 1.000000

1 Exact probabilities are given to six decimal places; approximate probabilities are

given to five decimal places.

was computed; then [9] was entered with A and %k, and P,(A) was read out.
(See section 6.2.4 for a description of the tables in [1], [5], and [9].) Comparison
of the approximate and exact probabilities in Tables B-2, B-3, and B-4 indicates
that the approximation is excellent even when N is only moderately large. Of
course, the approximation breaks down if 6* is large and & is small for then (19)

differs too much from 1.
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TABLE B4
Ezact' and Approzimate' Probability of a Correct Selection for k = 4 when
Pw/Pw = Pw/Pm = pu/pm = 6*

o* N=10 N=15 N =20 N =25 N =30
1.02 .25812 . 25997 .26154 .26292 .26315
.258492 .260383 .261959 .263341 . 264592
1.10 .29066 .30022 .30839 .31567 .32232
202454 .302228 .310457 .317730 . 324366
1.50 44645 .49462 .53529 .57078 .60235
453734 .502373 .542817 577911 .609112
2.00 .60566 .68421 .74450 .79203 .83003
.616825 .694543 753325 .799421 .836237
3.00 .80045 .88202 .92943 .95751 .97430
. 814697 .891625 .935605 .961441 .976808
10.00 .98975 .99878 99986 1.00000 1.00000
996024 .999622 .999963 .999997 1.000000

1 Exact probabilities are given to six decimal places; approximate probabilities are
given to five decimal places.

The problem of including a correction for continuity in the approximation
for small N was considered, but the authors were not successful in finding one
which would give uniform improvements over the approximation finally adopted.

6.2.4. Reference tables. Since [9], Table Al of [5], and Table 1 of [1] employ
different notations, some comments about these tables might be appropriate.

In [9], Px(A) is tabulated as a function of A for various k. In the netation of
these tables, A = z and Pix(A) = P(1, k) which is a function of A. The tabula-
tions are for A = 0.00 (0.01) 6.09 and k& = 2(1)10. These tables were originally
computed for the purpose of preparing Table 1 of [1].

In Table 1 of [1], A is tabulated as a function of £ and P.(A). In the notation
of these tables, A = N2\, and the columns to be entered are those headed ¢ = 1.
The tabulations are for P:(A) = 0.10 (0.05) 0.80 (0.02) 0.90 (0.01) 0.99, 0.9950,
0.9990, 0.9995 and k = 2(1)10.

In Table Al of [5], A is tabulated as a function of k£ and Px(A). In the notation
of these tables A = u.(n), k = n + 1, and Px(A) = 1 — a. The tabulations
are for P,(A) = 0.75, 0.90, 0.95, 0.975, 0.99 and k = 2(1)51.

7. Choice of N to meet the requirement. We now shall show how to deter-
mine N*, the smallest N which will guarantee the requirement. To guarantee
the requirement in the least favorable configuration we must have

(25) [A .[A ‘[Ag(tl,tz, ,tk—1)dt1dt~z“' dtk_lg P*.
Vivi Vs
Hence, N must be chosen large enough to make
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A a1 + as/N A
26 —_&tae/N A
(26) VB  /b/N + by/N? = V2

where A is determined from [1], [5], or [9] to satisfy the equation
(27) Py(A) = P>,

We consider the inequality in (26) and note that the middle expression ap-
proaches infinity as N grows large. Therefore, since a, is positive there exists
(for any a1, a2, b1, ba, and A) a smallest integer, which we denote by N*, with
the property that the inequality (26) holds. When N is large, the terms in (26)
involving a; and b; can be ignored, and N* is approximately the smallest integer
equal to or greater than

A%,
-2—0? .

A tendency for the approximation (22) to underestimate the exact value of
(38) (except for k£ = 2 when N is even) is evident from examination of Tables
B-1, B-2, and B-3. Hence, one usually can expect the value of N* obtained by
the methods described above to err on the conservative side, i.e., to be somewhat
larger than the exact value of N* which is required.

8. Numerical example. Suppose that one were interested in selecting that
one of the thirty-six bettable numbers on an unbalanced roulette wheel which
has the largest probability associated with it. Suppose further that he specifies
that if this probability is at least 10% larger than the second-largest probability,
he wishes to make a correct selection with probability at least 0.90. Then we
have k£ = 36, 6* = 1.10, and P* = 0.90; the least favorable configuration is

(28)

1
Py = **° = P = 361~ 0.02770083

(29) 11
D = 361 = (0.03047091.

We can anticipate here that N* will be large, and hence we need compute only
(30a) a, = 2 arcsin4/0.03047091 — 2 arcsin+/0.02770083 = 0.0164885

and

(30b) b = 2 + 24/11/35(35.1) = 2.05985 .

(Note: A comprehensive set of tables of arcsin z is found in [8].) Table Al of
[5] (with n = 35, @ = 0.10 in the notation of that table) yields A = 3.5351.
(From the table in section 6.2.1 we see that (19) is approximately 0.501, and we
would expect the approximation to be a good one.) Using (28) we compute N*
as the smallest integer equal to or greater than (3.5351)%(2.05985)/2(0.0164885)*
= 47,341.7. Thus in order to guarantee the requirement, one must take at least
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47,342 observations, i.e., 47,342 spins of the wheel. (Of course, the last digits in
N are not accurate, but they were retained to indicate the method.)

For illustrative purposes we have computed the following table which gives
N* for selected values of k and P* when 6* = 1.1 is specified.

3
P‘
2 [ 3 6 36
0.75 201 669 2,475 30,775
0.90 724 1,618 4,698 47,342
0.95 1,193 2,389 6,383 59,080
0.99 2,385 4,255 10,303 84,952

9. Generalizations. Thus far in this paper we have considered only Goal 1:
“To select the event associated with py; .” However, the same approach can be
used in connection with different goals, or more general goals. For example, we
might consider Goal 2: “To select the event associated with pg; ,” or Goal 3:
“To select the events associated with py—i42 , - - - , Py without regard to order”
forany 1 < ¢t < k — 1. Clearly, Goals 1 and 2 are special cases of Goal 3 since
the selection of the £ — 1 largest is equivalent to the selection of the one smallest.
Table Al of [5], Table 1 of [1], and [9] all provide the constants necessary to deal
with Goal 2, but only the two latter tables provide the constants necessary to
deal with Goal 3.

10. Acknowledgment. The authors are indebted to Mr. Richard Lesser,
Director of the Cornell Computing Center, who supervised the computation
of the entries in the various tables.
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