NOTE ON ESTIMATING INFORMATION!

By Couin R. Byt

Unaversity of Illinois and Stanford University

1. Summary. This note is concerned with estimation of the Shannon-Wiener
measure of information. Low bias estimates are obtained, and their bias and
variance. These estimates are extended to the case where the number of pos-
sible values of the random variable is not known. The estimates are compared
asymptotically with the maximum likelihood estimates. They are also compared
with the minimax estimates (for squared error loss function) for a few special
cases where these are easily found.

2. Introduction. Consider a random variable Y with finitely many distinct
possible values:

P(Y = a) = ps, i=1,--,k

A metric measure of dispersion of ¥ measures how spread out the distribution of
Y is, in terms of distance in the space of Y. If this space has no relevant distance
function (e.g., k = 3, a; = green, a» = red, a; = white), there is no relevant
metric measure of dispersion. An absolute measure of dispersion of ¥ measures
the degree to which the total probability of 1 is broken up into pieces in the
distribution of Y. Such a measure is a function of p;, - - - , px only; is free from
dependence on the a,’s; is large when the probability is much broken up (e.g.,
P, - ,pr=1/k, ---,1/k), small when it is not much broken up (e.g.,
P, D= .99, 01,0, --- 70)

In handling both kinds of dispersion measures the following addition property
plays the same important role: {Divide the values of Y into groups. Dispersion
of Y = between group dispersion + expected within group dispersion.}. Know-
ing the distribution of Y gives information useful in predicting Y. Actually
observing Y gives additional information—enough for perfect prediction. This
additional information can be called information in ¥ or unpredictability of ¥
and can be measured by a measure of dispersion. In this language the addition
property says that the information in observing Y equals the information in
observing which group Y falls in plus the expected information in observing
which member of that group.

For real valued Y the addition property identifies variance (except for a
constant multiplier) among all metric dispersion measures of the form Ef(|Y —
EY|) with f continuous. This easily extends to weighted averages of the partial
variances when Y has values in a Euclidean n-space. Similarly the addition
property identifies information or entropy H = — . p;log, p; (except for a
constant multiplier) among all absolute dispersion measures fi(p: , - - - , px) With
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J continuous and fi(1/k, - - - , 1/k) an increasing function of k, as is proved in
[1].

The addition property leads to very convenient mathematical simplifications.
For this reason variance and information H are very widely used dispersion
measures. But there seems to be little intuitive necessity for the addition prop-
erty. Thus in the metric case it seems quite reasonable to use measures like
E|Y — EY | which lack the property- and loss functions other than squared
error. Similarly in the absolute case it would seem quite reasonable to use meas-
ures like the natural chi-square measure (k — 1) — kY. (p; — 1/k)* which lack
the property. Essentially equivalent to this chi-square measure is the following
linear function of it, which is the terms of order up to 2 in a Taylor series for H:

k
Hy, =1 —g{k - 242 ©p: — 1)2/2}-
=1
If f(1,0, - -+ ,0) = 0 is desired we could make the necessary subtraction from

the measure H, .
This note is concerned with estimation of information or entropy of ¥:

k
H=-Hp, - ,p) = —C_Z;pelogpn

where C = logy e = 1.442695 and p; log p; is taken to be 0 whenever p; = 0.
Our estimate is to be based on independent repetitions Y;, - -- , ¥, of the ex-
periment Y. Then X, - -, Xi, where X, is the number of ¥’s with the value
a:, is a sufficient statistic for p;, --- , pr and has the following multinomial
family of possible distributions:

k

P(Xl, ,Xk =T, " ,x;,) = n'qpf’/x,',
(1) i .

x.-=0,1,~-,n, in=n7 Oéptély zpi=1

=1 ==l

We are now concerned, then, with the problem of what function f.(X; , e, X))
to use as an estimate for H. The maximum likelihood estimate is considered by
Miller and Madow [2]; it is good when = is large, but is likely to be poor for n
small. One reasonable estimate would be the best unbiased one. Upon noticing
that there is no unbiased estimate we will consider instead best estimates with
low bias.

3. Low bias estimation, &k known. Since (1) is a complete family of distribu-
tions, the problem of unbiased estimation of any function g(py, ---,ps) is
solved by Lehmann and Scheffe [3]. In fact, since Ef (X; , =+, Xy) is for every
every function f a polynomial in p; , - - - , ps of degree at most 7, no functions of
P1, - -+, P other than such polynomials possess unbiased estimates. And using
the usual factorial notation z” = z(z — 1) --- (z — » + 1) we have

E(X{V oo X{P) = nOtopn L i
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which reduces to 0 = 0 whenever ZLI v; > n but not otherwise. We therefore
have

E EC(Vl e Vk) Xin) . Xlgvk)/n(v1+...+vk) — EC(Vl e, Vk)p;l - p;k'

where summation is over any set of (v, - -+, »)’s with _i_; »; < n for every
member. It follows from the completeness that 3 c(vi, - - -, w) Xy --- Xi®/
17 ™® is the unique uniformly minimum variance (U.M.V.) unbiased esti-
mateof Y c(v, -+, ») Pi -+ - pi* whenever 2 i_y »; < n forevery term of the
sum. This solves the problem of unbiased estimatien of all functions g(ps, - - - , Px)
because the U.M.V. unbiased estimate of every degree =< n polynomial in
P1, -+ , px has been written down and no other functions of p;, - - - , P« possess
unbiased estimates.

It is now clear that there is no unbiased estimate of H. If low bias is what we
want the next best thing would be to use the U.M.V. unbiased estimate of the
degree n polynomial which is in some sense.(smallest maximum distance apart,
for example) closest to H. A much more easily obtained polynomial which agrees
quite closely with H is the terms of degree < n in the Taylor series expansion of H
about the point (3, - -+, 3). We will consider use of the U.M.V. unbiased esti-
mate of this polynomial as an estimate for H.

Writing v; = p; — % we have

pilogpi = & + v:) log G + v2)

1 1 1[@v)" _ @), @) )
—“%+Q“@“+ﬁyz e sty 4 [

Hence

k
H = —CE_‘,p,—logp,~

=1__{Z(2 )+E(27’)2 2(27.) L. }

t-l

1-Se-n+E 2w /).

a=2 t=1

Here | 2y:| < 1 so all series converge absolutely and can be rearranged. Also,

> %1(2y:) = 2 — k. For any integer r < n we now write
H =1- —{(2 -k + :L:, §( 2v:) /a‘”}
=1- —{(2 — k) + aZ_z;la&) E( ) (_21,'.)'}.

The U.M.V. unbiased estimate of H, is

z=1-Ye-n+ 555 5() X

a=2 i=1 r=0 n»
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The bias of Z, as an estimate for H is
=FEZ, —H=H,—H

Z > (=290,

amr+1l tml

Now «’ is a convex function of u for s an even integer, and —u’ is convex on
u = 0 for 8 an odd integer. From this it is easily shown that if > sy u, = 2 — k
and | u;| < 1, then

(k — 1 +(=1)) (1 - -) (~1r 2wt S k=14 (1),

These lower, upper bounds are achieved by the choices (u;, «-+,u) =
(2/k—-1,---,2/k— 1) and (1, —1, -+, —1) respectively. Applying this to
the series for B, gives

C s k-1+(=DA=—2/k"_ 5 { ( N _p 5 =0
2 1 a® 2 amrtl @
This lower bound is achieved when the p/’s are all 1/k, and the upper bound is
achieved when some p; = 1. If £ > 2 this lower bound is positive and we will use
the estimate

7i=12,-¢ fj k—1+ (—(1)")(1 — 2/k)*
2 amr+1 az)

instead of Z, for H because Z. has the same variance as Z, and uniformly smaller
bias. For a fixed set v, --- ,v: we have

Ck r+1
< —— .
B, 5 (m'g‘x | 2v:])

and the corresponding result for the bias of the improved estimate Z, . To com-
pute the variance of Z, we now use the fact
v (8 (0)

Xf_'l) = Z V1 Ve (X _ y)('l"‘)

= t!

which gives
min(vy,vg) (t) (t)
X‘('")ngz) = t'"Z X(vﬁ-v,—t)
t=0 s

Further routine calculations now give

(r1) (ve): in (v1.v9) _(8)_ (¢ +vy—t t
E X"” X 4} v _ mlni Vo v )”2 ) p:l Py (1 - p‘)
n('l) p‘ (’z) - P - =~ t! n® ’

(v1) (vq) (v1+vg) .
E(X o) (B — g} = (< ) peoptn s
0D p: ) Pi \ 2OV i .
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From these, the variance of Z, is seen to be

var Z, = E(Z, — H,)’

r ( 2)r k ng) ) 2
——E{;g() (-
(=2 &, [“n("+") :l
tg-:2 a§-2 v§> sz-O <” )("2) ai’as? {.-,#zi;-lp" Piz| oo op |

k  min(r1,vy) IIY)V;‘) l+”2"‘(1 — p)t\l

-+

=1 t=l t! n(®

Grouping together terms of like order in n, the asymptotic variance as n — «
of the sequence {Z,} of estimates is seen to be

Cfl k k
var (Z,) ~ = El pi(log p; — Z; p; log p;)’*
S Jo=

provided the non-zero p,’s are not all equal; and

¢ o1
n 2(n—1)

if the non-zero p;’s are all equal, where k* is the number of non-zero p;’s. And for
bias of this sequence of estimates we have asymptotically as n — «

kC 2 "+2 w1

Comparison with asymptotic results obtained by Miller and Madow for the
max1mum likelihood estimates {H, } and theestimates {H } = {Hn + C(k — 1)/

2n} shows the following: No asymptotic differences in variance. Asymptotic
differences in expected square error only in the special cases where this has order
1/n® or smaller. Bias is asymptotically much smaller for {Z,} than for { H.} o
{H7w} except for the special case when some p; = 1.

For small n, numerical checking shows the following: Z, has a smaller bias
than H, or Hy over most of the range of (pi, --- , 7). Comparing expected
squared error as a whole, H . is quite poor and there is little to choose between
Z, and H7: sometimes oneseems better, sometimes the other. In these comparisons
Z, and H, are modified by substituting C log k for any value exceeding C log k,
since this uniformly reduces expected squared error. For example in Table 1 for
k = 2, every value exceeding C log 2 = 1 would be replaced by 1. This table
gives Z,(x1) in the upper part of each column and H (1) in the lower part, for
n=23,---,7 and all possible x;. Values not tabled are obtained from
Zo(n — 7)) = Zo(zy) and Hu(n — ;) = Ha(zr).

When k = 2, minimax estimates (squared error loss function can be found
for small n by the usual method of guessing a least favorable a priori distribution
A for p; = p and finding the corresponding Bayes estimate Z, . If the risk function

var (Z,) ~
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TABLE 1

Estimates of H for k=2 with Z,(x:) in upper part of each column,
H'(z1) in lower part

AN 13
'—_z}_—-\ 2 3 4 5 6 7
0 .27865 .27865 .15843 .15843 .11034 .11034
1.72135
1.36067 1.24045 1.12022 .92787 .84772 74238
1.12022
2 36067 1.15875 1.18034 1.12022 1.00801 .96222
1.08516
3 .24045 .99162 1.11524 1.12022 1.09961
4 .18034 .86619 1.03852 1.08828
5 . 14427 77024 .96617
6 .12022 .69472
7 .10305
TABLE 2
Comparison of low bias Zn and minimax Z* estimates of H for k=2
n z2%(0), ,Z.(l) sup Rz*(?) sup Rz (#)
1 1/2,1/2 .2500 1
2 v2-1,1 .1716 .2602
3 .33673, .94400 .1134 .1444

Rz, (p) assumes its maximum value with A-probability 1 then this A is indeed
least favorable and Z, in minimax. Here for A we take unspecified probabilities at
n + 1 unspecified points one of which is 0, with the restriction that A\ be sym-
metric about p = 3. The points and probabilities are then determined so that
Rz, (p) will have equal maxima at these points. We will compare the risk functions
Rz:(p) and Rz(p) [Z:, = Z, except Z, = 1 when Z, > 1; Z* is minimax]. One
point of interest is the degree to which sup, Rz:(p) exceeds sup, Rz+(p). This
comparison, given in Table 2 for n = 1, 2, 3, is of particular interest for small
values of n where Z, would be expected to show up most poorly. Actually Z,
does quite well even for n = 2, 3: Z,, seems to deviate from unbiasedness in the
direction of being like the minimax estimate.

Similarly, for k = 2, we can compare the minimax and U.M.V. unbiased
estimates of the chi square dispersion measure H, . Equivalently we can compare
the minimax estimate 7* and the U.M.V. unbiased estimate T of the binomial
variance pg, of which H, is just a linear function. This comparison is given for
n=1,2, ---,5in Table 3. Note that T is very poor compared to 7™* for small
n, compares more favorably as n increases. For example the ratio sup, Rr(p)/
sup, Rr+(p) is 5.83 when n = 2, decreases to 3.37 by n = 5. The comparison
indicates that for small » the minimax estimate for binomial variance is decidedly
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TABLE 3

Comparison of minimax T* and U.M.V. unbiased T estimates
for binomial variance pq

77

n T*(0), T*(1), T*(2) sup R7*(p) T(0), T(1), T(2) sup Rr ()
1 125, 125, — .015625 — —

2 .10355, .25, .10355 .010724 0,1/2,0 .062500
3 .08333, .25, .25 .006944 0,1/3,1/3 .027778
4 .07158, .20228, .24584 .005124 0,1/4,1/3 .018750
5 .06508, .17797, .22841 .004235 0, 1/5, 3/10 .014286

preferable to the U.M.V. unbiased estimate. The estimate T* is found in the
same way as Z* except that for n = 3, 4, 5 T* has constant risk and can be more
easily found by showing that the only constant risk estimate can be Bayes.

4. Low bias estimation, ¥ unknown. When % is unknown we shall consider
the estimates obtained by acting as though k were equal to the observed num-
ber of different Y values and using the estimates of the preceding section.

Now we have

z,=1—§{W1+

where

-+ W’c}’
—2)’ X{¥
b Lo a® p

pe- (K1) + £ 5 ()2

The modification of Z, just suggested for use in the case k unknown is

zr=1-Swi 4+ W,

where

=W;

=0
Since W; = — 1/r when X; = 0 we have

PWi=W)=1—(@1-p)",
P(W! =W+ 1/r) = (1 — p)™

Hence

EW:k = EW: + % (1 - Pr)”,

k
EZf = 1—§{EW1+ +EWk+}§(1—p.<)"}

Ck
—52, -S> (- p) =H -
2r iZ1

Ck
o2 (1

if X; 0,
ifX; =0,

- p;‘)"-
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The bias of Z as an estimate for H is

k A
B! =EZ, —H=H—H-23>0-p)

i=1
C < n
The variance of Z is found as follows:
* 02 k * k £ 3 *
var Z, = vy Zvar Wi+ D cov WiW; R
i=1 £ =l

var Wi = E(W! — EW?)?

Il

= - pim{w. - 5wy~ Lo - pir}
+a—pra{w—mwy+ - Ta - )
= BOV: — EW)' + 1 {(1 — p)" — (1 — p)™)

="var W; + r—l2 {A—=9p)"— (- pi)z"}-
Furthermore, we have for 7 5 j
PW: W=W:;,W)=1—(Q1—-p)"— (1 —p)"
+ @ —pi—p)"
P(W; Wi=Wi+1/r,W)=00—p)"— (1 —p;—p))",
PWY, Wi =W:,W;+1/r)=10—p)"— (1 —pi—p)",
P(WY, Wi =W+ 1/r,W;+1/r) = (1 — p: — p)"™
So the covariance of Wi, W}, 1 £ j, is
cov Wi, Wi = E(Wi — EWH(W) — EW})
=1-Q0-=-p)"—-0A=2)"— Q= p:i— pi)"
. E{(W.- — EW) — (_l_:p_')] {_(W,- — EW;) — (L__L’)}
rJ r
+[Q—=p)" = QA = p: — p)7]
. E{(W.- — EW) + 1____(_11.;!i} {(W,- — EW;) — (_I__TLJ)}
+ [ =p)" =1 —pi—p)"]
. E{(W,- — EW) — (l_—r_p')_} {(W,— — EW)) + }:(I_;Pi.}
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+ (- pi— p,-)"E{(W.- — EW) + 1—'—(17“—”)—}

. {(W,- — EW;) + 1_?_(_}___7”)"}

"
= cov W;, W; + % {A=pi—=p)" = Q= p)"1Q — p)"}.

Hence

2 k
var Z; = var Z, + qué {_Z (1= p)" — (1 — p)™
1=l

+ 2 A =pi—p)" =1 —p)"(1 — pf)”l}

iptgml

var Z, + g{z 1 —=p)" — ['2: a- p.')":r

=1

k
+ 2 (1 —-pi— pz)"}.
§phjaml

When only one value of ¥ is observed, which happens with probability >t p7,
the value of Z; is (C/2){(=1)"/r — 22 m., (—1)*/a}. Since um > 0, Un — 0,
Um > Umya 8Nd  Umips — Um > Umiz — Umsr together imply convergence of
S 1 (—1)™ Uy to a value > /2, this value of Z; has the sign of (—1)" In
the case r even, this negative value should be replaced by 0; bias and variance
of the resulting modification of Z; are easily found. This point does not arise in
Section 3 because if k¥ = 1 is known, H = 0 is known and estimation is not
needed.

A similar discussion can be given for the estimates Hr * = H, + C(k* — 1)/2r.
The maximum likelihood estimates H; do not require knowledge of & so can be
used unchanged in the case & unknown.
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