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A further simplification can be had for PBIB and circulant designs, where
>, ¢}, is the same for all 4.

For the other three criteria, elegant expressions are seldom available. Since
E, follows directly from the C matrix it is easiest to compute; we do not have to
solve the normal equations or evaluate the \’s.
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ON THE COMPLETENESS OF ORDER STATISTICS!
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1. Introduction and summary. Let X;, X,, ---, X, be a sample of a one-
dimensional random variable X; let the order statistic T(X;, Xz, ---, X,) be
defined in such a manner that T(z,, @2, -+, 2,) = (2, 2®, -+, ') where
z® £ 2® = ... = 2™ denote the ordered 2’s; and let  be a class of one-
dimensional cpf’s, i.e., cumulative probability functions.

The order statistic, T, is said to be a complete statistic with respect to the
class, {P™ | P £ Q}, of n-fold power probability distributions if

Eet) {R[T(X1, -+, X))} =0
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for all P ¢ Q implies A[T(z1, -+, z.)] = 0, a.e., P‘”), for all F ¢ Q. The class
Q is said to be symmetrically complete whenever the latter condition holds.

Since the completeness of the order statistic plays an essential role in non-
parametric estimation and hypothesis testing, e.g., Fraser [2] and Bell [1], it is
of interest to determine those classes of cpf’s for which the order statistic is
complete.

Many of the traditionally studied classes of ¢pf’s on the real line are known
to be symmetrically complete, e.g., all continuous cpf’s ([4], pp. 131-134, 152~
153); all cpf’s absolutely continuous with respect to Lebesgue measure ([3],
pp. 23-31); and all exponentials of a certain form ([4], pp. 131-134).

The object of this note is to present a different ([4], pp. 131-134, 152-153)
demonstration of the symmetric completeness of the class of all continuous
cpf’s; and to extend this and other known completeness results to probability
spaces other than the real line, e.g., Fraser [2], and Lehmann and Scheffé [5],
[6].

The paper is divided into four sections. Section 1 contains the introduction
and summary. In Section 2 the notation and terminology are introduced. The
main theorem is presented in Section 3, and some consequences of the proof of
the main theorem and known results are indicated in Section 4.

2. Terminology and notation. Let (X, 8) be an arbitrary measurable space;
A\, an arbitrary measure on (X, 8); and Q, a class of probability measures on
(X, 8).

Consistent with the notation of Scheffé [7] one defines the following sets and
classes.

Q(X) = the class of all probability measures on (X, 8);

% (X) = the class of all nondegenerate probability measures on (X, 8);

Q(X) = the class of all nonatomie probability measures on (X, 8);

QB(\) = {P eQ(X) | P KA}, ie., the class of probability measures abso-
lutely continuous with respect to \;

Q(3, \) = (A4 |A e B'} where 57 = {4 £3]0<AA4) < »}and A\ (C) =
MNAC)/N(A) for all C ¢ 8;

N = {A e8| P(A) = 0forall P e}, ie., the null class of Q;

(X™, $) = the product n-space generated by (X, 8);

A™ = Ax ... x\ = the n-fold power measure on (X, ‘™) generated by \;

Q™ = {P™ | P £¢Q} = class of power measures generated by Q;

Nam) = {A £ 8™ | P™(A) = 0forall P ¢Q} = null class of 2.

A class Q is said to be symmetrically complete for n = k if hy = O[P
hi = 0 a.e. with respect to P%, for all P ¢ Q, whenever h; satisfies

(a) M is a symmetric function [measurable on (X®, $*)]; and

(b) [hi dP® = 0 for all P ¢ Q.

With this notation we now demonstrate that the class Q:(X) is symmetrically
complete for all n.

In the sequel it will be assumed that v is an arbitrary fixed nonatomic prob-

®1 fe.,
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ability measure on (X, 8); that h, is a symmetric measurable function on
(X™, $™); and that @ is a semi-algebra which generates 8. [Note: @ is a semi-
algebra if X & @; @ is closed under finite intersections; and A, B ¢ @ with A C B
implies the existence of {Ao, A1, -+, Am} C @ such that 4 = 4o C A, C
o+ CAn=Band A; — 4,y e@fori=1,2, ---,m.]

3. The main theorem. The proof of the main theorem utilizes the facts that
Q(Q@, v) is symmetrically complete for properly chosen @ C §; that the null
classes of 2(@, P;) and @ (P;) are equal; that, therefore, Q(P;) is sym-
metrically complete; and that so is Q:(X), since it is the union of classes Q3(P).

These ideas are given more precisely by the following three lemmas.

Lemma 1. (Fraser) If v is an arbitrary nonatomic probability measure on (X, 8)
and @ is a semi-algebra which generates 8, then Q(@, v) is symmetrically complete
for all n.

Proor. See Fraser [2].

LeMma 2. If P1 & Qz(X), then %(n)(a,pl) = %:(")(Pl) fOT all n.

Proor. Let n be an arbitrary fixed positive integer. Clearly, P{™(4) = 0
implies P*”(A) = 0 for all P & Q5(P;). This latter condition implies 9, C
Moy () (pyy. On the other hand, since

P{") £ Q(")(G, pP) C 9§")(P1), 91“:'1-] D Natnia,pyy 2 Nagniey) -

The conclusion follows immediately.

The symmetric completeness of Q(@®, P;) and the equality of the two null
classes are sufficient to establish the next lemma.

LemMA 3. If Py € Q(X), then Qs(P1) is symmetrically complete for all n.

PROOF. [h, dP™ = 0 for all P &£ Q(P,) implies P™{h, = 0} = 0 for all
P £ Q(@, P;) < %(P1). Hence {h, #= 0} £ MNamwig,ry = Noginxpy and b, =
O[P™] for all P & Qs(Py).

The main theorem now follows from the preceding lemmas and the fact that
any measure absolutely continuous with respect to a nonatomic measure is itself
nonatomic.

MaiN THEOREM. The class Q(X) of all nonatomic probability measures on an
arbitrary measurable space (X, 8) is a symmetrically complete class for all n. In
particular, the class Qo of all continuous cpf’s on the real line is a symmetrically
complete class for all n.

Proor. It is sufficient to demonstrate that for arbitrary fixed n, and arbitrary
fixed P, € Q(X), P{"{h, = 0} = 0, whenever k, is a measurable symmetric
function with the property: fh, dP™ = 0 for all P £ %(X).

Under such circumstances it is clear that Q3(P1) C 2(X). Therefore, Lemma
3 guarantees for symmetric k, such that [k, dP'™ = 0 for all P & %(X), that
P™{h, 5 0} = 0 for all P eQ(P1). But P, £ Q(P1) and, consequently,
P{"{h, 5 0} = 0.

4. Extensions. The symmetric completeness of several other classes of sta-
tistical interest can be extended to abstract spaces. In fact, by an extension of
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the ideas above and those of Fraser ([2],[3], pp. 23-31), one can demonstrate the
following result.

TrrorEM. If (X, 8) s an arbitrary measurable space, then (1) Qo(X), Uu(X)
and Q(X) are symmetrically complete for all n.

If, further, X is a nonatomic, o-finite measure on 8 and @ is a semialgebra which
generates 8, then, (II) (@, \), (S, N) and Q(N) are symmetrically complete for
all n.
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By RonaLp PYKE

Stanford University and Columbia University

The concept-of centering stochastic processes having independent increments,
introduced by Lévy, is applied to processes having both stationary and inde-
pendent increments. The main purpose of this note is to answer the question as
to what centering functions preserve the stationarity of the increments.

In 1934, Lévy [1] proved that any stochastic process with independent incre-
ments may be transformed by subtraction of a sure function, called a centering
function, into a process whose sample functions possess certain desirable smooth-
ness properties. (cf. Lévy [2] and Doob [3]). It is clear that the transformed
process, called the centered process, is also a process possessing independent
increments. The purpose of this paper is to show that a process having stationary
and independent increments may be centered in such a way so as to preserve
the stationarity as well as the independence of the increments.

To be more precise, consider the following definitions (cf. Doob [3] p. 407).
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