A GENERALIZATION OF GROUP DIVISIBLE DESIGNS

By DAMARAJU RAGHAVARAO
University of Bombay

1. Summary and Introduction. Roy [8] extended the idea of Group Divisible
designs of Bose and Connor [1] to m-associate classes, calling such designs Hier-
archical Group Divisible designs with m-associate classes. Subsequently, no
literature is found in this direction. The purpose of this paper is to study these
designs systematically. A compact definition of the design, under the name
Group Divisible m-associate (GD m-associate) design is given in Section 2. In
the same section the parameters of the design are obtained in a slightly different
form than that of Roy. The uniqueness of the association scheme from the
parameters is shown in Section 3. The designs are divided into (m + 1) classes
in Section 4. Some interesting combinatorial properties are obtained in Section
5. The necessary conditions for the existence of a class of these designs are ob-
tained in Section 7. Finally, some numerical illustrations of these designs are
given in the Appendix.

2. Definition and Parameters of a Group Divisible m-associate Design.

DEerinrrioN 2.1. A Group Divisible m-associate design may be defined as
follows:

(i) The experimental material is divided into b blocks of k£ units each, different
treatments being applied to the units in the same block.

(ii) There are v = NiN; - - - N, treatments denoted by

viliz"'im(il = 1’2""’N1;i2 = 1’2’”"N2;"' ;im: 1’2>°"’Nm)°

Each treatment occurs once in each of the r blocks.

(iii) There can be established a relation of association between any two treat-
ments satisfying the following requirements:

(a) Two treatments having only the first (m — 7) suffixes of v;,4...;, the
same are the jth associates (j = 1,2, --- , m).

(b) Each treatment has exactly n;, jth associates.

(¢) Given any two treatments which are 7th associates, the number of treat-
ments common to the jth associates of the first and the kth associates of the
second is i and is independent of the pair of treatments with which we start.
AISO’ p;k = p;w(l’ j; k = 17 2’ T m)

(iv) Two treatments which are jth associates occur together in A; blocks.

The numbers b, 7, k, Ny, Na, -+, Nm, M1, Az, - -+, An are known as the
parameters of the GD m-associate design. We can easily see that

(2.1) ni=NnNm—1"'Nm—i+2(Nm—i+l_1), i=1,2>""m;
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and

(22) (pi) =| =y oo , i=12--,m,
1D (m—i 41y (m—i-+1)

O (m—iyx(i—n)!

where 0,; is a null matrix of the order ¢ X/ 1'; x;_3 is the (¢ — 1)th order column
vector with elements n,, ng, -+, i ; i1 is the transpose of z;; ; and

D iy x(m—it+n

is the diagonal matrix with elements NuNm—1 -+ * Nm—ive(Nm—iz1 — 2), Mg,
N4z, , m . The parameters satisfy the relations

N]Ng"'NmT—'—-"bk; Zna=N1N2"'Nm—1;
a=1

m

(2.3) 2 Naka = r(k — 1);
a=1
"ip}k:njpgk:nkp’:i; ’;p.gk:ni_aij: i7j7k= 172y"' y m

where §;; is the Kronecker delta taking the value 1 or 0 according as 7 = j or
i # j. Since the parameters satisfy the above relations, it can be seen that a
GD m-associate design is a special case of Partially Balanced Incomplete Block
Designs defined by Bose and Nair [2].

3. Uniqueness of the Association Scheme. This section shows that the rela-
tions (2.1) and (2.2) imply the association scheme iii(a). In this section, we call
a group of treatments which are first associates a first-associate group; a group
of first-associate groups a second-associate group, etc. Let 6 be any treatment.
Let 687, 657, .-+, 6% be its ith associates (¢ = 1, 2, ---, m). Consider the
treatments 6 and 6{". Since n; = N, — 1 and p1; = N. — 2, the first associates
of 6" except 0 are the same as the first associates of 8 except 0.". Also, as

pii:o(i=2737”"m)7

we can divide the treatments into first-associate groups such that treatments in
different first-associate groups are 2nd, 3rd, - - -, or mth associates. It can be
seen that each first-associate group contains N, treatments. Thus the v treat-
ments are divided into NN, - -+ N, first-associate groups of N, treatments
each.

Now, consider the treatments 6 and 6{®. Since

n; = p%a =NuNpy - Nm—i+2(Nm——i+1 - 1),

it is obvious that the sth associates of 8 and 65> are the same (¢ = 3,4, -+, m).
Also, as pl; = 0 and P32 = Nm(Npy — 2), the N\N; - -+ N, first-associate
groups of the above paragraph can be subdivided into NiN; - -+ Nn,_2 second-
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associate groups of N, first-associate groups of N,, treatments each such that
(i) treatments in different second-associate groups are 3rd, 4th, ---, or mth
associates, and (ii) treatments in different first-associate groups of a second-
associate group are the second associates.

Again, consider the treatments 8 and 6{”. Since

n; = pgi = NuwNpma - Nm—i+2(Nm—i+l - 1),

it can be seen that the th associates of 6 and 65 are the same (¢ = 4,5, -+ , m).
AISO, as pil =0= p:;z = pgz and pga = NmNm—l(Nm—z _ 2)’ the Ni\Ng - -+ N
second-associate groups can be further grouped into NiNj--- N,_s third-
associate groups each containing N._, second-associate groups. These second-
associate groups contain N,_; first-associate groups each containing N, treat-
ments. Treatments in different third-associate groups are 4th, 5th, - - - , or mth
associates. Treatments in different second-associate groups of a third-associate
group are the third associates and treatments in different first-associate groups
of a second-associate group are the second-associates.

By similar reasoning, we finally obtain N, (m — 1)-associate groups of
N,, (m — 2)-associate groups, - -, of N, first-associate groups of N, treat-
ments. The above grouping will be such that (i) treatments in different (m — 1)-
associate groups are the mth associates, and (ii) treatments in different z-asso-
ciate groups of an (¢ + 1)-associate group are the (¢ + 1)th associates

(i=1,2-,m—2).

We can easily see that the above grouping of the treatments is the same as
the association scheme iii(a). Hence the parameters (2.1) and (2.2) define the
association scheme iii(a) uniquely and we have the following:

TrEOREM 3.1. The relations (2.1) and (2.2) for a Group Divisible m-associate
design uniquely define the association scheme iii(a).

4. Characterization of Group Divisible m-associate Designs. Let n;; = 1, if
the ¢th treatment occurs in the jth block; and n;; = 0, otherwise. Then the
v X bmatrix N = (n;;) is known as the incidence matrix of the GD m-associate
design. From the definition of GD m-associate design, we can see that

b b
doni; =, i=1,2---,v; and D, 7Mimr; = A, N, -+, OF Am
=1 =

according as ¢ and ¢’ are 1lst, 2nd, - - - , or mth associates, + # ¢'; ¢, 7/ = 1, 2,
-, v. Now, by suitably marking the treatments, we have
B, A, - An
(4.1) NN, — 1(:1m '?m PPN /:11” ’

Aw A --- B,
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where, at any stage,

Bia Ay - Aiy
B, = |4 B Al s my
(42) Ain Ay -+ Biy
Ai = NExp iy sWmigs o Nm» 1=2,3,:--,m;
B, =r A =\,

where Ex,,_; oNp_i15 - N 1S @0 N iyaNm_iys - - - Nuth order square matrix
with positive unit elements everywhere. The orders of NN’ and B; are NyNs - -
Nan and NapiyoNmiys -+ Nn respectively (2 = 2, 3, ---, m). The matrices
4, and B, are of unit order. Det (NN’) can be evaluated in the usual manner
and we get

(4'3) ]NNI] = Tkpllvl—lplel(Nz—l) .. P:lNT“Nm—l(Nm*l),
where

Pi=(r — Mp—ia) + (M — Apmip)a + -+ - +
(4.4)
(>\m——i - )\m—i+1)nm_1" Z = 1’ 2, PP ’m‘

By replacing r by (r — z) in det (NN’) we can easily see that rk and P.’s
(¢ =1,2, -+, m) are the distinct characteristic roots of NN’. We know from
the result of Connor and Clatworthy [4] that the characteristic roots of NN’
cannot be negative for an existing design. Thus we have the following theorem:

THEOREM 4.1. A necessary condition for the existence of a Group Divisible m-asso-
ciate design is that P; =2 0 (1 =1, 2, ---, m).

The designs with the following parameters violate the above necessary condi-
tion and hence are impossible. The reason of impossibility is shown in brackets
against the parameters.

l.v=90=br=9=Fk N, =3,N, =15 N; = 2,

)\1=12,)\2=0,)\3=1 (Pl,P3<O).
2.U=12,b=15,T=5,k=4,N1=2=N2,N3=3,
>\1=O,)\2=3,)\3=1 (P2<O).
3.v=8b=4r=3k=6,N,=2=N;=N;,
)\1=3,>\2=0,>\3=3 (P1<O)
4. v=16=br=5=FkN; =2 = N., N; = 4,
M=0,A=1»N=2 (P <0).
5.1)=16,b=24:,7‘=6,k=4,N1=2=N2=N3=N4,
>\1=0,)\2=1,A3=O,)\4=2 (P1<O)

6.D=32,b=64:,7‘=10,k=5,N1=2=N2=N3=N4=N5,
)\1=4,>\2=0,)\3=1,)\4=0,)\5=2
(P < 0).
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We can classify the existing designs mainly into (m + 1) classes as follows:
(1) Singular GD m-associate designs characterized by P., = 0;
(2) P.. — regular GD m-associate designs characterized by Pn > 0, Pn = 0;

(i) Pm, Pma, -+, Pm_iy2 — regular GD m-associate designs characterized
bme> O,Pm_1>0, s ,Pm—'i+2>0,Pm—i+l =O;

(m) Pm, Pny, -+, Py — regular GD m-associate designs characterized

by Pn > 0,Ppy >0, ,P,>0,P; = 0;and

(m 4+ 1) Regular GD m-associate designs characterized by P; > 0 (7 =

1,2, -+ m).

Excepting the last two classes, the other classes can be further divided; but,
since this will be cumbersome, we do not do so.

5. Some Combinatorial Properties of Group Divisible m-associate Designs.
If P, =0 = P,'+1('i = 1, 2, cer, M — 1), we have )\,,,_H.] = )\m_,'+2. Thus if
P=0=P;=---=P,,thenr =)\ = --- =\, and the GD m-associate
design reduces to an ordinary randomised block design. Hence, we have

TaeoreM 5.1. If, in a Group Divisible m-associate design, Py = 0 = P =
-+- = P, , then the design reduces to a randomized block design.

Let j consecutive s (j = 2, 3, ---, m — 1) of the GD m-associate design
be equal. In this case we can see from the association scheme that the design
reduces to a GD (m — j + 1)-associate design. The above result can be written
in the form of the following theorem.

TueoreM 5.2. If, in a Group Divisible m-associate design j consecutive \’s
(j=28,---,m— 1) are equal, then the design reduces to a Group Divisible
(m — j + 1)-associate design.

We now prove another important theorem.

THEOREM 5.3. In @ Py, Pm, -+, P2 — regular Group Divisible m-associate
design k, is divisible by Ny . Further, every block contains k/N treatments of the
fOTml)ﬁz...im (1,2 = 1,2, e ,Nz;ia = 1,2, e ,Ns; e ;Zm = 1,2, e ,Nm)
foranyi (i =1,2,---,Ny). ]

Proor. For any i (1 = 1, 2, ---, N1), let ¢; treatments of the form vi;,....,
(le=1,2,-++,Na3is=1,2,---,N3; +-+ ;%m=1,2,---, Np) oceur in
the jth block (j = 1,2, ---, b). Then, we have

b
Ze;i = NoN; -+ Nor,
6D 5
Zle;‘(e;' — 1) = NoN3 -+« Nu(nah + n2de + -+ + fomiAma),
i=

since each of the treatments occur in r blocks and every pair of treatments of the
form visy..ip, (2 = 1,2, -+ Neji3=1,2,-+-,Ns; -+ 5%m = 1,2, -+, Nn)
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occurs in Ag, A2, -+, OF Am—y blocks. Using the property of Pn, Pmy, -,
P, — regular GD m-associate design and (5.1), we get
(52) Z (ef) = N2N8 m>\m .
Let ¢ = b™' D> 316 = k/Ni. Then,
b
(5.3) D (¢; — &)® = NiN3 - -+ Nahm — bE’/N? = 0.
=
Therefore, ¢f = ¢; = -+ = ej = & = k/N;. Since ei(s = 1, 2, e, Nij
J=1,2,---, b) must be integral, k is divisible by N,. Further ¢j = k/N;

(¢=1,2,---,Ny1;j=1,2,---,b). This completes the proof of the theorem.
The following P;, P.regular GD 3-associate designs have a non-integral
value for £/N; and hence are non-existing:
l.v=12,b=16,r =4,k =3, N, = 2,N: = 3, N; = 2,
)\1 = 2,)\2 = O,)\3= 1

2.1)=12,b=16,7‘=4,k=3,N1=2=N2,N3=3,
)\1=1,)\2=0,>\3=1
3.v=12,b=9,r=3,k =4,N, = 3,N, = N; = 2,

)\1—1 )\2—0)\3=1
4.v=20,b=32r=8,k=5 N =2,N,=5,N; =2,
M=4N=1N=2.

A GD m-associate design is said to be symmetrical if b = v and in conse-
quence r = k. Shrikhande [9] and Chowla and Ryser [5] have obtained conditions
necessary for the existence of symmetrical balanced incomplete block designs.
Bose and Connor have obtained necessary conditions for the existence of sym-
metrical regular GD designs. We shall extend their results to symmetrical
regular GD m-associate designs. With this in view, we give a brief resume of
the important properties of the Legendre symbol, the Hilbert norm residue
symbol and the Hasse-Minkowski invariant.

6. Some known results about the Legendre symbol, the Hilbert norm residue
symbol and the Hasse-Minkowski invariant. The Legendre symbol is defined as

+1, if @ is quadratic residue of p;
(6.1) (a/p) =

—1, if a is a non quadratic residue of p.

A slight generalization of the Legendre symbol, is the Hilbert norm residue sym-
bol (a, b),. If a and b are any non zero rational numbers, we define (a, b), to
have the value 41 or —1 according as the congruence

(6.2) ez’ + by’ = 1 (mod p),

has or has not for every value of r, rational solutions z. and y, . Here p is any
prime including the conventional prime p, = «.
Many properties of (a, b), are given by Bruck and Ryser [3], Jones [6] and
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Pall [7]. For further use, we reproduce the properties of (a, b), taken from the
above references, in the form of the following theorems.
TaeoreM 6.1. If m and m' are integers not divisible by the odd prime p, then

(6.3) (m,m'), = +1,

(6.4) (m, p)p = (m/p).

Moreover, if m = m' # 0 (mod p), then

(6.5) (m, p)p = (M, p)yp-
THuEOREM 6.2. For arbitrary non-zero integers m, m', n, n', and for every prime p,

(6.6) (=m,m)p = +1,

(6.7) (m,n)p = (n,m),,

(6.8) (mm!, n), = (m, n)y(m',n),,

(6.9) (m, nn')p = (m, n)y(m, n'),,

(6.10) (mm',m —m')p, = (m, — m'),,

(6.11) 11 G, + s = (m+ DL =),

and

(6.12) (as’, b)p = (a, b),.

Now, let A = (as;;) be any n X n symmetric matrix with rational elements.
The matrix B is said to be rationally congruent to 4, written A ~ B, provided
there exists a non-singular matrix C with rational elements, such that A = CB(’,
where C’ is the transpose of C. If D; (v = 1,2, - - - , n) denotes the leading prin-
cipal minor determinant of order 7 in the matrix A4, then if none of the D; van-
ishes, the quantity

(6-13) Op = CP(A) = (_I; _Dn)pi;lz (Di y Di+1)p;

is invariant for all matrices rationally congruent to 4. C,(A) defined above is
known as the Hasse-Minkowski invariant.

The following lemmas regarding C, will be useful.

Lemma 6.1. If d 7s a rational number and Ay = dln , where I, is the identity
matriz of order m, then

(614:) Cp(Am) = (_1, —l)p(d’ _1)71':("»+1)/2‘

Lemma 6.2. If A and B are symmetric matrices with rational elements and
U = A 4+ B, is the direct sum of A and B, then

(6.15) Co(U) = (=1, =1),C,(A)Co(B)(|4], |B]), -
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7. Necessary conditions for the existence of Symmetrical Regular Group
Divisible m-associate Designs. Since the design is a symmetric one, det(NN /)
is a perfect square (cf. Connor and Clatworthy, and Shrikhande). Thus

Pllvl—lpévl(Nz—l) .. PNerz"’Nm—-l(Nm—l)
m

is a perfect square. This result can be written in the form of the following theo-
rem.

THEOREM 7.1. A necessary condition for the existence of a regular symmetrical
Group Divisible m-associate design is that PY*'Pyr®eh ... p¥iNe-Nm_1Nn=1)
is a perfect square.

The designs with the following parameters do not satisfy the above theorem
and hence are impossible.

1.0=24=b,’l‘= 6=k,N1=4,N2=2,N3=3,
)\1=3,)\2=2,)\3=1.
2.U=32=b,7’= 7=k,N1=4,N2=2,N3=4,
)\1=2,)\2=3,)\3=1.
3.v=30=0br= 7=k Ny =5 N,=3,N; =2
A1=2,)\2=4,)\3=1.
4. v =30 =b,r =12 =k N, = 3, N, = 5, N; = 2,
)\1=4:,)\2=6,)\3=4

5.7)=54=b,7‘=11=]€,N1=3=N2=N3,N4=2,

)\1 = 6,)\2 = 5,)\3= 4,)\4= 1.
Let
(71) Q1=BI—A1’ /L=27377m7
where B,’s and 4/’s are as defined in Section 4. Det(Q;) = 2, 3, -+, m can

be found easily, and we have
1Qi] = {(r = X\) + (M — M)m + -+ 4+ (Nimx — N)niy)
{(r = M) + O = Nic) + -0+ Nimg = Aimg)mag} ™ +2!

(7.2)

{T — Al}Nm—-i+2Nm—i+3"‘Nm—1(Nm—l)-

Now, let us calculate the Hasse-Minkowski invariant of (NN’) for odd primes
using the method of Bose and Connor. Taking the direct sum with —\, , NN’
becomes

(73) (NN), = [N N —M]'

Therefore, from Lemma 6.2,

(7.4) Co(NN')y = Co(NN')(Am, — 1)p.
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But
Qn L 1
Qn L
(7.5) (NN'); ~ :
ey
L L - L =\

where L is an NoN; - - - N th order column vector with —\,, everywhere. Hence
(7.6) Co(NN")1 = {Co(@u)}"* (| @m s = '™ ™Ay = [ Qm )5
Equating (7.4) and (7.6), we get

(7.7)  Co(NN') = {Col@m)}™ (| @m |, — DI (0, | Qu D}

C»(Qi)i = 2,3, -+ -, mcan be calculated in a similar way as above and we get
Co(Q:) = (r — N\, — D)Im@m D20\ — N, r — A"
(7.8) (@l r =M™ @], M — Aoy,
Co(Q:) = {Co(Qit)} " ™+2(| Qiy |, — 1)jmi+2m—isatl2
(7.9) it = My | Qi DpOhit = Aoy | Qut [)Mm=i+
(1 Qil, | Qix )M m=i42, i=3,4, - ,m.

Equation (7.9) is a recurrence relation. This equation with the help of (7.2)
and (7.8) finally gives Cp(Qn). Substituting this value of Cp(Qn) in (7.7),
C,(NN’) can be calculated. Now, since I, = NY(NN')(N")™', I, ~ NN'.
Therefore,

(7.10) Co(NN') = Cp(L) = (=1, = 1), = +1L.

Thus we have the following theorem

THEOREM 7.2. A necessary condition for the existence of a symmetrical regular
Group Divisible m-associate design is that Co,(NN') = +1, for odd primes p where
Co(NN'") s calculated from (7.2), (7.8), (7.9) and (7.7).

When there are only three associate classes the above calculations can be
simplified and the corollary follows:

COROLLARY 7.2.1. A necessary condition for the existence of a regular sym-
metrical Group Divisible 3-associate design is that

N N1+N2+N3+3)—N1Na(N1+N2)}/2
(P3, _ 1); 1N2N3(N1+N2+N3+3)—N1Na(N1+N2)}/ ()\3,Pl)p

¥ — D}/2
. (Pl, _ 1)1;1(N1+1)I2(P2’ _ l)Nx{Nz(Nz+l)+(N2 1) (N1+D)}/

(7.11)
-\ = g, PiP)Y (M — Mo, PoPs) ' (Py, Py) '™

C(Py, P)MiNe(py | py)ye@sTh = +1, for all odd primes p.
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IuLusTrATION 7.2.1. Consider the GD 3-associate design with the parameters
v=21=0b,r=7T=kN, =3=No=N;,\i =6,0 =27 = 1.
The left hand side of (7.11) is
(22, 13), = (13,2),(13, 11), = —1, when p = 11.

Thus the corollary 7.2.1 is not satisfied and the design is impossible.
ILLusTrATION 7.2.2. For the GD 3-associate design with the parameters

v=48=b,7r =10 =k N, =6, N, = 4, N; = 2,
M=4h=1N\=2
the left hand side of (7.11) is
(12, = 1), = (3, — 1), = — 1,forp = 3.

The Corollary 7.2.1 is not satisfied and the design is impossible.
By applying the Corollary 7.2.1, it can be easily verified that the following
designs are non-existing:

Lov=24=br=9=kN=2=N,Ns=6,M=6,0=1,7=3.
2.l)=24:=b,7‘=10=k,N1=2=N2,N3=6,)\1=6,>\2=2,)\3=4.
3.v=24=b,r=10=k, N, =6,No=2= N3, M1 =6, N2 = 2,03 = 4.
4.0=40=b, 7‘=13=IC, N1=10, N2=2$N3, AL = O, )\2=1,
>\3=4.

8. Acknowledgment. My sincere thanks are due to Professor M. C. Chakra-
barti for his kind guidance.
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APPENDIX

Here we give some numerical constructions in the useful range r, ¥ < 10.
For convenience we denote the treatment v, by (k) in the following examples.

1.1)=8=b,7‘=3=k, N1=2=N2=N3, >\1=2, )\2=0, A = 1.
Taking the treatments as

(111)  (112) (211)  (212)
(121)  (122) (221)  (222)
the plan of the design is
[(111) (112) (211)]
[(112) (111) (212)]
[(121) (122) (221)]
[(122) (121) (222)]
[(211) (212) (121)]
[(212) (211) (122)]
[(221) (222) (111)]
[(222) (221) (112)]
Reps. I II 111

2.U=8=b, 7’=4=k, N1=2=N2=N3, )\1=2, )\2=1, A = 2.
Taking the treatments as in the above example, the plan of the design is

[(111) (112) (211) (221)]
[(112) (111) (212) (222)]
[(121) (122) (221) (212)]
[(122) (121) (222) (211)]
[(222) (221) (111) (121)]
[(221) (222) (112) (122)]
[(211) (212) (122) (111)]
[(212) (211) (121) (112)]
Reps. I II IIT1 v

3.2)=8,b=24:,7’=9,]6=3,N1=2=N2=N3,)\1=4:,>\2=1,)\3=3.
Taking the treatments as in Example 1, the plan of the design is

Reps.
[(111) (112) (211)]
[(112) (111) (212)]
[(121) (122) (221)]
[(122) (121) (222)]
[(211) (212) (121)] I, IT, IIT
[(212) (211) (122)]
[(221) (222) (111)]
[(222) (221) (112)]
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[(111) (112) (221)]
[(112) (111) (222)]
[(121) (122) (211)]
[(122) (121) (212)]
[(211) (212) (111)] IV, V, VI
[(212) (211) (112)]
[(221) (222) (121)]
[(222) (221) (122)]
[(111) (121) (211)]
[(122) (111) (221)]
[(121) (112) (222)]
[(112) (122) (212)]
o o) Gy VI VI IX
[(222) (211) (122)]
[(221) (212) (121)]
[(212) (222) (111)]
Reps. LILTI  IV,V,VI VI, VIII, IX

4.1)=8=b, 7‘=5=]C, N1=2=N2=N3, >\1=4:, >\2=2, >\3=3.
Taking the treatments as in Example 1, the plan of the design is

[(111) (112) (211) (221) (222)]
[(112) (111) (212) (222) (221)]
[(121) (122) (222) (211) (212)]
[(122) (121) (221) (212) (211)]
[(211) (212) (121) (111) (112)]
[(212) (211) (122) (112) (111)]
[(221) (222) (111) (121) (122)]
[(222) (221) (112) (122) (121)]
Reps. I II 111 IV %

5.U=8=b, 7‘=6=k, N1=2=N2=N3, )\1=4:, )\2=5, )\3=4:.
Taking the treatments as in Example 1, the plan of the design is

[(111) (112) | (121) | (122) | (211) (221)]
[(112) (121) | (122) | (111) | (222) (211)]
[(121) (122) | (111) | (112) | (221) (212)]
[(122) (111) | (112) | (121) | (212) (222)]
[(211) (212) | (221) | (222) | (111) (121)]
[(212) (221) | (222) | (211) | (122) (111)]
[(221) (222) | (211) | (212) | (112) (122)]
[(222) (211) | (212). | (221) | (121) (112)]
Reps. I I IIT v Vv VI

6.v=12=b,7‘=4:=k,N1=2=N2,N3=3,>\1=3,)\2=0,>\3=1.




768 DAMARAJU RAGHAVARAO

Taking the treatments as

(111) (112) (113) (211) (212) (213)
(121) (122) (123) (221) (222) (223)
the plan of the design is
[(111) (112) (113) (211)]
[(112) (113) (111) (212)]
[(113) (111) (112) (213)]
[(121) (122) (123) (221)]
[(122) (123) (121) (222)]
[(123) (121) (122) (223)]
[(211) (212) (213) (121)]
[(212) (213) (211) (122)]
[(213) (211) (212) (123)]
[(221) (222) (223) (111)]
[(222) (223) (221) (112)]
[(223) (221) (222) (113)]
Reps. I II II1 Iv

7.1)=16=b, T=4=k, N1=2=N2=N3=N4, )\1=0, )\2=2,
A; = 0, A, = 1. Taking the treatments as

(1111)  (1112) (1211)  (1212)
(1121)  (1122) (1221)  (1222)
(2111) (2112) (2211) (2212)
(2121)  (2122) (2221)  (2222)
the plan of the design is
[(1111) (ri2iy . (e, (2121)]
[(1121) (1111) (2112) (2122)]
[(2211) (2221) (1111) (1122)]
[(2212) (2222) (1122) (1111)]
[(2221) (2211) (1112) (1121)]
[(2222) (2212) (1121) (1112)]
[(1112) (1122) (2121) (2111)]
[(1122) (1112) (2122) (2112)]
[(2111) (2122) (1211) (1222)]
[(2112) (2121) (1222) (1211)]
[(1211) (1221) (2211) (2222)]
[(1221) (1211) (2212) (2221)]
1(1222) (1212) (2222) (2211)]
[(1212) (1222) (2221) (2212)]
[(2122) (2111) (1221) (1212)]
[(2121) (2112) (1212) (1221)]

Reps. I 11 III IV
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8.v=16, b=32, r=8, k=4, Ni=2= N, =N;=N,, N\ = 4
A = 2, N\ = 0, \s = 2. Taking the treatments as in the above example, the
plan of the design is

Reps.
() | @ue) | @1 | (2121)]
[(1112) | (1) | (212) | (2122)]
[(2111) (2122) (1121) (1122)]
[(2112) (2121) (1122) (1121)] -
[(1211) (1212) (2211) (2221)] ’
[(1212) (1211) (2212) (2222)]
[(2211) | (2222) | (1221) | (1222)]
[(2212) | (2221) | (1222) | (1221)]
[(2221) | (2211) | ) | @12)]
[(2222) (2212) (1112) (1111)]
[(1121) | (u22) | (2222) | (2211)]
[(1122) | (u21) | (2221) | (2212)) 1L, TV
[(2121) (2111) (1211) (1212)]
[(2122) | (2112) | (1212) | (1211)]
[(1221) | (1222) | (2122) | (2111)]
[(1222) | (1221) | (2121) | (2112)]
[(2111) (2112) (1111) (1121)]
[(2112) (2111) (1112) (1122)]
[(111) | (22) | (221 | (2122)]
[(1112) (1121) (2122) (2121)] vV
[(2211) | (2212) | (1211) | (1221)] ’
[(2212) | (2211) | (1212) | (1222)]
[(1211) (1222) (2221) (2222)]
[(1212) | (1221) | (2222) | (2221)]
(i2n)y | i) |2y | (2212)]
[(1122) | @u2) | (2212) | (2211)]
[(2221) (2222) (1122) (1111)]
[(2222) | (2221) | (1121) | (1112)]
(1221) | (1211) | (2111) | (2112)] VIL, VIII
[(1222) (1212) (2112) (2111)]
[(2121) (2122) (1222) (1211)]
[(2122) (2121) (1221) (1212)]
Reps. 1, II I, IV V,VI  VII, VIII

9.1)=18,b=42,7‘=7,k=3,N1=3,N2=3,N3=2,>\1=2,)\2=0,
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As = 1. Taking the treatments as

(111) (112) (211)
(121) (122) (221)
(131) (132) (231)

the plan of the design is

10. v = 24,6 = 16,r =4,k =6, N1 =3, Ny =4, N; = 2, s = 4, N2 = 0,

[(111), (112), (211)]
[(121), (122), (221)]
[(131), (132), (231)]
[(211), (212), (311)]
[(221), (222), (321)]
[(231), (232), (331)]
[(311), (312), (111)]
[(321), (322), (121)]
[(331), (332), (131)]
[(111), (221), (331)]
[(111), (231), (321)]
[(112), (221), (332)]
[(112), (231), (322)]
[(121), (211), (331)]
[(121), (231), (311)]
[(122), (211), (332)]
[(122), (231), (312)]
[(131), (211), (321)]
[(131), (221), (311)]
[(132), (211), (322)]
[(132), (221), (312)]

A3 = 1. Taking the treatments as

(111)  (112) (211)
(121)  (122) (221)
(131)  (132) (231)
(141)  (142) (241)

the plan of the design is

[(111), (112), (211), (212), (311), (312)]
[(111), (112), (221), (222), (321), (322)]
[(111), (112), (231), (232), (331), (332)]
[(111), (112), (241), (242), (341), (342)]
[(121), (122), (211), (212), (321), (322)]
[(121), (122), (221), (222), (331), (332)]
[(121), (122), (231), (232), (341), (342)]
[(121), (122), (241), (242), (311), (312)]

(212) (311)  (312)
(222) (321)  (322)
(232) (331)  (332)

[(111), (112), (212)]
[(121), (122), (222)]
[(131), (132), (232)]
[(211), (212), (312)]
[(221), (222), (322)]
[(231), (232), (332)]
[(311), (312), (112)]
[(321), (322), (122)]
[(331), (332), (132)]
[(111), (222), (332)]
[(111), (232), (322)]
[(112), (222), (331)]
[(112), (232), (321)]
[(121), (212), (332)]
[(121), (232), (312)]
[(122), (232), (311)]
[(122), (212), (331)]
[(131), (212), (322)]
[(131), (222), (312)]
[(132), (212), (321)]
[(131), (222), (311)]

(212) (311)
(222) (321)
(232) (331)
(242) (341)

(312)
(322)
(332)
(342)
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[(131), (132), (211), (212), (331), (332)]
[(131), (132), (221), (222), (341), (342)]
[(131), (132), (231), (232), (311), (312)]
[(131), (132), (241), (242), (321), (322)]
[(141), (142), (211), (212), (341), (342)]
[(141), (142), (221), (222), (311), (312)]
[(141), (142), (231), (232), (321), (322)]
[(141), (142), (241), (242), (331), (332)]
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