A CLASS OF FACTORIAL DESIGNS WITH UNEQUAL
CELL-FREQUENCIES
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1. Summary. A class of multifactorial designs are defined and analyzed. The
designs considered have each a total number of observations that can not be
divided equally among the cells of the designs; however, by distributing the
observations in a way that is in a certain sense symmetrical, the equations that
determine the least squares estimates of the linear parameters become explicitly
solvable.

The case of two non-interacting factors with arbitrary numbers of levels is
treated first. In the n-factor case we have to restrict ourselves to factors having
equal numbers of levels. After defining the designs, the estimates are computed.
Some general discussions of the symmetries and algebraic properties involved
conclude the paper.

2. Introduction. The first case to be considered is that of two non-interacting
factors, with I and J levels respectively. For each pair ¢, j of levels the measured
magnitude has an expected value 7;; . We assume that the 7;; can be expressed
in terms of I 4 J -+ 1 parameters {u, o, 8;} by the equations

(1) ni; = b+ a; + Bj, a. =B = 0.

The dot indicates as usual summation over the range of the index it replaces.

Denoting by ¥ the kth measurement in the cell in which the factors 4 and B
are applied at levels 7 and j respectively, we assume the y;; to be normal inde-
pendent random variables with means 5;; and common variance o”.

The experimenter is free to choose the number n;; of observations in each
cell. The choice of the matrix n;; may be influenced by three requirements; first,
the cost of experimentation makes an unnecessarily large number of observa-
tions undesirable; second, for a given number n.. of observations, different ways
of dividing this number among the different cells will result in different patterns
of information about the parameters, and unless specific conditions about some
of the levels are added, the design will be the closer to optimal the more evenly
the number n.. is distributed among the cells; and last, it is impossible to write
simple explicit formulas for the least-squares-estimates that hold for general
n;; , while for some classes of n,;-matrices, such formulae can be found.

Considering the two last requirements only, we are led to a well known class
of designs, namely those in which all the n;; are equal, say to n.
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As we have n.. = nlJ for this class, we cannot regulate the total number of
experiments except in jumps of IJ; in many cases this may lead to a violation
of the first requirement. Consider for example a case in which one observation
per cell would suffice for estimation of the parameters u, «;, 8;, while for the
estimation of ¢°, we would want a few additional observations in some of the
cells. Within the class of constant n;;, this can be achieved only by doubling
the total number of experiments.

There have been various attempts of considering special designs with unequal
frequencies (Cf. References). Among the special cases treated by Daniel [2]
and, in private communications with Daniel, by A. Birnbaum and Scheffé, there
were designs with some symmetry properties. It was Birnbaum’s suggestion to
look for a more general class of designs that led to the results described in this

paper.

3. Definition of S and Calculation of the Estimates. Let us proceed now to
define the class S. We start out with d by d unit matrix, d being any common
divisor of I and J, and change it into an I by J matrix by replacing each of its
“one”’ entries by a I/d by J/d matrix of ones, and each of its zeros by a similar
matrix of zeros. This way we define a matrix

(1 1 )
1 -
1 . 0
11
1
0 |1
0

.

Denoting this matrix by A7, , or for short A;,;, we can now define S as the
class of all designs with matrices (n;;) that can be written either in the form
(n) 4+ Arsor (n) — Ay, for some positive integer n, and d, a divisor of n,
where (n) denotes the I by J matrix having all entries equal to n. We claim, (a)
the number 7n.. runs in the class S over all integers of the form

IJ(n £d*);

and (b) there is a simple explicit formula for the least-squares estimates that
holds for all the designs in S.

(a) becomes evident if we observe that Ar ; has IJ/d non-zero entries, and
we shall prove (b) by arriving at the formulae, first for the minus sign and then

in general.
The least squares estimates of the row effects can be obtained from the numbers

(2) a; = Yi./Nie — Yoo/ e
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which span uniquely the estimation space restricted by the side conditions.
Each a; is a unique linear combination of the least squares estimates &;, B:
given by

(3) a; = & + /T (n + dH12_* 85,

where Y _* denotes summation over the cells with » 4 1 observations only.
Using vector notation a = (a;, ---, ar), etc.,

(4) a =&+ [d/J(nd + 1)] ALB,
and, by interchanging rows and columns,
®) b =8+ [d/I(nd + 1)] Asé.

To eliminate 8 from equations (4) and (5), we subtract from (4) a suitable
multiple of (5). Using the equation

(6) AIJAJK = (J/d)AIK
which follows easily from the definition of A;;, we arrive at
(7) a — [d/J(nd + 1)]JAb = & — [d/I(nd + 1)*|A 4.

In order to solve this equation, we have to invert a matrix which can be written,
if we denote the unit matrix by U, as U — [d/I(nd + 1)*4,;.

We can find the required inverse by finding the value of ¢ that makes the
product

®) (Un — [@/I(nd + 1)Ar) (U + tA1r)

equal to the unit matrix. Reducing the A}; term by applying (6) we obtain
t = 1/In(nd + 2). Having found the inverse we can now solve equation (7).
Denoting by B and C vectors of row and column-sums, respectively, and by S
a vector with  components, all equal to the grand total y... , we have

& = [d/J(nd + IR + [d/IJn(nd + 1)(nd + 2)]AR
— [@/IJn(nd + 2)]A1,C — [d/1J(nd + 2)]8.

The corresponding formula for 8 is easily obtained by interchanging R and C,
as well as I and J. The estimate of p is obviously equal to (d/IJ(nd — 1))y---,
the mean of all observations. The change in the formulae for the case (n;;) =
(n) — Ar,s, will consist of changing the signs of d, and of all the matrices.
Merging both cases into one, and denoting by S also a vector with J components
all equal to y- - -, we have finally

& = [d/J(nd £ IR + [d/IJn(nd £ 1)(nd =+ 2)AnR
F [d/IIn(nd = 2)]A1,C — [d/IJ (nd = 2)]8,

= [d/I(nd = 1)IC + [d/JIn(nd £ 1)(nd = 2)]4,,C
F [d/JIn(nd + 2)]AnR — [d/JI(nd £ 2)]8,

(9)

(10)

(11)

(12) fi = [d/IJ(nd = 1)]8S.
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As a final remark, let us note that our definitions and formulae are valid as
long as n is at least 1, and d is at least 2, with the exception of the case n = 1,
d = 2, in which nd — 2 equals zero, and the n — d " replicate is not sufficient
for estimation of the parameters. On the other hand, as ford = 3, n = 1 the
formulae remain meaningful also for the lower sign, certain designs with some
empty cells are included in the class considered here.

Most of what has been done in the preceeding section admits a rather straight-
forward generalization to the case of ¢ factors acting additively, that is, with
no interactions of any order. The only step that is not generalized so easily is
the reduction of equations (4) and (5), each involving both row-effect estimates
and column effect estimates, to equation (7), which isolates the row effects. In
order to make possible an explicit solution to the analogous problem in the case
of many factors, we have to restrict our considerations to designs having an
equal number of levels for every factor. Denoting the effect of the hth factor at
its 7th level by a;n) , we define our model by the equations

(13) Yir = p + ; oy + €k

where 7 denotes the vector (¢(1), --- 7(q)), andk = 1,2, - - -, n;,; , with the error
terms distributed as usual. About the parameters we assume Zl ay = 0,
h=12 ---q.

In order to determine the number of observations in each cell, we choose a
divisor d of the number of levels I, and construct a ¢g-dimensional hyper-cube of
side-length d. Putting d ones at the grid points along the g¢-space-diagonal of
the hyper-cube, and zeros at the other grid points, we obtain the ¢-dimensional
analogue of the d by d unit matrix. Replacing each (¢ — 1) dimensional layer
by I/d identical layers, an array of I? points is obtained, 1°/d*™" of which carry
units. If we start out with an I%design having n observations in each cell, and
add 41 observation to each cell that corresponds to a unit in the array, an
n 4 1/d*" duplicate will be obtained.

Defining the numbers a;(h) as the average of the observations in the layer
determined by a given level of a given factor, minus the average of all observa-
tions, we get a system of vector equations;

(14) ‘1(1) = 5‘(1) + gAn&(Q) + gAnd(3) + -+ gAnﬁ(Q)
a(2) (.]AIId(l) + &(2) + gAn&(o?b) + -+ gAmi(q)

a(q) = gAua(l) + -+ -+ + gAna(g — 1) + a(q)

where ¢ = [d/I ' (nd*" = 1)](I/d)*? = d/I(nd*™" £ 1). The first factor
in g is the reciprocal of the number of observations per (» — 1) — dimensional
partial design. The second factor is the number of higher populated cells that
two levels of different factors have in common.

For the solution of (14) inversion of a ¢ by ¢ matrix having I by I matrices
as elements (a g by ¢ by I by I tensor of the fourth degree) isrequired. Westart
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by considering the matrix Gy, obtained by replacing 4 ;; in the tensor of (14) by
a scalar variable z. Putting for its inverse

2y oy oy
Gu=(? 2 7 Y
vy oy

we find
y = gz/l(q — 1)g's" — (¢ — 2)gz — 1],
z=—(qg— 2)gz — 1/[(¢g — 1)g"s" — (¢ — 2)gz — 1].
We can write this result in a form that does not involve any fractions
Gul((g — 1)g"s" — (¢ — 2)ge — 1)@
= ((¢ = Dg'z* — (¢ = 2)gz — 1)U,

where the expression in the square brackets equals a ¢ by ¢ matrix with
—(q¢ — 2)gz — 1 along the diagonal, and gz in the other places. Having dis-
posed of fractions, we can now substitute A;; for z. Carrying out the substitu-
tion in equation (15), G4, becomes the tensor of (14), and the expression in the
square brackets becomes a tensor having — (¢ — 2)gA i — U along its diagonal,
and gA;; in the other places.

Applying all this to (14), we arrive at the reduced equations,

(¢ — 1)g*Alr — (¢ — 2)9An — Unl &(1)
= —[(¢ — 2)gAu — Unla(1) + gAnla(2) + -]
We can now proceed as in the two-factor case, and get, putting N for nd*”,
&(1) = d7/[I"(N £ 1)18(1)
(17) + [(¢ — 1)d/I°N(N =% 1)(N = ¢)]4:8(1)
F dY[I'N(N — ¢)AulS(2) + --- S(g)] — d* /I (N +¢)8.

As in the 2-factor case, the lower signs serve for the n — 1/d*” duplicate. As
for ¢ = 3 we have N = nd*™" > ¢, the denominators never vanish except in
the case mentioned before when ¢ = 2 and d = 2, and the formulae are valid
unrestrictedly. By permuting the factors, estimates for the other factors can
be easily obtained.

(15)

(16)

4. General Symmetrical Designs. In this section we shall examine closer the
symmetry properties that the designs treated in this paper have in common.

The various symmetry properties of the designs having equal numbers of ob-
servations in all cells are implied by the invariance of these designs under all
permutations of the levels of any factors; furthermore, those designs, the “full
multiple replicates”, are the only ones left invariant by all permutations. Cer-
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tainly, invariance under all permutations assures us of equal treatment of all
levels of each factor. It implies an even stronger property : different ordered pairs
of levels will enter the design similarly, as will any different ordered n-tuples.
This additional property is certainly welcome. Some of the questions the designed
experiment might be called upon to answer do involve pairs or other sets of levels,
and it would be natural to expect symmetric treatment of these questions as
well. However, we know that we have to give up some requirements if we want
to include fractional replicates, and it is this “symmetry of subsets” that we
choose to sacrifice.

Let us examine the freedom gained by requiring symmetry with regard to
single levels only, by looking at the two-factor case. In this case, the design is
determined by a matrix having the cell frequencies as its entries. Applying single-
level symmetry to the row factor, we find that the rows of the matrix have to be
equal to each other; however, as the order of entries in a row is determined by the
order of levels of the column factor, the order in a row is immaterial, and the
word “‘equal’ should be read “differing only by a permutation of their elements”’.
Similar ‘“equality’’ is implied for the columns of the matrix. Any unit matrix can
now serve as an example of a matrix having the required properties and yet not
belonging to the full replicate designs.

Returning to the multifactorial designs, we arrive at the following formulation
of our symmetry requirements:

DeriniTiON: A design is called “symmetrical with regard to single levels”, or
from here on, for short, “symmetrical”, if the two partial designs resulting from
fixing any one of the factors at two different levels, can be transformed one into
the other by permuting the levels of the other factors.

‘We now restrict our class of designs even further, by introducing a restriction
that is not motivated solely by considerations of symmetry. The designs we
shall consider will all have only two different numbers of observations per cell
occurring in their cells, furthermore, those two numbers will differ from each
other by one. We justify this restriction by the following ‘‘optimality argument’’:
the definition of a symmetrical design implies that the different cell frequencies
appearing in partial designs belonging to different levels of the same factor, will
be the same, possibly differently arranged. If there were two cells in the design
whose numbers of observations differed by more than one, we would find two
such cells in every subdesign and a new design could be defined by decreasing
by one the number of observations in the higher populated cell and increasing
it in the other. The resulting design would still be symmetrical and have the same
total number of observations as the original design. As whenever the given total
number of observations makes equally populated cells possible, the fully repli-
cated design is in some sense optimal, we can interpret the above restriction as
an attempt to avoid unnecessary deviations from optimality.

Having narrowed down the class of designs, we can now turn to the last re-
quirement: existence of explicit estimation formulae.

The fact that permitted us to look for an inverse of a linear polynomial in
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Arr among the set of linear polynomials in A,y is the degree of minimal poly-
nomial of A;; : it is quadratic. In general, the inverse of any regular matrix P
that is a polynomial P(4), where A has a minimal polynomial of degree r, can
be written as Q(4), Q being of degree r — 1 at most.

Proor: The set of all such Q(A) is a ring and in this ring the ideal generated
by P(A) must be the whole ring, otherwise it would be of lower dimension and
P(A) would be singular. Therefore, P(A) has an inverse among the Q(4).

In general for a I by I matrix r can be any number from 1 to /. As we have to
find r constants in order to invert the matrix, the inversion can be done simply
only for low r. The class S can be characterized as the class of matrices having
the symmetries and optimality properties mentioned above, and a minimal
polynomial of degree r = 2.
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