CONFIDENCE BOUNDS CONNECTED WITH ANOVA AND MANOVA FOR
BALANCED AND PARTIALLY BALANCED INCOMPLETE
BLOCK DESIGNS!

By V. P. Baaprkar?

Unaversity of North Carolina

1. Introduction and summary. It is well known [3, 4] how, in the case of any
general strongly testable [5] linear hypothesis for either ANOVA or MANOVA
one can put simultaneous confidence bounds on a particular set of parametric
functions, which might be regarded as measures of deviation from the ‘“total”’
hypothesis and its various components. The parametric functions are such that,
in each problem, one of these can be appropriately called the ‘“total”’ and the
rest ‘“‘partials” of various orders. For each problem the ‘‘total” function, (i) in
the univariate case, is related to, but not quite the same as, the noncentrality
parameter of the usual F-test of the ‘“total”’ hypothesis in ANOVA, and (ii)
in the multivariate case, is the largest characteristic root of a certain parametric
matrix which is related to, but not quite the same as, another parametric matrix
whose nonzero characteristic roots occur as a set of noncentrality parameters
in the power function for the test (no matter which of the standard tests we use)
of the “total” hypothesis in MANOVA. The same remark applies to ‘“partials”
of various orders considered in the proper sense.

In this note, for both ANOVA and MANOVA, the hypothesis considered is
that of equality of the treatment effects—vectorequalityin the case of MANOVA.
Starting from such a hypothesis, explicit algebraic expressions are obtained
for the total and partial parametric functions that go with the simultaneous
confidence statements in the case of both ANOVA and MANOVA and for
balanced and partially balanced designs. It is also indicated how to obtain, in a
convenient form, the algebraic expression for the confidence bounds on each
such parametric function, without a derivation of these expressions in an ex-
plicit form.

2. Notation and preliminaries.
(1) Univariate case. Let x denote a column-vector of n independent normal
variables with a common variance ¢° and the means given by

(1) Ex = An x mOm x 1,
where A is a matrix of known constants and 0 is a vector of unknown parameters.
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The hypothesis
(2) 3: B,xm0 =0 [Rank B = g

is said to be strongly testable if Rank (A’, B’) is equal to Rank (A). If we
write

(3) Bo = 4)8 X1y
then the “total” parametric function, A, associated with 3¢, is
(4) A = ¢'D7¢,

where Do is the variance-covariance matrix of the best unbiased linear estimates
of ¢. It may be observed that A/c” is the noncentrality parameter of the F-test
for 3¢y . Confidence bounds on A, with a confidence coefficient greater than or
equal to (1 — a), are then [3, 4] given by

H 3
(5) Sizo—[ s pa] SigA%§s§o+[nera] sk,

n—r

where r = Rank A, F, is the 100a% significance point of F withdf. sandn — »
respectively, Sg, is the sum of squares due to 3¢y and Sg is the sum of squares
due to error. We also have the simultaneous confidence statements

3 H
S S
(6)  Slaym — [n —~ rFa] St < aly = Stom, + [n - rFa] Sk,

where Ay = ¢{.,)D?.})¢(¢) , $@ is any subvector of ¢, D, is the corresponding
submatrix of D and S,#, is the corresponding sum of squares due to the partial
hypothesis 3wyo: $w@ = 0. (5) and (6) are implications of (13.2.21) on p. 90
in [3].
In the case of treatment-block designs, we have
t1=1,2 .-,
7 8o = t; + b; . ') v
() ! .7=112)"'7b:
if the ath observation belongs to the sth treatment and jth block. The hypothesis
of equality of treatment effects may be expressed as

(8) 5c0: (Iv—l ) _Jv—l.l)t = 01

where t' = (t;, &, -+, &) and J,. = {1}, x .. We shall write J. xras J,. We
assume that the design is connected. Let n;; = 1(0) if the 7th treatment appears
(does not appear) inthe jth block. Then N = (n;), x» is the incidence-matrix of
the design. Let r, k, T and B denote the number of replications of each treatment,
the number of observations in each block, the vector of treatment totals and the
vector of block-totals respectively. Then it is well-known [2] that the equations
for t are

(9) Ct = Q,
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where C = rI — (1/k)NN’and Q = T — (1/k)NB. Also
(10) Cov (Q) = ¢°C.

Then, from (3) and 8), ¢; =t; —t,,%2 = 1,2, -+ ,v» — 1. We may express A in
a symmetrical form by taking ¢ = (I, , —Jo—1.1)§, where

=t — (/) + b+ -+ 1), 1=1,2 -,
From (4)
(11) A= E'(Iv—l ) _Jv—~l,1),D—1(Iv—l ) —Jo—l,l)f-

(ii) Multivariate case. Let X denote a matrix of n independent p-dimensional
normal variables with a common variance-covariance matrix X, p being the
number of characters observed on each individual, and let the means be given by

(12) EXnxp = An x mOmx p,

where @ is a matrix of unknown parameters. Suppose that

(13) 3o: BOU, %, =0 [Rank U = u = p]
is the “strongly testable’” hypothesis to be tested. If we write

(14) BOU = oy,

then the “total” parametric function, A, associated with 3C, is [3, 4] given by
(15) A = Cuax [¢'DT'$].

It may be observed that the characteristic roots of ¢'D~$(U’SU)™" are the
noncentrality parameters in the power function of the test (no matter which of
the standard tests we use) of the ‘“total”’” hypothesis given by (13).

The confidence statement is [3] given by

b
C?nax(sﬂo) - I:n i o Ca] Cl*nax(SE) é Ai é
(16)

b
Chax(Smy) + [ 2 0,,] Chax(Ss),

n—r
where Sz, and Sg are the sum of products matrices due to the hypothesis and
error respectively, and C, is the 100a% significance point of the distribution of
the largest characteristic root, with d.f. u, s, and n — r. In this case, we have
simultaneous confidence statements, similar to (6), given by

S
Cl?nax[s(a)ﬂo] - [n —

i
r Ca:l Cl*nax(SE) é A%u)
3
= C?nax[s(a)ﬂo] + [ § Ca:l C?xlax(SE)y

- n—r

(17)

where Aw) = Crmax [d’za)D(—ul)d)(a)], b being a submatrix of ¢ obtained by choosing
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some rows of ¢. In addition, we have, by dropping some columns of ¢, simul-
taneous confidence statements given by

H
C?nax[s(b)ﬂo] - [n _s_ " Ca:l C?nax[s(b)l!] < A},

(18)
é szx[S(b)Ho] + [

3
n—r Ca:l C%ﬂax[s(b)ﬂ];
where Ag) = Cimax [6»D 0], ¢ being a submatrix of ¢ obtained by choosing
some columns of ¢, and Sgym, and Sg)z are the corresponding submatrices of
Sk, and Sg. (16), (17) and (18) are implications of (14.6.3) on p. 101 in [.3]
In the case of treatment-block designs, we have

1 =12 -0,
(19) 6 = 1 b, -
k= L2--- » Dy

where z{” denotes the kth character measured on the ath experimental unit or
individual that turns up for the ¢th treatment and the jth block; and ¢, b5®
stand respectively for the contributions to the expectation of the kth variate

made by the 7th treatment and the jth block.

From (1) and (12) we have the same “‘structure matrix”, A, in the multivariate
situation as in the univariate case. This “structure matrix’’ depends on the design
as well as on what the experimental statisticians have called the model, e.g., (7)
and (19).

In this set-up, so far as the hypothesis (13) is concerned, we shall take U = I
for simplicity.

3. Balanced incomplete block designs.

(i) Unidvariate case. Here

A

C=rL—%[(r—)\)L+>\L]=%L—EL.

Imposing the usual condition, J,t = 0, to get unique solutions, we have
t = (k/\)Q. Therefore, ¢ = k/Av(L—1, —J»—1,1)Q, and hence

2
(20) D = o (L, = Joa)C(T, — Jura)’ = & (L + T,

whence
(21) D =2 (1L — (1)),

Thus, using (11) and the relation J,&€ = 0,
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(22)

_ v 2 2
- %" ; Et .
Then we can have a confidence statement of the form of (5) with n = bk,
r=>b+4+v—1,s =v — 1and A given by (22).
For the “partial” statements (6), if ¢ = (Biy , big, =+, bi,), (£ < v — 1)
then, from (20),

(23) D = yﬁ; (I 4+ Jo).
Hence

_ A 1
(24) D(al) = Fv (It - t_-i-_I Jt)
and

Av 1
A = 'I'c-d):a) (Ic B Jt) b -

For a symmetrical expression, we take ¢u = (I, —J:.1) &), Where
fij@) = ti; — (L/(t + 1))[tsy + sy + --- + i, + 1]
so that, using Ji €@ = 0,

v 1
A = % £ (Iz+1 Tir1 Jt+1> t 20

v
(25) = Ttoko

x t
= 702 [ng Eg,v(a) + Ei(a):l .

(ii) Multivariate case. We have the confidence bounds of the form of (16) with
n="bk,r=b+v—1,s=0v— 1land

A= Cmax l:d’, 'A_I;') (Iv—l - -l]); Jn—l) ¢:| .

Here again we may write ¢ = (L1, —Jo—11)% where £ = (§%, -, £?) and
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P =P — 311t Then A = (\o/k)Crax (¥E). We have, from (24), one
set of “partlal” statements of the form of (17) with

A = % max [¢<u) ( 3 + T J) ¢(a>]

or, from (25)) A(a) = (N)/k)omax [EZa)E(a)]) where ‘E(a) = (‘E&; y T ‘Ez:)) .
Similarly, we have, from (21), another set of “partial” statements of the form

of (18) with
A 1 A ’
Ay = Crax |:¢(b) kv (Iv—l - Jn—l) (I>(b)] = —kg Crax(Emy Emy) -

4. Partially balanced incomplete block designs.

(i) Univariate case. Consider a PBIBD with m associate classes and associ-
ation matricesB; (s = 0, 1, - - - , m). Thenit iswell known [1] that C = >_roaB;,
where Bo=1,, ap = r(k — 1)/k, a; = —Ni/k, =1, - -+ , m; and, imposing the
condition J; ,t = 0 on (9), we have

t= (i ek B;,) Q = EQ, =say.
k=0

It is well known that, when the design is connected, Rank C = v — 1, so that
the condition J,,t = 0 is sufficient to give unique solutions. Further

(26) Ji,€C=0 and J,,Q =0.
Let
c =(S1)v—11=(ci’c)=<?illlg)’
»Xv 0
and

_ E1 v—l_ ’ _ Eu f
E_<e/> 1 —(Elye)"‘<f/ eo)-

Then (L v) t= (%1> where Q" = (Qi, Q,). Hence

t=EQ=@&@(g>=EQr+wm

Therefore, in view of (26),
t=m@—¢MQ=Wmemm=mrwm¢w@§
Hence

(27) (ﬁf=®—%wm,
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so that,

(Ei - eJl,v—lix) (ﬁfv) = Iv .

Thus E; C; — eJ1,-1Ci + xJ1, = I, . Hence, in view of (26),
ECi + eC’' = L — xJ1.,

that is,

(28) EC=1 —xJ,.

Also, from (27),

C\ o .
(Jl,v) (El - eJl’”“lnx) = I,, .

Hence Cix = 0. But C.J,; = 0 and Rank C;, = v — 1. Therefore, x = zJ,1.
Furthermore, J;,x = 1, whence zJ,,J,1 = 1, that is, z = v™. (28) thus reduces
to

(29) EC=1 — (1/»)]..
Now $ = (L, =Joa)t = (L, —Ju-1.1)EQ, so that,
D= (L, —J,,_l,oECE( L )
_Jl,v—-l
Therefore, from (29) and (27),

D = (Iv—l ) "'Jv—-l,l) (Iv - %Jv) (E; - eJl,v—-l)

= (I’v-—l ) —Jv—-l,l)(E{ - eJl,v—l)
(30) = Ey — fJI,v—l —Jv—l,l '+ e Jv—l .
Furthermore, premultiplying both sides of the equation,

11
Ell b le,v—li;)‘ Jv—-l,l [ Cu d] _ I
' — €o Jl’v_l'i ;}i Jl.v-—l 1

by (I—1, —Js—1,1), we have DCy; = I,_; and, therefore,

(31) D7 =Cy.
Hence, from (11),
(32) A = (l)ICu(l) = E’CE

Here, we may note that ¢;; = ay = r(k — 1)/k and ¢;; = «; = —N\;/k if 7th and
Jth treatments are Ith associates. Then we can have a confidence statement of the
form of (5) withn = bk, r = b4+ v — 1,s = v — 1 and A given by (32).
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The ‘“partial” statements of the form of (6), however, cannot be made in a
compact form, unless we know the association scheme. If we have cbi,,) =
(1, -+ ,¢:),then Dy = X — YW 'Z, where

X Y ,
C“*[z W] v—t—1

¢ v—t—1

and thus Awy = ¢w[X — YW 'Z]¢ .
(ii) Multivariate case. We have the confidence bounds of the form of (16) with
n=>0bk,r=b+v—1,s=v— 1and

A= Cmax [¢’Cu¢] = Cmax [EIC‘E]
We have, as before, one set of “partial”’ statements of the form of (17) with
Aw = Cux [ (X — YW 'Z) pew).
The other set of “partial’”’ statements is of the form of (18) with

Agy = Chmax [¢£b)cll¢(b)] = Chnax [EZb)Cf(b)]-

5. General “connected” incomplete block designs. It is well known [2] that,
in general, Ct = Q, which, on imposing the condition J;,t = 0, yields t = EQ.
Then, arguing as before, from (26) to (32), we have

(33) A = ({)’C]](l) = E,CE.

Then we can have a confidence statement of the form of (5) with

v b
n=y.r=9, ki, r=b+v—1, s=v—1
j=1

1=1

and A given by (33). We can have “partial” statements and confidence bounds
in the multivariate situation analogous to those for PBIBD.
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