ESTIMATES WITH PRESCRIBED VARIANCE BASED ON
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1. Summary. A method is given which provides, under conditions satisfied
by many common distributions, rules for sampling in two stages so as to obtain
an unbiased estimator of a given parameter, having variance equal to, or not
exceeding, a prescribed bound. The method is applied to estimation of the
means of binomial, Poisson, and hypergeometric distributions; scale-parameters
in general and of the Gamma distribution in particular; the variance of a normal
distribution; and a component of variance. The use of such estimators to achieve
homoscedasticity is discussed. Optimum sampling rules are discussed for some
of these estimators, and some tables are given to facilitate their use. The effi-
ciency of the method is shown to be high in many cases.

2. Introduction. In most problems of estimation, estimators based on samples
of fixed sizes have precisions which depend on unknown parameters, and estima-
tors with prescribed precision are not available without resort to sequential
sampling in two or more stages, as in Stein’s procedure [1] for estimation of the
mean of a normal distribution with unknown variance. For problems other than
those of the type treated by Stein the only available general methods which are
both fairly practicable and efficient seem to be the double-sampling method of
Cox [2], [3] and the sequential method of Anscombe [4]. The latter methods,
however, are approximate, being based on asymptotic theory, and there seems
to be no easily appliceble method available for determining in a given case the
closeness of the approximations involved. An approach employing a different
concept of prescribed precision is described by Graybill [16].

The method to be described below (developed independently by the authors)
is a simple one which provides, in a number of problems, procedures for two-
stage sampling leading to estimators which are exactly unbiased; in certain
problems these estimators have exactly a prescribed variance, while in other
problems they have variances never exceeding but generally close to a prescribed
bound. Under certain conditions, primarily that the precision prescribed is
sufficiently high, these estimators are shown to have generally high efficiency.

3. General discussion of the method.

8.1 Statement of problems. Let S = {x} be the sample space for a single random
observation, X, on which a density or discrete elementary probability function,
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ESTIMATES IN TWO-STAGE SAMPLING 663

f(z, 8), is defined for each 6 in a given parameter space Q. Suppose that it is
desired to estimate with prescribed precision a real-valued function p = p(#9).
We adopt the following formalization of this requirement: it is required to find
find an unbiased estimator of p having variance not exceeding a given positive
function B(9).

3.2 Assumptions.

I. Assume that, for each non-sequential sample size n not less than a known
ng , there exists an unbiased estimator ¢ = #(x;,, - -+ x.) of p, ie.,

(1) Eit(Xy, -+ X,) = p(6).

II. Let ¢°(6, n) denote the variance of ¢ for sample size n. Assume that, for
each non-sequential sample size m not less than a known m,, there exists a

measurable ‘“‘second sample size function” n = n(z;, - -- zn) taking integer
values not less than n, , and such that either

(2a) Ew’ (6, n(Xy, -+ Xn)) = B(8)

or

(2b) By (6, n(X1, -+ Xn)) < B(8)

holds for each 6.

3.3 Estimation Procedure. Under the above assumptions, a simple unbiased
estimator of p, having variance not exceeding B(#), is given by any procedure
of the following form:

A) Take a sample of m observations (m = mp), 21, - -+ Tm, and compute
n=mn(x, ° Tm).

B) Take a second independent sample of n = n(x;, - - Tm) = Mo additional
observations, my1, ** * Lmin -

C) Estimate p by ¢ = t(Tmy1, *** Tmia), ignoring at this stage the first
sample observations x; , + -+ Tm .

The fact that this procedure seems to involve gross waste of information in
the first sample suggests at first sight that its efficiency must be low. It will be
shown, however, that the efficiency of the method, with a suitable choice of
sampling rule, is so high in a number of cases that the search for more efficient
methods (generally not known at present) would seem to be of more theoretical
than practical interest for those cases.

3.4 Properties of the Method. We first verify that, when functions ¢ and n can
be found satisfying conditions (1) and (2b) above, the method gives unbiased
estimators with variances not exceeding the prescribed bound. Let

N =n(Xy, - Xn).
Then the estimate is T = $(Xm41, *+* Xm4n), and
(3) Eo(T) = Ex(E:T | N]) = Eo(p) = »,
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since, for each fixed n = ﬁo , we have Fot(X i1, -+ Xmin) = p by (1). Also
(4) Vary (T) = Ey Vary (T | N) = Eo(6, N) < B(0)

by (2b); if (2a) holds, Var, (T) = B(#).

3.5 Efficiency Considerations. A measure of efficiency for any sequential esti-
mator satisfying (3) and (4), and not restricted to the use of only two stages
of sampling, may be devised as follows: It has been shown by Wolfowitz [5],
under certain regularity conditions on f(z, ) and p(8) and certain broad con-
ditions on the sequential sampling rule, that each unbiased sequential estimator
t of p, together with its total random sequential sample size N’, satisfies

(5) Van(T) 2 Fy (@gg—Xﬂ) / Bo(NY).

From (4) and (5) we obtain, under the conditions mentioned, the following
lower bound for the expected total sample size required by any sequential esti-
mator meeting our conditions (3) and (4):

() Eo(N") = E, ("—l"%ﬁ) / B®)

As will be shown by specific examples below, there does not necessarily exist an
estimator which attains this lower bound. Nevertheless it is useful to define as
an index of efficiency the function

0 R(60) = Fy (‘-’%@) / BOBN,

where Ey(N’) is computed for any given estimate satisfying (3) and (4). As an
example of the interpretation of this index, suppose that for a given estimator
we find that R(8) = 0.90 for all §; then we can assert that for every estimator
meeting the conditions (3), (4), and the general conditions of [5], the required
expected total sample size function Ep(N*) will satisfy Eo(N*) = 0.90 Es(N')
for all 6; hence average savings in sample sizes of at most 10 % might be achieved.
It is known that in general the savings actually possible are less than indicated
by such bounds, e.g. less than the 10 % indicated here.) Such efficiency bounds
are given in the following sections for various specific problems.

The estimation methods of the present paper are roughly similar to the method
of Stein [1] for estimation of a normal mean. For most purposes the prescribed-
length confidence interval formulation adopted by Stein seems preferable to the
prescribed-variance formulation adopted here; the present formulation is akin
to a decision-theoretic one with mean-squared error loss function, but the restric-
tion of unbiasedness which provides essential simplications of calculations also
generally entails some inefficiency from this standpoint. While Stein was able
to give exact confidence intervals by determination of the exact (Student’s)
distribution of the point estimator implicit in his method, the exact distribu-
tions of the estimators given here are not known. Consequently this paper makes
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no contribution to the theory of exact interval estimation comparable with
Stein’s, apart from the following crude use of Tchebycheff’s inequality: If 8 is
an unbiased estimator of # with variance not exceeding a constant B, then the
interval estimator # = e covers 8 with probability at least 1 — o where « = B/ é.
For many of the problems considered below, even such confidence intervals
have not previously been available. (For a number of problems, a method of
constructing confidence intervals of fixed length and confidence coefficient, but
probably poor efficiency, was given in [6]).

In many cases, particularly those in which high precision is specified, the
estimators given here have approximately normal distributions. This is illus-
trated in the Poisson case below. To the extent that this is true, all methods for
confidence regions and significance tests based on assumptions of normality
with known variance may be applied. Useful approximations to the distributions
of some of the estimators can probably be based on Student’s ¢ distributions
with the number of degrees of freedom determined by a fitting of fourth moments;
further investigation of this possibility is required.

It should be noted that, with the methods of this paper, there will sometimes
occur samples which on inspection strongly suggest that some modification of
the estimators given here would be more appropriate and efficient. A similar
comment applies, with somewhat less force, to Stein’s procedure and some other
sequential procedures. These features seem symptomatic of possible improve-
ments in efficiency of these methods which have not yet been found. They seem
also to point to more basic problems in the foundations of statistical inference
which lie outside the scope of the present paper. The estimators given in this
paper have variance and efficiency properties which are valid within the uncon-
ditional two-stage sampling probability framework; these properties are not
considered here (except in some computational steps) conditionally on a given
first or second sample size. The unbiasedness properties of these estimators
generally hold both conditionally and unconditionally.

4. Estimation of a mean. Suppose that X is real-valued and that the mean
0 = p(8) = Ey(X)

is the parameter to be estimated. Then Assumption I is obviously satisfied if
we take

1 n
t= t(x,,,H, s :v,,,,.,,) = %lem.,.i.
Letting o5 = Var, (X), we have ¢°(6, n) = os/n. Condition (4) becomes
(8) Ey(1/N) = El/n(Xy, -+ Xm) < B(6)/05.
Then any integer m = my, and any function n = n(2, - - - =) satisfying (8),
may be used to define an estimator, which will then automatically satisfy (3)
and (4). Such an estimator has expected total sample size

(9) Eo(N') = m + Eofn(Xy, -+ Xm)] = m + Eo(N),
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and efficiency bound
(10) r() = 5, (ELEOY / 56) o+ ().

In the special case of constant prescribed precision, B(§) = B, (8) becomes
(1/B)Ef1/n(X;, -+ Xn)] £ 1/03, and the problem of finding a suitable
second-sample-size function n(z;, -+ z») may be stated as the problem of
finding an estimator 1/6° of 1/0%, based on m observations, which is unbiased
(condition (2a)), or which has positive bias at no 6 ¢ @ (condition (2b)). Then
the sequential sampling rule may be stated as:

A’) Observe z;, - -+ Zm , and compute ¢° = ¢'(z;, - - - Tnm).

B’) Take a second sample of n = ¢°/B observations Tmy1, « - Tmin -

C’) Estimate the mean § = E;(X) by the mean ¢t = 1/n)_ 7= Zms; of the
second sample only.

It is sometimes convenient to define 6*(z;, - - - , Zm) formally in such a way
that 6°/B is not always an integer. Then for most applications it will suffice to
take n as the smallest integer not less than 4°/B. A calculation like that above
shows that this gives again Vary (T) < B. Alternatively, given ¢°/B, we could
use a random device to choose n = [¢°/B] = the largest integer not exceeding
/B, with a probability v, and n = [6°/B] + 1 with probability 1 — v, where
v is determined by the equation

v[6*/BI™ 4+ (1 — ¥)([6*/B] + 1)~ = B/&".

The latter procedure, which is perhaps of primarily theoretical interest, gives
Vary (T) = B exactly if Ey[1/6*(X1, -+ Xn)] = 1/0° exactly. Henceforth we
write n = ¢°/B to indicate that one of these procedures is used in defining 7. It
follows that calculations based on the equation n = /B, such as the equation

Em(Xy, -+ Xn) = Bs*(Xy, -+ Xn)/B

used below, may involve an error whose magnitude is in any case less than one.
Similar remarks apply to cases of the method other than those of estimation of
a mean.

For any such procedure we have expected total sample size

EyN') =m 4+ En(Xy, - Xu) = m+ (1/B)Ei* (X1, -+ Xu),
and efficiency bound given by
1/R(8) = (B/o8)Es(N’) = (Bm/os) + (1/04)Ee".

If B is sufficiently small, and/or if 6 is such that o3 is sufficiently large, it is true
" in many cases (as illustrated below) that (1/05)Ee* = 1 and that Bm/s; = 0,
and hence that R(6) = 1;in such cases, for the indicated range of 6, no appreci-
able improvements in efficiency are possible even by resort to fully sequential
estimators.
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Such estimators have been found and investigated quantitatively for a num-
ber of common problems. These results are summarized in the following para-

graphs.
4.1 Poisson Mean. If X has the Poisson distribution f(x, ) = ¢°6° / «! for
z=0,1, .-, we may take

& =2, Tm) =<ixi+1)/m,
1

since y = 1 x; has the Poisson distribution f(y, m8) = e ™(m8)*/y!, y =
0,1,2, ---,and

Eo(1/6) = m gﬂy, mo)/(y + 1) = me™ g: (m)")(y + 1)

= (¢7™/0) g (mf)" ™/ (y+1)l=0—-e™)/0<1/60=1/03.

When the second sample size is determined by n = °/B = (y + 1)/mB, the
expected total sample size is

E¢(N') = m + Eo(n) = m + (1/mB)Ey(y + 1) = m + (mb + 1)/mB.

This is minimized by taking m = 1/B"?, regardless of the value of 6. (In other
examples, an optimal first sample size is not so simple to determine.) Then
Eo(N') = 6/B + 2/B".

This estimator has efficiency bound R(8) given by 1/R(8) = 1 + 2B"*/s.
If, for example, 6 = 8B', then R(6) = 0.8, and a decrease of at most

100(1 — R(6))% = 20%

in Es(N’) might be possible by resort to some (unknown) more refined sequential
procedure; for 6 >> 8B, the possible gains are negligible.

An alternative two-stage estimator (of the mean of a Poisson process) em-
ploying “inverse” sampling in the first stage, given in [10], has exactly variance
B, but can be shown to be less efficient.

The following discussion illustrates that such estimators can have approxi-
mately normal distributions. For any fixed § > 0, B > 0, and k, we may write
Prob {(T — 6)/B"* < k} = EyU(N, 6, k, B), where

U(N, 6, k, B) = Prob {(T — 6)/B"* < k| N}.
For sufficiently large fixed N,
U(N, 6, k, B)= Pr{(T — 6)/(6/N)"* < kB"*/(6/N)"" = &(k(BN/6)'"),
where ®(u) is the standard normal c.d.f. As B-— 0, the random variable
®(k(BN/6)'")

converges in probability to the constant ®(k), as does the random variable
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U(N, 6, k, B) with N random. Since 0 < U £ 1, We have
Ex(U) = Prob {(T — 6)/B** < k} — &(k)

as B decreases, proving the asymptotic normality of 7.
4.2 Binomial Mean. If X has the binomial distribution

f(zx, 8) = 6°(1 — 9)7, r=0,1

we may take
é=0- 2“"‘“’)('"; zi+ 1)(m + 1 —zj:x;)/(m + 1) (m + 2),

since (by a calculation similar to that in the preceding section)
Ey(1/6*) = 1 — 0™ — (1 — )™ /(1 — 27" ™)p(1 — 6)
<1/6(1 — 6) = 1/0.
The expected total sample size is
m(m—1)0(1—6) +m+1
B(m + 1)(m + 2)

= _og-tmtny 1 _ _ 4m + 2
=m0 -2 gy T 0 (1 m+ D(m +2 2))’

The latter expression does not yield a minimizing value of m independent of the
unknown 8, but for any chosen B and guessed value # a minimizing value

m = m(9, B)

Ey(N') =m+ (1/B)Es* = m+ (1 — 27 ™)

can be found by numerical solution of the equation 5% Ey(N’) = 0. Table1 pro-

vides some such values.

TABLE 1
Best Binomial First Sample Sizes m (6, B)
B
[}
(0.05)2 (0.02)2 (0.01)2 (0.005)2
0.5 0 0 0 0
0.4 or 0.6 0 0 26 47
0.3 or 0.7 0 20 40 81
0.2 or 0.8 11 29 59 119
0.0or 1.0 18 48 98 198

The value m = 0 indicates use of a single sample procedure with n = 1/4B
observations. However, calculations of Ey(N’) for various values of B and m,
such as those given in Table 2, indicate that for B < (0.05) a choice of m such
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as m(0.2, B) provides appreciable savings as compared with m = 0 over a wide
range of § at the cost of a relatively small loss as compared with use of a best
value m(6’, B) based on any guessed value # which happens to be correct.

TABLE 2
Values of Eg(N') for Binomial Estimates
(a) B = (0.05)?
m
(]
0 11 18

0.5 100 112.3 118.5

0.40r 0.6 100 109.4 115.3

0.3 0or 0.7 100 101.0 105.6

0.2 0r 0.8 100 86.9 89.5

0.10r0.9 100 67.1 67.0

0.0 or 1.0 100 41.8 38.0

(b) B = (0.005)2
m
[}
0 47 81 119 198

0.5 10,000 10,056 10,084 10,120 10,199
0.4 or 0.6 10,000 9,688 9,703 9,734 9,806
0.3 or 0.7 10,000 8,585 8,561 8,573 8,630
0.2 or 0.8 10,000 6,746 6,656 6,639 6,670
0.10r0.9 10,000 4,173 3,990 3,931 3,926
0.0 or 1.0 10,000 863 563 450 398

The efficiency bound R(8) of such estimators is given by
1/R(8) = Bm/6(1 — 8) + (1 — 27"*V)
A1/[(m +2)6(1 — 0)] + 1 — (4m + 2)/[(m + 1)(m + 2)}};
For any given B, the values of m to be considered are 0 = m < m(0, B). If we
take m = m(0, B) = 1/B" — 2 = 1/B"* (for B £ (0.05)%), we have
1/R(8) = 1 + B"(2/6(1 — 6) — 4).
For any B, as § — 0 or 1, R(6) — 0; but these are values of 8 for which the
lower bound o3/B on Es(N') cannot be attained by any estimator with the
desired properties. For any fixed §,0 < # < 1, as B — 0, R(8) — 1; thus the
efficiency of § cannot be much improved upon when high precision is required.
Analogous statements hold if we take, for example, m (0.2, B).
The formula for the second sample size is

n=c(z1::x,~+l)<m+ 1 —ixi),

1
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where ¢ = ¢(B, m) = (1 — 27"*")/B(m + 1)(m + 2). Table 3 provi.es
some values of ¢(B, m).

TABLE 3
Values of ¢c(B, m) for Binomial Second Sample Sizes
B

m

(0.05)2 (0.02)2 0.01)2 (0.005)2
10 3.03 18.94 75.76 303.04
15 1.47 9.19 36.76 147.04
20 0.87 5.41 21.64 86.56
25 0.57 3.56 14.24 56.96
30 0.40 2.52 10.08 40.32
35 0.30 1.88 7.52 30.08

The variance of 8 is
Vare (8) = B(1 — 6™ — (1 — 9)™")/(1 — 27"*) £ B;

this is appreciably less than B only when 6 is very near 0 or 1, provided m is
not very small.

There exists, as in the Poisson case, a procedure employing “inverse” sampling
to yield a binomial estimator having exactly constant variance as follows:

Let M be a fixed positive integer. Make successive independent Bernouili
trials (samples of size one) until min (total successes, total failures) = M. Let
z be the number of trials up to and including the Mth success. Let y be the
number of trials up to and including the Mth failure. Take an additional sam).’
of size n = M/B(x + y) and let z denote the number of additional successes
observed. Then 8 = Bz(x + y)/M is an unbiased estimator of 6 having variance
exactly equal to B. It seems clear that the expected sample size will be larger
for this “inverse” sampling plan, and that as a practical matter exactly pre-
seribed variance would seldom be worth the cost in additional observations.

4.8 Hypergeometric mean. In a finite population of known size M, let 6 = D/M
be the unknown proportion of items having a given trait, e.g. being defective.
Let X denote the number of defectives in a first sample of size m, n = n(x)
the size of a second sample, and Y the number of defectives in the second sample.
(All sampling is without replacement.) Then it is readily verified that an un-
biased estimator of 8 is

6 =[(Y(M — m)/n) + X]/M.
This estimator will have variance bounded by B if we take

(M —m)’(z+1)(m —z+ 1)
BM2(m + 1)(m + 2) + (z + 1)(m — z 4+ 1)(M — m)

n =n(x) =

since
(D—2)(M —m —D+2)(M —m —n)

var(9|2) = (M —m — DM
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and hence

varf = E var(d | x)

-Gt e QG 2/ ()

_ Z":(M—m—n)(x+ 1)(m—z+1)(M —m)

r=a Mxn(m 4 1)(m + 2)

'il M—-—m—-n)wim+2 —w)(M —m)

= Mn(m + 1)(m + 2)
M2/ ()

-5 5, @62/ ()=

Exact results on expected sample sizes are not available, but an indication of
the possible savings is given by regarding the results in the binomial case to be
limits approached as M becomes infinite. Additional information is given by
the range of n(z): for m even,

(M — m)®
M2:B(m + 2) + (M — m)

+

Ssm+nlz) =N =m

m +

(M — m)*(m + 3)°
4BM*m + 1)(m + 2) + (M + 3)*(M — m)~

With a single sample of size r, the best unbiased estimate has variance not
exceeding B for all 6 provided r is at least M/(4B(M — 1) + 1). If for example
M = 1,000, B = .0001, and m = 80, then r = 714 while 173 = m + n(z) =< 728;
when 6 = 0 or 1, the two-stage estimate saves 541 observations (76 %), while
when 6 = % its maximum sample size exceeds r by less than 14 observations
(2%).

4.4 Mean of a Normal Distribution with Unknown Variance. If X has the
normal density function f(z, 6, ¢) = (2rd") Pexp (x — 0)°/24°), with o un-
known, we may apply the present method with an advantageous modification
based on the independence of & = (1/m) 11 ; and

= (/tm = 1) Y (5 = 2"

Takeanym > 3, let 6 = (m — 1)s*/(m — 3), n = max [0, 6°/B — m], and
6 = (1/(m + n)) DM x.. It is easily verified that the latter estimator is un-
biased and has variance not exceeding B. For most purposes Stein’s procedure [1]
which gives confidence intervals of prescribed length will probably be preferred;
optimal choice of m for this procedure has been extensively investigated [7]
and [17].
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4.6 Estimation of a Scale Parameter. Let X have a density function
f(x; 0) = (l/a)g(x/o)r z =0,
and f(z,#) = 0 otherwise, where g(u) is a known function with

¢ = _[ug(u)du=E(X|0= 1),
cz=fomuzg(u)du=E(X2|0=l)<°°, and

c; = lwu“zg(u)du=E(1/X2I0=1) < o,

Then E(X /1) = 0, Var (X/c1) = 6°(e2/ci — 1) = o, say, and E’(l/Xz)l= cs/ 6.
Letting 6° = mes(eo/ci — 1)[ D1 1/23]™, we have

E(1/6") = 1/[es(co/ci — 1)IE(1/X?) = 1/d".
Thus an unbiased estimator of the scale-parameter 6, having variance B, is

6 = > mr  x:;/em. The choice of m may be made so as to minimize, at any
guessed value of 6,

Eo(N') = m + E4(n) = m + Eo(¢")/B.

For any specific density function f(z, 6), it may be possible to find an estimate
& preferable to the ¢* given above: & = (1, -+ &m) is clearly preferable to
é® if it (has the essential property E(1/5°) =< 1/o° and also) makes § more
efficient, that is, if E(#*) < E(¢%). (This remark may be applied also to the
estimators ¢° discussed in other sections of this paper.)

For example, if X has the gamma density

f(z, 0) = (1/6a))(z/0)% ", z=0,

where o is known, o > —1, then

1
a == e tdu=a+1,
ot Jo

o=+ [ ™™y = (o« + 1) (a+2),
o
and, provided we require « > 1,
a=— [ u e du = 1/a(a — 1).
0

Thus §* = m[(a — Da(a + 1) 2™ 1/23™. The evaluation of Ey(s*), required
to compute Ey(N'), appears difficult for m > 1 and has not been carried out.
Form =1,
Ey(6") = Eoy(X*)/(a — Da(a+ 1) = 6°cs/(a — a(a + 1)

= 6'(a + 2)/a(a — 1),
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and Ey(N’) = 1 + 6*(a + 2)/a(ae — 1)B. Presumably the estimator

=K (i xi)z,

%

where K is such that Ey(1/5°) = 1/o°, is preferable to ¢* in this example, since
& is a function of the sufficient statistic >y z; (based on the first sample) and
6 is not. Results of Ghurye [15] lend support to this conjecture. An estimator
based on & is given in Section 5.3 below.

The estimation of any given power 6° of a scale-parameter 6,p = 1, +2, - - -,
may be treated similarly.

6. Other estimation problems.

6.1 Variance of a normal distribution with unknown mean. Let X have the
normal density function with unknown mean and variance as in Section 4.4,
but let § now denote the unknown wvariance. For any m > 5, let

n = 28" (m — 1)’/B(m — 3)(m — 5) + 1,
where s’ is the first sample variance defined as above. Then it is readily verified
that an unbiased estimator of 8, with variance not exceeding B, is given by the
second sample variance.

b = mf:“ (x,—%gr :c;)z/(’n— 1),

mrl
and that

2(m + 1)(m — 1)6°
(m — 38)(m — 5)B

For given B and a guessed value of 8, m may be chosen so as to minimize Eo(N').

5.2 Estimation of a “between classes” variance component. Consider the usual
assumptions for a one-way analysis of variance, with n observations from each
of kclasses: Yi; = p+ ¢i+ e;j,t=1,--+k,j=1, - n, with p an unknown
constant, and the ¢;’s and e;;’s all independently normally distributed with means
zero and unknown variances

Ey(N') =m+1+

var (¢;) = o9, var (e;;) = o, i1=1---kj=1---m.
The usual between classes mean square s has expected value g* + nogand k — 1
degrees of freedom. The usual within classes mean square s* has expected value
o and k(n — 1) degrees of freedom. Then (s — s*)/n is an unbiased estimator
of o5 , with variance

2[(a* 4 not)*/(k — 1) + ¢*/k(n — 1)}/n’

when k and 7 are fixed.

Alternatively, suppose a first sample of r classes and n observations per class
has been taken. Let T5 and T" respectively denote the between and within
classes mean squares, based respectivelyonyy =r — 1> 4andv=r(n — 1) > 4



674 ALLAN BIRNBAUM AND WILLIAM C. HEALY, JR.

degrees of freedom. Then it is easily verified that
E(v — 2) (v — 4)/wTs = 1/(o" + nod)’
and
E(v — 2)(» — 4)/¥’T" = 1/4".
This leads to the choice of k defined by k¥ = max (2, k', k") where
k' =1+ 2Towe/(v — 2)(vo — 4)(B — b)
K =2T%/(v — 2)(» — H)bn*(n — 1)

and b is any constant, 0 < b < B. To see that with &k so defined, the sampling
variance of &3 is less than B, observe that

B = 2[(¢" + no0)’E(1/ (K" — 1)) + (¢'/(n — 1))E(1/k"))/n’
2[(6* + na0)’E(1/(k — 1)) + (*/(n — 1))E(1/k))/n’

var (48).

v

The choice of n would ordinarily be influenced by practical limitations on the
experiment, and the choice of both n and b could also be governed by an a priori
estimate of ¢°/cp .

An alternative approach to the present problem is to apply twice the method
of the preceding Section 5.1 as follows: Estimate (¢7 + o) by a two-stage
estimator s; having variance not exceeding B, < B, based on observations
Yu,Yu,  YuiYmini, - Yimsn .1, S0 that only one observation is taken
from each class. Secondly, estimate ¢” by a two-stage estimator s; having variance
not exceeding B, , where B, = B — B, , based on additional observations within
any one class (or on additional “within degrees of freedom” from several classes).
Then s* = s; — s is the required estimate, for E(s*) = ¢, and

var (sz) < B, + B, = B.

Rules for optimal choice of B;, and comparisons with the preceding method,

remain to be developed.
5.3 Scale parameter of a gamma distribution. If X has the Gamma density de-

fined in Section 4.5 above,
Var (X/¢,) = Var (X/(a + 1)) = 6 (cs/ci — 1) = 6/(a + 1) = o,

and we may take
m 2
& = (Z x¢> /(e 4+ 1)(ma + m — 2)(ma + m — 1),
1

for all « and m such that (ma + m — 2) > 0. This gives E(1/6°) = 1/4°, and
E() = 6*(ma + m + 1)(ma + m)/(a + 1)(ma + m — 1)(ma + m — 2).
For any guessed value of 8, m may be chosen, subject to m > 2/(a 4 1), so as
to minimize Eo(N’) = m + E,(6*)/B.

A modification analogous to that in Section 4.5 above, replacing > @ by
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(2_ x,)? throughout, with a corresponding modification of constants, gives an
estimator of 67 with variance B.

6. Applications to achieve homoscedasticity. Many standard techniques for
comparing means, related to the analysis of variance (Model I), are seriously
dependent for validity on the assumption that observations have (approxi-
mately) equal variances, but much less seriously dependent on the usual assump-
tion of normality (see, for example, [8] and references therein). It is frequently
desired to apply such methods to means of observations having some of the
distributions considered in Section 4 above; but in such cases the unknown
variances are functions of the unknown means of observations, and hence the
assumption of equal variances generally holds only when the unknown means
happen to be equal.

The methods of the present paper provide a way of meeting this difficulty
which may be considered in cases where it is feasible to use a two-stage sampling
method providing (approximately) a common prescribed variance B for the
observation in each cell of any Model I experimental design. Techniques re-
lated to analysis of variance will be used taking, formally, the case of an infinite
number of degrees of freedom for the error mean square; the latter, of course,
will not be calculated from data, but the known variance B will be used instead.
The methods which are usually considered for meeting this difficulty are vari-
ance-stabilizing transformations of the observations (see, for example, [9]).
Concerning the relative advantages and disadvantages of these approaches,
it should be noted that the goal of (a) variance-stabilization for application of
standard inference techniques is usually of interest simultaneously with certain
goals of (b) precision of estimation (or power of tests), (c) efficient utilization of
data obtained, and (d) simplicity of interpretation. Concerning (d), use of the
methods of this paper offers some advantages over use of transformations since
the former provides inferences directly about the means of interest with pre-
scribed precision on their original scale, rather than inferences about functions
of those means (e.g., E(sin—'(z/n)}) in the binomial case) which are often harder
to interpret and perhaps less meaningful. Furthermore, the latter estimators
lose their constant-precision property when interpreted in the original units
of the parameters.

In cases like the Poisson there is no single-sample procedure which provides
even bounded, let alone prescribed, precision in the original scale. Hence if such
prescribed precision is one goal of interest, sequential methods more or less
like those of this paper are required, and the simultaneous achievement of sim-
plicity, and of exactly or approximately known common variances of estimators
of means, may be regarded as convenient desirable by-products of the method.

In cases like the binomial, the goals of bounded precision and homoscedasticity
are attainable by use of transformed single-sample estimates. In the binomial
case, we have seen above that when high constant precision is desired, the two-
sample estimate is on the whole rather efficient, and in this case again affords
the properties of homoscedasticity and simplicity. If only low precision is re-
quired, there is some conflict between the goals mentioned. For example, for
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binomial estimation with B = (.05)* it was shown above that a first-sample
size of m = 20 gives an inefficient estimate, but m = 20 is required for a good
degree of homoscedasticity. In such cases efficiency considerations may be
weighed against considerations of simplicity of application and interpretation.
If it can be assumed that .2 < 6 < .8, then m = 10 suffices to give a variation
of at most 7% in variances of §’s. If it can be assumed that .1 < 6 < .9, the
variation is at most 10 % if m = 20.
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